
Executive Summary

Wind River Simics allows product teams to adopt a 
development methodology where physical system hardware 
is replaced by Simics virtual platforms running on a standard 
PC. This allows customers to efficiently define, develop, and 
deploy their products, usually much faster, with higher 
quality, and with fewer risks than when using physical 
hardware alone. 

Simics virtual platforms run the same binary software as 
physical hardware and are fast enough to be used as an 
alternative for software development and testing. Simics 
virtual platforms are unique. They are fast and accurate 

enough to run a full software stack from hypervisor to 
application, and they guarantee repeatable software 
execution, full visibility/control of the virtual target hardware, 
and true reverse execution.

A key part of this development paradigm is to quickly get to 
running code and use real code for as much development as 
possible. For new hardware designs, the virtual platform is 
best created and used as an executable specification for the 
final system. These specifications should be used before the 
hardware design is finalized to allow them to be exercised by 
real software.  

This paper provides an example of how a hardware 
accelerator can be explored, specified, and verified using a 
fast functional virtual platform, while knowing the main 
performance requirements on the accelerator and the 
characteristics of the software that will drive it. 

You will see how to use Wind River Simics and fast functional 
simulation to do the following:

• Move a software function into a hardware accelerator.
• Define and refine the hardware-software interface.
• Analyze the performance requirements of the accelerator.
• Determine when a hardware accelerator is faster than 

keeping a pure software implementation.
• Provide an executable specification for the detailed 

hardware design.

Investigating Hardware Accelerators

In modern computer system design it is common practice to 
offload functions from software to hardware accelerators 
(also known as offload engines) to increase system 
performance and reduce the processor’s computation load. 
The goal can be to increase throughput, decrease jitter, or 
reduce the power consumption of the system by using 
dedicated hardware and lower processor clock frequencies. 
A key part of the system design is to determine whether and 
when a hardware accelerator makes sense, compared to a 
pure software implementation on programmable processor 
cores. The preferred flow is to start with a software 
implementation of the function and quickly prototype how 
implementing the functionality in dedicated hardware affects 
the system performance and behavior. 
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Such a prototype needs to include not just the computation 
in the hardware but how the software on a system drives the 
hardware and the specification of the hardware-software 
programming interface. With a fast transaction-level 
functional virtual platform, the interface can be defined, 
refined, and redesigned in a matter of hours because of the 
high level of abstraction used.

You will see how fast functional simulation is used to do such 
design exploration for a particular hardware accelerator 
candidate. The very fast simulation speed is leveraged to do 
a broad evaluation of implementation alternatives and cover 
a large number of different parameter values and software 
variations. Simics can run complete real software stacks to 
perform all tests using a complete Linux software stack on 
the target machine, making it possible to investigate exactly 
how the operating system and driver architecture affect 
overall performance. 

Instead of actually designing a hardware accelerator for the 
algorithm in a hardware design language such as SystemC or 
Verilog, the software algorithm written in plain C is 
incorporated directly into a Simics device model at the 
functional level, written in Simics DML. The hardware design 
is not analyzed to determine how fast it would be in an actual 
circuit but rather a range of hardware computation latencies 
is assumed and the performance of the system is tested 
under each assumption. In this way, an executable 
specification is created for the hardware accelerator, and 
constraints for a later implementation step are provided.  

Setup Overview

In this scenario, there is a software program implementing a 
particular algorithm (a cellular automaton known as rule 30), 
running on a dual-core Freescale MPC8641D Power 
Architecture–based system-on-chip (SoC). There is a benefit 
to offloading the execution of this algorithm from software to 
hardware, but we want to know how the intricacies of Linux 
affect the overall performance and how fast the hardware 
needs to be. Note that if a slower accelerator (higher 
computational latency) is possible, the hardware 
implementation can be smaller in terms of chip real-estate 
and use a slower clock frequency, reducing power. 

