
Executive Summary

Wind River Simics allows product teams to adopt a
development methodology where physical system hardware
is replaced by Simics virtual platforms running on a standard
PC. This allows customers to efficiently define, develop, and
deploy their products, usually much faster, with higher
quality, and with fewer risks than when using physical
hardware alone.

Simics virtual platforms run the same binary software as
physical hardware and are fast enough to be used as an
alternative for software development and testing. Simics
virtual platforms are unique. They are fast and accurate

enough to run a full software stack from hypervisor to
application, and they guarantee repeatable software
execution, full visibility/control of the virtual target hardware,
and true reverse execution.

A key part of this development paradigm is to quickly get to
running code and use real code for as much development as
possible. For new hardware designs, the virtual platform is
best created and used as an executable specification for the
final system. These specifications should be used before the
hardware design is finalized to allow them to be exercised by
real software.

This paper provides an example of how a hardware
accelerator can be explored, specified, and verified using a
fast functional virtual platform, while knowing the main
performance requirements on the accelerator and the
characteristics of the software that will drive it.

You will see how to use Wind River Simics and fast functional
simulation to do the following:

• Move a software function into a hardware accelerator.
• Define and refine the hardware-software interface.
• Analyze the performance requirements of the accelerator.
• Determine when a hardware accelerator is faster than

keeping a pure software implementation.
• Provide an executable specification for the detailed

hardware design.

Investigating Hardware Accelerators

In modern computer system design it is common practice to
offload functions from software to hardware accelerators
(also known as offload engines) to increase system
performance and reduce the processor’s computation load.
The goal can be to increase throughput, decrease jitter, or
reduce the power consumption of the system by using
dedicated hardware and lower processor clock frequencies.
A key part of the system design is to determine whether and
when a hardware accelerator makes sense, compared to a
pure software implementation on programmable processor
cores. The preferred flow is to start with a software
implementation of the function and quickly prototype how
implementing the functionality in dedicated hardware affects
the system performance and behavior.

Table of Contents

Executive Summary .. 1

Investigating Hardware Accelerators 1

Setup Overview .. 2

 Software Program .. 3

 Hardware Device .. 4

 Implementation Effort .. 5

 Verifying Correctness of Hardware and Software 5

 Device Driver .. 5

Performance Measurements... 6

 Model Abstraction Level .. 6

Automation of System Setup ... 6

Automation of Experiments ... 7

Experimental Results .. 8

 Initial Testing and Basic Optimization of Driver 8

 Mapping the Performance Landscape 8

 Hardware Accelerator Speed 10

 mmap Driver ... 11

 Final Evaluation .. 11

 Applying Simics Analyzer ... 13

Sanity Checks ... 14

 Software and Hardware .. 15

Conclusion .. 15

System Architecture Exploration Using
Wind River Simics

2 | System Architecture Exploration Using Wind River Simics

Such a prototype needs to include not just the computation
in the hardware but how the software on a system drives the
hardware and the specification of the hardware-software
programming interface. With a fast transaction-level
functional virtual platform, the interface can be defined,
refined, and redesigned in a matter of hours because of the
high level of abstraction used.

You will see how fast functional simulation is used to do such
design exploration for a particular hardware accelerator
candidate. The very fast simulation speed is leveraged to do
a broad evaluation of implementation alternatives and cover
a large number of different parameter values and software
variations. Simics can run complete real software stacks to
perform all tests using a complete Linux software stack on
the target machine, making it possible to investigate exactly
how the operating system and driver architecture affect
overall performance.

Instead of actually designing a hardware accelerator for the
algorithm in a hardware design language such as SystemC or
Verilog, the software algorithm written in plain C is
incorporated directly into a Simics device model at the
functional level, written in Simics DML. The hardware design
is not analyzed to determine how fast it would be in an actual
circuit but rather a range of hardware computation latencies
is assumed and the performance of the system is tested
under each assumption. In this way, an executable
specification is created for the hardware accelerator, and
constraints for a later implementation step are provided.