Figure 1 shows the overall system setup. Since it is a virtual 
platform, a custom accelerator can be added into the 
MPC8641D SoC without much problem. The device is added 
to the virtual platform and mapped into the memory map of 
the processor cores. It is connected to the MPIC interrupt 
controller to enable it to interrupt the processor.

In addition to the device, a device driver is written so that the 
Linux kernel can access the device, and a test program is run 
in the user space to test the performance of the device from 
a user-level program.
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Figure 1: The virtual system setup
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Software Program 

The program for which to investigate acceleration 
implements a cellular automaton known as rule 30 (a 
hardware implementation of rule 30 is available as open 
source from InformAsic). This is an interesting algorithm that 
computes one line of data at a time, generating very complex 
and unpredictable patterns from simple rules. As illustrated 
in Figure 2, each line consists of a number of binary elements, 

and the value of each element in a line is based on the value 
of the three elements above, to the left, and to the right of it. 

The result of running this algorithm from an input, starting 
with a few bits set, is a characteristic “Christmas tree,” as 
illustrated in Figure 3. 

The core algorithm is very easy to describe in software, if a 
single C char is used to represent each bit. In this case, the 

Figure 3: Rule 30 results

Figure 2: Rule 30 operation

...

Generation Rules



4   |   System Architecture Exploration Using Wind River Simics 

very straightforward C code can be used, as shown in Figure 4. 
The rules array corresponds to the rules illustrated in Figure 2. 

An implementation has been written using a bit-based 
representation of the data. This requires some more code but 
is about as fast as the byte-based implementation. It also 
corresponds to the reasonable hardware implementation 
because it does not waste 8 bits to represent the value of a 
single bit of information. 

The software program runs the rule 30 algorithm using a 
variety of implementation options, as instructed on the Linux 
command line when the program is started. To provide input 
data to the algorithm, a set of test initial lines (called 
“packets”) were compiled into the software program. 

The program tests a particular implementation in this manner:

• Loop over a certain number of packets (initial lines).
• Pick up a packet from the test data set and truncate it to 

the selected line length for this test run.
• For each packet, run the rule 30 algorithm for a certain 

number of iterations (when the successive lines that are 
generated are plotted, it results in the characteristic 
Christmas tree display). 

Typically each implementation variant is tested by running it 
on 1,000 packets for 99 iterations per packet (generating a 
pattern of 100 lines), which means that for each test case, the 
core loop of the algorithm is gone through 99,000 times.

Hardware Device 

The hardware device is written using Wind River Simics DML, 
a device modeling system provided with Simics. DML is used 
to describe the programming register layout of the device, 
the interrupt and I/O handling toward the processor and the 
management of computation delays. The core computation 
of the device is the bit-based implementation taken directly 
from the test software. What changes is how the input data 
arrives in the algorithm and how results are reported. Rather 
than as a function call from a test software driver, it is invoked 
over a memory-mapped device programming interface.

Figure 5 shows the registers in the programming interface, as 
expressed in the DML file. The programming interface works 
like this:

• Set operation parameters into the control, rule_set, and 
line_length registers. 

const uint8_t g_rules_array[8] = {0,   /* 000 */
  1,  /* 001 */
  1,  /* 010 */
  1,  /* 011 */
  1,  /* 100 */
  0,  /* 101 */
  0,  /* 110 */
  0  /* 111 */
};
  
for(i=0;i<line_length;i++) {
 int  bit_left_index = (i==0) ? (line_length-1) : (i-1);
 char bit_left = source[bit_left_index];
 char bit_mid = source[i];
 char bit_right = source[(i+1)%line_length];
 int  index = bit_left * 4 + bit_mid * 2 + bit_right;       
 dest[i]=g_rules_array[index];
}