Setup Overview

In this scenario, there is a software program implementing a
particular algorithm (a cellular automaton known as rule 30),
running on a dual-core Freescale MPC8641D Power
Architecture–based system-on-chip (SoC). There is a benefit
to offloading the execution of this algorithm from software to
hardware, but we want to know how the intricacies of Linux
affect the overall performance and how fast the hardware
needs to be. Note that if a slower accelerator (higher
computational latency) is possible, the hardware
implementation can be smaller in terms of chip real-estate
and use a slower clock frequency, reducing power.

Figure 1 shows the overall system setup. Since it is a virtual
platform, a custom accelerator can be added into the
MPC8641D SoC without much problem. The device is added
to the virtual platform and mapped into the memory map of
the processor cores. It is connected to the MPIC interrupt
controller to enable it to interrupt the processor.

In addition to the device, a device driver is written so that the
Linux kernel can access the device, and a test program is run
in the user space to test the performance of the device from
a user-level program.

MemCtrl

PCI PCIe
MPIC

Timers Rule 30
Accelerator

CPU Cores 0 and 1

Device Driver
for Rule 30
Accelerator

Busybox
Program

Using Rule 30
Accelerator

Other
Program

Linux 2.6.23 Kernel

RAM

Virtual MPC8641D Board

Wind River Simics
Host Operating System

Host Computer

Virtual Serial
Console

Virtual
Network

UART

Ethernet

Figure 1: The virtual system setup

3 | System Architecture Exploration Using Wind River Simics

Software Program

The program for which to investigate acceleration
implements a cellular automaton known as rule 30 (a
hardware implementation of rule 30 is available as open
source from InformAsic). This is an interesting algorithm that
computes one line of data at a time, generating very complex
and unpredictable patterns from simple rules. As illustrated
in Figure 2, each line consists of a number of binary elements,

and the value of each element in a line is based on the value
of the three elements above, to the left, and to the right of it.

The result of running this algorithm from an input, starting
with a few bits set, is a characteristic “Christmas tree,” as
illustrated in Figure 3.

The core algorithm is very easy to describe in software, if a
single C char is used to represent each bit. In this case, the

Figure 3: Rule 30 results

Figure 2: Rule 30 operation

...

Generation Rules

4 | System Architecture Exploration Using Wind River Simics

very straightforward C code can be used, as shown in Figure 4.
The rules array corresponds to the rules illustrated in Figure 2.

An implementation has been written using a bit-based
representation of the data. This requires some more code but
is about as fast as the byte-based implementation. It also
corresponds to the reasonable hardware implementation
because it does not waste 8 bits to represent the value of a
single bit of information.

The software program runs the rule 30 algorithm using a
variety of implementation options, as instructed on the Linux
command line when the program is started. To provide input
data to the algorithm, a set of test initial lines (called
“packets”) were compiled into the software program.

The program tests a particular implementation in this manner:

• Loop over a certain number of packets (initial lines).
• Pick up a packet from the test data set and truncate it to

the selected line length for this test run.
• For each packet, run the rule 30 algorithm for a certain

number of iterations (when the successive lines that are
generated are plotted, it results in the characteristic
Christmas tree display).

Typically each implementation variant is tested by running it
on 1,000 packets for 99 iterations per packet (generating a
pattern of 100 lines), which means that for each test case, the
core loop of the algorithm is gone through 99,000 times.

Hardware Device

The hardware device is written using Wind River Simics DML,
a device modeling system provided with Simics. DML is used
to describe the programming register layout of the device,
the interrupt and I/O handling toward the processor and the
management of computation delays. The core computation
of the device is the bit-based implementation taken directly
from the test software. What changes is how the input data
arrives in the algorithm and how results are reported. Rather
than as a function call from a test software driver, it is invoked
over a memory-mapped device programming interface.