Figure 4: Rule 30 char-based implementation

bank regs {
    parameter register_size = 4;
    register version       @ 0x00 “Device version register”;    
    register control       @ 0x04 “Device control register”;
    register status        @ 0x08 “Device status register”;
    register reset         @ 0x0c is (write_only) “Reset register (write only)”;
    register irq_num       @ 0x10 is (read_only) “IRQ assigned to device”;
    register rule_set      @ 0x14 “Rule set (bit encoded)”;
    register line_length   @ 0x18 “Line length (in bits)”;
    register start_compute @ 0x1c “Start computation”;
    register input[32]     @ 0x20 + 4*$i is (write_only) “Input buffer”;
    register output[32]    @ 0xa0 + 4*$i is (read_only)  “Output buffer”;
}

Figure 5: DML device programming interface
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attribute time_to_result {
    parameter documentation = “Delay in from start of 
                              operation to results are available”;
    parameter type = “f”;
    parameter allocate_type = “double”;
    parameter configuration = “optional”;
}

Figure 6: DML device latency coding

simics> ra0->time_to_result = 10.0e-9

Figure 7: Scripting latency

• Write input data to the input array, up to 1024 bits in units 
of 32 bits. This representation is bit-based, with one bit per 
cell in a line.

• Start the computation by writing to start_compute.
• Wait for an interrupt to signal completion, or spin on the value 

of the status register to set the operation complete flag. 
• Read results from the output array.

Note that the details of the register implementation are 
described later in the DML file. The overview declaration just 
provides the names and offsets of the registers for an easy 
overview of the programming memory map.

The operation parameters that can be set are interrupt 
notification and whether the device should copy the output 
result to the input array on operation completion. This would 
remove the need for the software to copy output data to the 
input array for chained computations. This is the mode known 
as “hwo” in the following experiments. 

The latency to compute a result is set as a parameter in the 
device, using a Simics attribute (device parameters that can 
be set and read at any point during a simulation). Figure 6 
shows the DML code to create the attribute. To change the 
latency, simply issue the Simics CLI command shown in Figure 
7. This can be done at any point during a simulation run.

Implementation Effort 

Implementing the hardware accelerator model at this level of 
abstraction is fairly quick and took only a few working days. 
Most of the time was spent iterating the device programming 
interface and the device driver implementation, to create a 
convenient programming interface for the software and to 
test that the complete software stack worked. Such evolution 
of the hardware-software interface is key to designing a 
programming interface that make sense from the perspective 
of the driver and the BSP. 

The complete model source code is about 560 lines, including 
comments and debug printouts as well as the C-based 
computation kernel of around 100 lines. The code also 
contains version registers for the hardware, interrupt handling, 
unit testing support, and error checking.

Verifying Correctness of Hardware and Software 

To verify that all software variants and hardware acceleration 
variants work correctly, the test software has some special 
modes that run two different implementation variants and 
compare the outputs. The byte-based implementation is the 
golden reference model and validates the software bit-based 
implementation as well as the hardware implementation (in all 
its operation modes) against it. This methodology found some 
bugs in the initial bit-based implementation regarding certain 
corner cases as well as an embarrassing bug indicating the 
output data of the computation in the hardware wasn’t read. 

Device Driver 

The Linux device driver created for the device is a “char” 
driver and uses the Linux standard write() and read() calls to 
drive data into and read results from the device. ioctl() is used 
to set parameters and query the device state. As a result of 
initial performance exploration, a mmap() function was 
implemented where the user-level software can directly 
access the registers of the hardware. 

The driver is compiled as a Linux kernel loadable module, to 
make it easy to change it on the target machine. If it was 
compiled into the kernel, each device driver change would 
have required a complete rebuild of the kernel as well as a 
reboot of the target system. Instead a checkpoint of a booted 
machine is used as the starting point for each iteration and 
the latest revision of the hardware module and device driver is 
added on the fly. In this way, iterating hardware and software 
changes takes only seconds. 
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Performance Measurements

Once the basic infrastructure is in place, performance data is 
collected. The simulation was set up to detect the start and 
end of the computation kernel as well as the start and end of 
each packet. Simics OS awareness was used to distinguish 
between user-mode and kernel-mode time. 