Figure 5 shows the registers in the programming interface, as
expressed in the DML file. The programming interface works
like this:

• Set operation parameters into the control, rule_set, and
line_length registers.

const uint8_t g_rules_array[8] = {0, /* 000 */
 1, /* 001 */
 1, /* 010 */
 1, /* 011 */
 1, /* 100 */
 0, /* 101 */
 0, /* 110 */
 0 /* 111 */
};

for(i=0;i<line_length;i++) {
 int bit_left_index = (i==0) ? (line_length-1) : (i-1);
 char bit_left = source[bit_left_index];
 char bit_mid = source[i];
 char bit_right = source[(i+1)%line_length];
 int index = bit_left * 4 + bit_mid * 2 + bit_right;
 dest[i]=g_rules_array[index];
}

Figure 4: Rule 30 char-based implementation

bank regs {
 parameter register_size = 4;
 register version @ 0x00 “Device version register”;
 register control @ 0x04 “Device control register”;
 register status @ 0x08 “Device status register”;
 register reset @ 0x0c is (write_only) “Reset register (write only)”;
 register irq_num @ 0x10 is (read_only) “IRQ assigned to device”;
 register rule_set @ 0x14 “Rule set (bit encoded)”;
 register line_length @ 0x18 “Line length (in bits)”;
 register start_compute @ 0x1c “Start computation”;
 register input[32] @ 0x20 + 4*$i is (write_only) “Input buffer”;
 register output[32] @ 0xa0 + 4*$i is (read_only) “Output buffer”;
}

Figure 5: DML device programming interface

5 | System Architecture Exploration Using Wind River Simics

attribute time_to_result {
 parameter documentation = “Delay in from start of
 operation to results are available”;
 parameter type = “f”;
 parameter allocate_type = “double”;
 parameter configuration = “optional”;
}

Figure 6: DML device latency coding

simics> ra0->time_to_result = 10.0e-9

Figure 7: Scripting latency

• Write input data to the input array, up to 1024 bits in units
of 32 bits. This representation is bit-based, with one bit per
cell in a line.

• Start the computation by writing to start_compute.
• Wait for an interrupt to signal completion, or spin on the value

of the status register to set the operation complete flag.
• Read results from the output array.

Note that the details of the register implementation are
described later in the DML file. The overview declaration just
provides the names and offsets of the registers for an easy
overview of the programming memory map.

The operation parameters that can be set are interrupt
notification and whether the device should copy the output
result to the input array on operation completion. This would
remove the need for the software to copy output data to the
input array for chained computations. This is the mode known
as “hwo” in the following experiments.

The latency to compute a result is set as a parameter in the
device, using a Simics attribute (device parameters that can
be set and read at any point during a simulation). Figure 6
shows the DML code to create the attribute. To change the
latency, simply issue the Simics CLI command shown in Figure
7. This can be done at any point during a simulation run.

Implementation Effort

Implementing the hardware accelerator model at this level of
abstraction is fairly quick and took only a few working days.
Most of the time was spent iterating the device programming
interface and the device driver implementation, to create a
convenient programming interface for the software and to
test that the complete software stack worked. Such evolution
of the hardware-software interface is key to designing a
programming interface that make sense from the perspective
of the driver and the BSP.

The complete model source code is about 560 lines, including
comments and debug printouts as well as the C-based
computation kernel of around 100 lines. The code also
contains version registers for the hardware, interrupt handling,
unit testing support, and error checking.

Verifying Correctness of Hardware and Software

To verify that all software variants and hardware acceleration
variants work correctly, the test software has some special
modes that run two different implementation variants and
compare the outputs. The byte-based implementation is the
golden reference model and validates the software bit-based
implementation as well as the hardware implementation (in all
its operation modes) against it. This methodology found some
bugs in the initial bit-based implementation regarding certain
corner cases as well as an embarrassing bug indicating the
output data of the computation in the hardware wasn’t read.

Device Driver

The Linux device driver created for the device is a “char”
driver and uses the Linux standard write() and read() calls to
drive data into and read results from the device. ioctl() is used
to set parameters and query the device state. As a result of
initial performance exploration, a mmap() function was
implemented where the user-level software can directly
access the registers of the hardware.

The driver is compiled as a Linux kernel loadable module, to
make it easy to change it on the target machine. If it was
compiled into the kernel, each device driver change would
have required a complete rebuild of the kernel as well as a
reboot of the target system. Instead a checkpoint of a booted
machine is used as the starting point for each iteration and
the latest revision of the hardware module and device driver is
added on the fly. In this way, iterating hardware and software
changes takes only seconds.

6 | System Architecture Exploration Using Wind River Simics

Performance Measurements

Once the basic infrastructure is in place, performance data is
collected. The simulation was set up to detect the start and
end of the computation kernel as well as the start and end of
each packet. Simics OS awareness was used to distinguish
between user-mode and kernel-mode time.

The data collected was the minimum, maximum, and average
of the following times:

• Compute time per line, start to end (the compute kernel)
• Compute time per line, time spent in user mode
• Compute time per packet, start to end
• Compute time per packet, time spent in user mode

Simics magic instructions (no operations in the code that
Simics identifies that do not affect the execution semantics)
delineate the start and end of each processing unit. In this
way there are very precise measurements that do not suffer
the variability inherent in using a serial console to print out
the start and end times. In physical hardware, this would be
similar to driving an output pin high and low and looking at
the timing in an oscilloscope.

Model Abstraction Level

These simulations were performed using the standard Simics
software timing (ST) level of abstraction. This is less detailed
than SystemC TLM-2.0 LT in that memory access latencies are
not accounted for, models are not allowed to do any kind of
waiting before returning from a function call, and mandatory
temporal decoupling is used to gain about an order of
magnitude in simulation speed. However, we do model system
time, clock interrupts, and the hardware latencies that matter.
The processor is a fast in-order model with a fixed execution
time per instruction, and there is no cache model or model of
memory latency. The hardware model of the accelerator
accounts for time by sending an interrupt to the processors
after each computation is complete, and the delay from the

point of starting a computation to the signaling of completion
is varied to test different hardware speeds.

Automation of System Setup

Since we wanted to run thousands of test cases with various
parameters, the loading and execution of the test software
was optimized and automated using Simics check-pointing
and scripting.

First, the standard Linux 2.6.23 kernel for the MPC8641D was
booted on the virtual MPC8641D machine, and we took a
checkpoint after the boot completed and the target software
arrived at shell prompt. The checkpoint contains the complete
software and hardware state and can be brought back into
Simics almost instantaneously. Note that the checkpoint is
completely portable and can be opened on any Simics
installation on any host machine, which makes it possible to
run several different simulation runs in parallel on multiple
hosts.

Starting from the checkpoint, a series of scripts do the
following to put the target system into a state where
measurements could be performed:

• Load checkpoint.
• Add the rule 30 accelerator device.
• Load the device driver onto the target and initialize it.
• Load the test software onto the target.
• Initialize a Linux process tracker.

Adding the device was done using Simics’ ability to add
objects to a simulation at arbitrary points in time. Figure 8
shows the Simics script operations for creating a new
accelerator and connecting it to the target memory map and
MPIC interrupt handler. The line starting with @ is inline Python
scripting, which is used to access certain rare Simics API
functions from the Simics command line. The ccsr_space.add
command updates the memory map for the on-chip devices
section of the MPC8641D.

@SIM_create_object(“rule30_accelerator”,”ra0”,[[“queue”,conf.cpu0],[“irq_dev”,[conf.
pic,’internal_interrupts’]],[“irq_level”,23], [“time_to_result”, 1e-3]])
ccsr_space.add-map ra0:regs 0xf0000 0x200

Figure 8: Adding the rule 30 hardware accelerator to the setup

7 | System Architecture Exploration Using Wind River Simics

To load the software in an efficient way, the simicsfs virtual file
system on the target was used. Simicsfs allows for mounting
any directory on the host disk as a file system and accessing
the host files as if they are local files on the target machine.
The driver and test program were copied from the host to the
target every time there was a run (they are cross-compiled on
a Linux x86 host), which means the relevant parts of the target
software stack can be updated without rebuilding a target
disk image and rebooting the target.

The target system operations are automated using Simics serial
console scripting, where Simics scripts wait for prompts (or other
output) and enter interactive Linux command-line commands.
Figure 9 shows a screenshot of the state of the target serial
console as the target software application is loaded after the
device driver is loaded and initialized. Note that the simicsfs file
system (/host) is mounted and unmounted for each file. Do not
necessarily run a simulation with simicsfs mounted because it
might impact repeatability and determinism.