The data collected was the minimum, maximum, and average 
of the following times:

• Compute time per line, start to end (the compute kernel)
• Compute time per line, time spent in user mode
• Compute time per packet, start to end
• Compute time per packet, time spent in user mode

Simics magic instructions (no operations in the code that 
Simics identifies that do not affect the execution semantics) 
delineate the start and end of each processing unit. In this 
way there are very precise measurements that do not suffer 
the variability inherent in using a serial console to print out 
the start and end times. In physical hardware, this would be 
similar to driving an output pin high and low and looking at 
the timing in an oscilloscope. 

Model Abstraction Level 

These simulations were performed using the standard Simics 
software timing (ST) level of abstraction. This is less detailed 
than SystemC TLM-2.0 LT in that memory access latencies are 
not accounted for, models are not allowed to do any kind of 
waiting before returning from a function call, and mandatory 
temporal decoupling is used to gain about an order of 
magnitude in simulation speed. However, we do model system 
time, clock interrupts, and the hardware latencies that matter. 
The processor is a fast in-order model with a fixed execution 
time per instruction, and there is no cache model or model of 
memory latency. The hardware model of the accelerator 
accounts for time by sending an interrupt to the processors 
after each computation is complete, and the delay from the 

point of starting a computation to the signaling of completion 
is varied to test different hardware speeds. 

Automation of System Setup

Since we wanted to run thousands of test cases with various 
parameters, the loading and execution of the test software 
was optimized and automated using Simics check-pointing 
and scripting. 

First, the standard Linux 2.6.23 kernel for the MPC8641D was 
booted on the virtual MPC8641D machine, and we took a 
checkpoint after the boot completed and the target software 
arrived at shell prompt. The checkpoint contains the complete 
software and hardware state and can be brought back into 
Simics almost instantaneously. Note that the checkpoint is 
completely portable and can be opened on any Simics 
installation on any host machine, which makes it possible to 
run several different simulation runs in parallel on multiple 
hosts. 

Starting from the checkpoint, a series of scripts do the 
following to put the target system into a state where 
measurements could be performed:

• Load checkpoint.
• Add the rule 30 accelerator device. 
• Load the device driver onto the target and initialize it.
• Load the test software onto the target.
• Initialize a Linux process tracker. 

Adding the device was done using Simics’ ability to add 
objects to a simulation at arbitrary points in time. Figure 8 
shows the Simics script operations for creating a new 
accelerator and connecting it to the target memory map and 
MPIC interrupt handler. The line starting with @ is inline Python 
scripting, which is used to access certain rare Simics API 
functions from the Simics command line. The ccsr_space.add 
command updates the memory map for the on-chip devices 
section of the MPC8641D.  

@SIM_create_object(“rule30_accelerator”,”ra0”,[[“queue”,conf.cpu0],[“irq_dev”,[conf.
pic,’internal_interrupts’]],[“irq_level”,23], [“time_to_result”, 1e-3]])
ccsr_space.add-map ra0:regs 0xf0000 0x200

Figure 8: Adding the rule 30 hardware accelerator to the setup
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To load the software in an efficient way, the simicsfs virtual file 
system on the target was used. Simicsfs allows for mounting 
any directory on the host disk as a file system and accessing 
the host files as if they are local files on the target machine. 
The driver and test program were copied from the host to the 
target every time there was a run (they are cross-compiled on 
a Linux x86 host), which means the relevant parts of the target 
software stack can be updated without rebuilding a target 
disk image and rebooting the target. 

The target system operations are automated using Simics serial 
console scripting, where Simics scripts wait for prompts (or other 
output) and enter interactive Linux command-line commands. 
Figure 9 shows a screenshot of the state of the target serial 
console as the target software application is loaded after the 
device driver is loaded and initialized. Note that the simicsfs file 
system (/host) is mounted and unmounted for each file. Do not 
necessarily run a simulation with simicsfs mounted because it 
might impact repeatability and determinism. 