All the previous steps were wrapped into a single Simics
script, which when invoked brings the turnaround time to less
than a minute for a recompile and test of the device model,
device driver, or the test program. All the user needs to do is
make changes and start Simics with the script to set up the
hardware and load the software. Compared to using a remote
physical hardware board, this is much more convenient and
much faster.

Automation of Experiments

Based on the automated setup of the target machine for
experiments, another script was built to perform the actual
performance experiments. This script does the following:

• Configures experimental parameters as a set of Simics
command-line variables

• Sets up the target machine
• Loops over a range of packet sizes, and for each packet

size runs the test program in a variety of modes with a
variety of hardware latency parameters

• Collects timing data for each packet size and mode and
writes it to a file for later processing in Excel

The script controls the mode of execution and behavior of
the test program by giving it different Linux command-line
parameters. The hardware is controlled by changing the
latency setting using a Simics attribute (note that this means
the latency of the accelerator is not constant through a single
simulation run but changes during the run before each test
program execution). The target system is not restarted
between each run. The variation caused by the execution
history of the target Linux is insignificant. If the target Linux
state mattered, each run would be started from the same
checkpoint.

Figure 9: Automated loading of software on the target

8 | System Architecture Exploration Using Wind River Simics

Each run can cover many minutes of target time and take a
few hours to run on the host. The automation lets it run
completely unattended, including on multiple host machines,
running many experiment variants in parallel.

Experimental Results

Over the course of the software-hardware integration, a
series of experiments was performed. The following
describes the most important steps in the process.

Initial Testing and Basic Optimization of Driver

In very early testing of the device driver, it was noted that the
only sensible way to push data into the accelerator was to use
a single write() call for the entire set of data and a single
read() call to retrieve all results. Writing input a word at a
time is many times slower because the overhead of a Linux
kernel call is fairly significant, as described later. This
simplified the driver because it did not have to maintain a file
position abstraction. Another early optimization was to use
static memory allocation in the driver, which sped things up
by about 25%. The initial version of the driver used kmalloc()
and kfree() to create and delete a kernel buffer for the data
from the user space each time read() or write() was called.

Next, there were some odd variations in the measured
end-to-end execution times because the Linux kernel was
scheduling the test process on different cores at different
times. This is part of the normal functionality of the kernel,
but since a clean comparison of implementation alternatives
was needed, with as many variables under control as
possible, processor affinity was used to tie the compute
process to core 0 for all tests.

Quite a bit of information about how to do Linux device
drivers was clear, and it is possible to evaluate their
performance in a fast functional simulator. The volume of test
cases executed brought attention to the scheduler. Only
about one run in 30 was affected, and it required quite a few
program runs to make the issue stand out.

Mapping the Performance Landscape

To get an overview of the performance landscape with the
hardware accelerator and the basic device driver, a set of
experiments was run where the length of the packet was
varied from 10 to 1020 bits, in increments of 30 bits. The
hardware latency was varied from 1 ns to 10000 ns,
logarithmically. The purpose was to determine the order of
magnitude of speed where the hardware accelerator would
become relevant.

Figure 10: Automated testing and performance measurement

9 | System Architecture Exploration Using Wind River Simics

Figure 11 shows the results: “bit” is the bit-based software
implementation; “char” is the reference implementation; and
“hw-x” is the hardware accelerator with a latency of x ns.

The times are the average computation times for each
packet, over the 1,000 packets processed, for each packet
length and operation mode, expressed as clock cycles at
1350MHz.

The area of real interest to compare hardware and software is
below 256 bits of length. The hardware option with a latency
of 10000 ns can be ignored because it does not win over
software until a packet length of around 500 bits.

A new experiment was performed with packet lengths of 8 to
256, with a step of 8 bits. The results are presented in Figure
12. The following conclusions are drawn from this more
detailed investigation:

• The hardware accelerators that are at 100 ns or faster
outperform software at packet lengths above 88 bits.

• The hardware accelerator with latency 1000 ns is likely not
an attractive option, but if packet lengths are long in certain
use cases, it could allow for building a very simple and small
hardware implementation with a slow clock speed.

Making a hardware accelerator faster than 100 ns appears to
have no benefit at all.

Figure 11: Initial performance measurements for hardware and software

Hardware vs. Software Implementations

4500000

4000000

3500000

3000000

2500000

2000000

1500000

1000000

500000

0

A
ve

ra
g

e
E

xe
cu

ti
o

n
Ti

m
e

p
er

 P
ac

ke
t

Area of Interest

10 40 70 10
0

13
0

16
0

19
0

22
0

25
0

28
0

31
0

34
0

37
0

40
0

43
0

46
0

49
0

52
0

55
0

58
0

61
0

64
0

67
0

70
0

73
0

76
0

79
0

82
0

85
0

88
0

91
0

94
0

97
0

10
00

bit char hw-1 hw-10 hw-100 hw-1000 hw-10000

Figure 12: Zoom in at packet lengths of 256 bits or less

Hardware vs. Software Implementations

2000000

1800000

1600000

1400000

1200000

1000000

800000

600000

400000

200000

0

A
ve

ra
g

e
E

xe
cu

ti
o

n
Ti

m
e

p
er

 P
ac

ke
t

Hardware Faster Than Software >88

Hardware 1, 10,
100 ns Very Close

8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

20
0

20
8

21
6

22
4

23
2

24
0

24
8

25
6

bit char hw-1 hw-10 hw-100 hw-1000 hw-10000

10 | System Architecture Exploration Using Wind River Simics

Hardware Accelerator Speed

The data shows that the execution time when using the hardware
accelerator at 1, 10, and 100 ns is almost identical. To check this,
the data is graphed in Figure 13. The conclusion from this is
obvious: The driver overhead in the device driver negates any
fundamental benefit from faster hardware. Essentially the
software is not able to drive enough work through such a fast
hardware accelerator to keep it busy. The fact that the execution
time is independent of the speed of the accelerator (i.e., the
lines for 1ns, 10ns, and 100ns overlap completely) and is only
marginally dependent on the size of packets (note the scale in

the graph) clearly shows there is a large fixed overhead
associated with using the hardware accelerator.

If the performance of the hardware-accelerated option at this
point is satisfactory, the specification stage could end and
the hardware team could create an accelerator with a target
latency of 100 ns, or maybe 10 ns to have some room to
absorb later software improvements.

This demonstrates the power of fast functional simulations to
map out the performance landscape and determine which
optimizations make sense and which do not. Without committing
to any kind of detailed hardware implementation, the required

Figure 13: Hardware accelerator results

// Input data
for(i=0;i<words_to_process;i++) {
 write_rule30_register(rule30_hw_acc_va,
 (RULE30_INPUT_BASE + (4*i)),
 in_line[i]);
}

// Kick compute
write_rule30_register(rule30_hw_acc_va, RULE30_START_COMPUTE, 1);

// Wait for complete
while(((read_rule30_register(rule30_hw_acc_va, RULE30_STATUS))
 & RULE30_STATUS_OC_MASK) == 0) {
 // Busy wait loop
}
// Clear the completion bit in HW
write_rule30_register(rule30_hw_acc_va,
 RULE30_STATUS,
 RULE30_STATUS_OC_MASK);

// Read output
for(i=0;i<words_to_process;i++) {
 out_line[i] = read_rule30_register(rule30_hw_acc_va,
 (RULE30_OUTPUT_BASE + (4*i)));
}

Figure 14: Using mmap() in the test program

Hardware Accelerator Performance
A

ve
ra

g
e

Ti
m

e
p

er
 P

ac
ke

t

360000

350000

340000

330000

320000

310000

300000

290000

280000

270000

260000

8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

20
0

20
8

21
6

22
4

23
2

24
0

24
8

25
6

hw-1 hw-10 hw-100

11 | System Architecture Exploration Using Wind River Simics

performance is determined when using a realistic software stack.
These experiments if done with a bare-metal setup would have
drawn quite different conclusions because it removes the
operating system and driver model overhead from the equation.

mmap Driver

It can also be interpreted that the software stack needs to be
improved to make the overall system really efficient. For
example, if it is assumed that the latency of the accelerator is
known to be 10 ns in the physical hardware, the data indicates
that the software group needs to do some optimization to
their part of the system because there is no benefit from fast
hardware compared to slower 100 ns latency hardware.