All the previous steps were wrapped into a single Simics 
script, which when invoked brings the turnaround time to less 
than a minute for a recompile and test of the device model, 
device driver, or the test program. All the user needs to do is 
make changes and start Simics with the script to set up the 
hardware and load the software. Compared to using a remote 
physical hardware board, this is much more convenient and 
much faster.

Automation of Experiments

Based on the automated setup of the target machine for 
experiments, another script was built to perform the actual 
performance experiments. This script does the following:

• Configures experimental parameters as a set of Simics 
command-line variables

• Sets up the target machine
• Loops over a range of packet sizes, and for each packet 

size runs the test program in a variety of modes with a 
variety of hardware latency parameters 

• Collects timing data for each packet size and mode and 
writes it to a file for later processing in Excel 

The script controls the mode of execution and behavior of 
the test program by giving it different Linux command-line 
parameters. The hardware is controlled by changing the 
latency setting using a Simics attribute (note that this means 
the latency of the accelerator is not constant through a single 
simulation run but changes during the run before each test 
program execution). The target system is not restarted 
between each run. The variation caused by the execution 
history of the target Linux is insignificant. If the target Linux 
state mattered, each run would be started from the same 
checkpoint.

Figure 9: Automated loading of software on the target
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Each run can cover many minutes of target time and take a 
few hours to run on the host. The automation lets it run 
completely unattended, including on multiple host machines, 
running many experiment variants in parallel.

Experimental Results

Over the course of the software-hardware integration, a 
series of experiments was performed. The following 
describes the most important steps in the process. 

Initial Testing and Basic Optimization of Driver 

In very early testing of the device driver, it was noted that the 
only sensible way to push data into the accelerator was to use 
a single write() call for the entire set of data and a single 
read() call to retrieve all results. Writing input a word at a 
time is many times slower because the overhead of a Linux 
kernel call is fairly significant, as described later. This 
simplified the driver because it did not have to maintain a file 
position abstraction. Another early optimization was to use 
static memory allocation in the driver, which sped things up 
by about 25%. The initial version of the driver used kmalloc() 
and kfree() to create and delete a kernel buffer for the data 
from the user space each time read() or write() was called.  

Next, there were some odd variations in the measured 
end-to-end execution times because the Linux kernel was 
scheduling the test process on different cores at different 
times. This is part of the normal functionality of the kernel, 
but since a clean comparison of implementation alternatives 
was needed, with as many variables under control as 
possible, processor affinity was used to tie the compute 
process to core 0 for all tests. 

Quite a bit of information about how to do Linux device 
drivers was clear, and it is possible to evaluate their 
performance in a fast functional simulator. The volume of test 
cases executed brought attention to the scheduler. Only 
about one run in 30 was affected, and it required quite a few 
program runs to make the issue stand out. 

Mapping the Performance Landscape 

To get an overview of the performance landscape with the 
hardware accelerator and the basic device driver, a set of 
experiments was run where the length of the packet was 
varied from 10 to 1020 bits, in increments of 30 bits. The 
hardware latency was varied from 1 ns to 10000 ns, 
logarithmically. The purpose was to determine the order of 
magnitude of speed where the hardware accelerator would 
become relevant.

Figure 10: Automated testing and performance measurement
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Figure 11 shows the results: “bit” is the bit-based software 
implementation; “char” is the reference implementation; and 
“hw-x” is the hardware accelerator with a latency of x ns.

The times are the average computation times for each 
packet, over the 1,000 packets processed, for each packet 
length and operation mode, expressed as clock cycles at 
1350MHz. 

The area of real interest to compare hardware and software is 
below 256 bits of length. The hardware option with a latency 
of 10000 ns can be ignored because it does not win over 
software until a packet length of around 500 bits. 

A new experiment was performed with packet lengths of 8 to 
256, with a step of 8 bits. The results are presented in Figure 
12. The following conclusions are drawn from this more 
detailed investigation:

• The hardware accelerators that are at 100 ns or faster 
outperform software at packet lengths above 88 bits. 

• The hardware accelerator with latency 1000 ns is likely not 
an attractive option, but if packet lengths are long in certain 
use cases, it could allow for building a very simple and small 
hardware implementation with a slow clock speed. 

Making a hardware accelerator faster than 100 ns appears to 
have no benefit at all. 

Figure 11: Initial performance measurements for hardware and software
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Figure 12: Zoom in at packet lengths of 256 bits or less
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Hardware Accelerator Speed 

The data shows that the execution time when using the hardware 
accelerator at 1, 10, and 100 ns is almost identical. To check this, 
the data is graphed in Figure 13. The conclusion from this is 
obvious: The driver overhead in the device driver negates any 
fundamental benefit from faster hardware. Essentially the 
software is not able to drive enough work through such a fast 
hardware accelerator to keep it busy. The fact that the execution 
time is independent of the speed of the accelerator (i.e., the 
lines for 1ns, 10ns, and 100ns overlap completely) and is only 
marginally dependent on the size of packets (note the scale in 

the graph) clearly shows there is a large fixed overhead 
associated with using the hardware accelerator.

If the performance of the hardware-accelerated option at this 
point is satisfactory, the specification stage could end and 
the hardware team could create an accelerator with a target 
latency of 100 ns, or maybe 10 ns to have some room to 
absorb later software improvements. 

This demonstrates the power of fast functional simulations to 
map out the performance landscape and determine which 
optimizations make sense and which do not. Without committing 
to any kind of detailed hardware implementation, the required 

Figure 13: Hardware accelerator results

// Input data
for(i=0;i<words_to_process;i++) {
  write_rule30_register(rule30_hw_acc_va, 
  (RULE30_INPUT_BASE + (4*i)), 
  in_line[i]);
}

// Kick compute
write_rule30_register(rule30_hw_acc_va, RULE30_START_COMPUTE, 1);

// Wait for complete
while( ((read_rule30_register(rule30_hw_acc_va, RULE30_STATUS)) 
 & RULE30_STATUS_OC_MASK) == 0) {
   // Busy wait loop
}
// Clear the completion bit in HW
write_rule30_register(rule30_hw_acc_va, 
  RULE30_STATUS,
  RULE30_STATUS_OC_MASK);

// Read output
for(i=0;i<words_to_process;i++) {
  out_line[i] = read_rule30_register(rule30_hw_acc_va,
  (RULE30_OUTPUT_BASE + (4*i)));
}

Figure 14: Using mmap() in the test program
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performance is determined when using a realistic software stack. 
These experiments if done with a bare-metal setup would have 
drawn quite different conclusions because it removes the 
operating system and driver model overhead from the equation. 

mmap Driver 

It can also be interpreted that the software stack needs to be 
improved to make the overall system really efficient. For 
example, if it is assumed that the latency of the accelerator is 
known to be 10 ns in the physical hardware, the data indicates 
that the software group needs to do some optimization to 
their part of the system because there is no benefit from fast 
hardware compared to slower 100 ns latency hardware. 

There are two obvious alternatives to reducing the overhead 
of the driver model. One is to put the core loop of the 
application into the device driver, which is not considered 
elegant but is a solution used in practice in high-performance 
Linux systems. The other is to offer user-space programs 
direct access to the control registers of the hardware, using 
the mmap() function in Linux. The mmap option was explored. 
The core of the code in the test program is shown in Figure 
14. It is very similar to bare-metal code. Note that it uses a 
busy loop to wait for the hardware to complete an operation. 

Final Evaluation 

With this optimization in place, the final evaluation run was 
performed. This comprised a total of 352 complete end-to-
end runs, each processing 1,000 packets for 99 generations 
(generating a picture 100 lines long). Thus, at each data point, 

99,000 iterations of the core loop are executed. We tried 32 
different lengths between 8 and 256, and in each length 11 
different variants were tried. The following cases were tested: 

• Software char and bit
• Hardware accelerator with the normal driver, with latencies 

of 10000, 1000, 100, 10, and 1 ns
• Hardware accelerator with mmap optimization, latencies of 

1000, 100, 10, and 1 ns 
• Hardware accelerator with register input-output latching 

optimization, and a latency of 10 ns 

The total run time on the target was 134 seconds, and some 
200 billion target instructions were executed in this time 
frame (a combined count on the two cores). This took about 
two and half hours to run on a contemporary PC. Most of the 
simulator overhead came from the very detailed performance 
measurements, using Python scripting. Running without that 
scripting approximately doubled the speed. Still, the 
simulation ran usefully fast to provide a lot of good data in a 
relatively short amount of time. 

Figure 15 shows the results for all modes and a range of 
hardware latencies. The following conclusions can be drawn:

• The data points labeled “hw-mmap-x” show mmap-
optimized hardware access is well worth the 
implementation complexity, providing the fastest 
implementation for all packet lengths. 

• Even with mmap optimization, the difference between 1, 
10, and100 ns hardware latencies is insignificant. The 
hardware team can produce a 100 ns-latency hardware 
block without risking losing any significant performance. 

Figure 15: Test runs including mmap
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• The latched optimization (hwo-10) performs slightly better 
than the default driver. This optimization is therefore not 
meaningful to require it from an actual hardware 
implementation. Using the fast functional analysis, the 
requirements on the hardware can be simplified to remove 
useless features that look good on paper.

• Changing the software architecture and driver structure has 
a greater impact than optimizing the hardware performance. 
From a system design perspective, this would indicate that it 
makes sense to use automated tools that deliver fairly 
simple hardware with a low investment in development cost 
and spend more effort on getting the software optimized. 

Figure 16 shows that less time is spent in the kernel to get the 
good performance of mmap-optimized software. 

The total execution time and the time spent in user mode 
(which is a component of the total time and never bigger than 
the total time) are plotted for two selected execution 
variants: hw-100 and hw-mmap-100. The results are striking:

• The regular device driver spends very little time in user 
mode but much more time overall. The time in user mode 
is also flat, as all variability comes from the device driver, 
which corresponds to the gradual increase in total time.

• The mmap-optimized driver spends all its time in user 
mode, and the execution in user mode therefore increases 
slowly as it goes to longer packets. 

Figure 16: Investigating user and kernel times

Figure 17: Wind River Simics Analyzer on mmap and default driver modes
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Applying Simics Analyzer 

Using Wind River Simics Analyzer, some additional insight is 
gained in the execution patterns of the various driver modes. 
Figure 17 shows the execution history timeline. The argo0 
machine is running the driver in its default mode (which is 
known to be slow), and the argo1 machine is running it in 
mmap mode. Note how on argo0 the kernel (gray time on the 
processor cores) dominates the execution. On argo1, in 
contrast, the program is almost always running in user mode. 
The only exception is the short burst of kernel activity that 
results from a completion interrupt from the hardware 
accelerator. 

With this additional insight, you might consider adding a new 
mode to the accelerator, where it does not actually send 
completion interrupts but relies entirely on polling to signal 
completion to software. 

Jitter

Using an operating system affects the execution time of 
software, making it more variable as interrupts and task 
switches interfere with the execution. This effect is also 
captured in the Simics virtual platform, as shown in the graph 
in Figure 18. It compares the maximum observed execution 
time with the average observed execution time for some 
execution modes and packet lengths. 

This diagram has some interesting information in it:

• For the char mode, the jitter gets lower as the packet 
lengths increase. For a compute-intense workload like this 
on a lightly loaded system, the jitter should decrease as 
the overall execution time gets longer. 

• For the hardware-based modes, jitter is higher for short 
packets but not with as pronounced an effect. 

Figure 18: Investigating jitter
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There are some occasional spikes of very high jitter for the 
hw-x modes. This is likely due to the fact that they give up the 
CPU, waiting for a completion interrupt, giving the OS a 
chance to swap the process out. It also indicates that for 
reliable real-time end-to-end latencies for processing, it is 
necessary to do some more work on the software stack (but 
hw-mmap seems more stable because it never gives up the 
CPU in the same way). 

Sanity Checks

The previous investigation was performed using a fast 
functional model of the processor and memory system, 
where the caches were not modeled, which is a necessary 
optimization to run large-scale software loads on a virtual 
platform. To check that this kind of optimization does not 
skew the results, some overnight runs were done with an 
added cache model. 

 

The cache parameters were chosen not to reflect any 
particular machine but to clarify the performance impact of 
caches on the workload in general. Three configurations were 
tested:

• 16KB cache, latency 100 cycles to main memory
• 16KB cache, latency 50 cycles to main memory
• 128KB cache, latency 100 cycles to main memory
• Hardware vs. hardware 2

The first check is to compare the main hardware accelerator 
modes with the cache modes (and without cache). 

As shown in Figure 19, adding a cache model does provide some 
new insights, even though it does nothing to impact the 
superiority of hw-mmap over hw. The cache model increases the 
execution time of the hw mode by about 10%. The same is true 
for hw-mmap. Therefore, caches have no impact on the previous 
results, and a fast functional simulator can safely be used for this 
type of executable specification and early performance 
requirement work.

Figure 19: Hardware modes with cache model
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Software and Hardware 

In Figure 20 the performance of the two software modes is 
plotted with caches as well as one hardware mode for 
reference. It shows some interesting results:

• Without a cache, the char-based implementation is faster 
because it executes fewer instructions per iteration. However, 
most of these are memory accesses to various arrays.

• With a cache, the bit-based implementation is faster 
because it performs much fewer memory accesses per 
iteration. This implementation is not shown here, but it 
essentially only accesses memory twice for each 32-bit 
segment of a line processed. 

This indicates that if the hardware accelerator is skipped 
altogether and a software-based implementation is used, it 
would make sense to use the bit-based implementation if the 
memory system of the target machine is expected to be slow 
or caches to be small.

The point where hardware is faster than software moves to 
short packet lengths as memory gets slower. Compared to 
the char-based mode, the crossover moves from 88 to 64, 
while the change is much less pronounced for the bit-based 
software implementation. However, the impact does not 
really change the high-level view of the accelerator design. 
The conclusion that hardware acceleration is worthwhile at 
packet lengths around 90 or so for the standard driver model 
and always for the mmap-based model remains true. 

The conclusion is that investigating cache behavior is a good 
way to check the overall sanity of results, but it does not have 
a significant impact on high-level results. The differences 

between software stack variants and hardware accelerator 
latencies are much larger than the effect caused by caches. 
From a system-design perspective, most everything can be 
learned from a pure fast functional simulation. 

Conclusion 

Wind River Simics can be used to perform system design and 
specification with respect to hardware offloading of critical 
software functions. Working at the software timing level of 
abstraction, a complete view of the performance landscape is 
obtained because large-scale workloads involving hundreds of 
billions of target instructions can be executed in a reasonable 
time frame. Overall the measurements presented here required 
more than a trillion target instructions to be executed.

Because of the ease of modeling offered by fast functional 
models, the Simics DML modeling tools, and the reuse of an 
existing compute kernel, a complete hardware model could 
be quickly created and tests performed using a complete real 
software stack, including an operating system and device 
drivers. 

The result of the work is significant insights into the important 
performance parameters for the design as well as an executable 
specification of a hardware accelerator. The hardware 
accelerator specification includes the complete software-facing 
programming interface as well as requirements on operation 
latencies and golden reference for the results calculated. 

Simics features were also leveraged to completely automate 
the evaluation of performance (and checks of correctness) after 
each change to the software stack or hardware accelerator.

Wind River is a leader in embedded and mobile software. We enable companies to develop,  
run, and manage device software faster, better, at lower cost, and more reliably. www.windriver.com
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Figure 20: Software modes with cache model
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