There are two obvious alternatives to reducing the overhead
of the driver model. One is to put the core loop of the
application into the device driver, which is not considered
elegant but is a solution used in practice in high-performance
Linux systems. The other is to offer user-space programs
direct access to the control registers of the hardware, using
the mmap() function in Linux. The mmap option was explored.
The core of the code in the test program is shown in Figure
14. It is very similar to bare-metal code. Note that it uses a
busy loop to wait for the hardware to complete an operation.

Final Evaluation

With this optimization in place, the final evaluation run was
performed. This comprised a total of 352 complete end-to-
end runs, each processing 1,000 packets for 99 generations
(generating a picture 100 lines long). Thus, at each data point,

99,000 iterations of the core loop are executed. We tried 32
different lengths between 8 and 256, and in each length 11
different variants were tried. The following cases were tested:

• Software char and bit
• Hardware accelerator with the normal driver, with latencies

of 10000, 1000, 100, 10, and 1 ns
• Hardware accelerator with mmap optimization, latencies of

1000, 100, 10, and 1 ns
• Hardware accelerator with register input-output latching

optimization, and a latency of 10 ns

The total run time on the target was 134 seconds, and some
200 billion target instructions were executed in this time
frame (a combined count on the two cores). This took about
two and half hours to run on a contemporary PC. Most of the
simulator overhead came from the very detailed performance
measurements, using Python scripting. Running without that
scripting approximately doubled the speed. Still, the
simulation ran usefully fast to provide a lot of good data in a
relatively short amount of time.

Figure 15 shows the results for all modes and a range of
hardware latencies. The following conclusions can be drawn:

• The data points labeled “hw-mmap-x” show mmap-
optimized hardware access is well worth the
implementation complexity, providing the fastest
implementation for all packet lengths.

• Even with mmap optimization, the difference between 1,
10, and100 ns hardware latencies is insignificant. The
hardware team can produce a 100 ns-latency hardware
block without risking losing any significant performance.

Figure 15: Test runs including mmap

Hardware and Software Implementations, All Variants

2000000

1800000

1600000

1400000

1200000

1000000

800000

600000

400000

200000

0

A
ve

ra
g

e
E

xe
cu

ti
o

n
Ti

m
e

p
er

 P
ac

ke
t

Hardware Input-Output
Latch Optimization

8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

20
0

20
8

21
6

22
4

23
2

24
0

24
8

25
6

bit-0 char-0 hw-1-0 hw-10-0 hw-100-0 hw-1000-0 hw-10000-0 hw-mmap-1-0 hw-mmap-10-0 hw-mmap-100-0 hw-mmap-1000-0 hwo-10-0

mmap Optimized Software
Variant

12 | System Architecture Exploration Using Wind River Simics

• The latched optimization (hwo-10) performs slightly better
than the default driver. This optimization is therefore not
meaningful to require it from an actual hardware
implementation. Using the fast functional analysis, the
requirements on the hardware can be simplified to remove
useless features that look good on paper.

• Changing the software architecture and driver structure has
a greater impact than optimizing the hardware performance.
From a system design perspective, this would indicate that it
makes sense to use automated tools that deliver fairly
simple hardware with a low investment in development cost
and spend more effort on getting the software optimized.

Figure 16 shows that less time is spent in the kernel to get the
good performance of mmap-optimized software.

The total execution time and the time spent in user mode
(which is a component of the total time and never bigger than
the total time) are plotted for two selected execution
variants: hw-100 and hw-mmap-100. The results are striking:

• The regular device driver spends very little time in user
mode but much more time overall. The time in user mode
is also flat, as all variability comes from the device driver,
which corresponds to the gradual increase in total time.

• The mmap-optimized driver spends all its time in user
mode, and the execution in user mode therefore increases
slowly as it goes to longer packets.

Figure 16: Investigating user and kernel times

Figure 17: Wind River Simics Analyzer on mmap and default driver modes

User and Kernel Time Analysis

400000

350000

300000

250000

200000

150000

100000

50000

0

A
ve

ra
g

e
Ti

m
e

p
er

 P
ac

ke
t

8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

20
0

20
8

21
6

22
4

23
2

24
0

24
8

25
6

hw-10 - Total Time hw-10 - User Time hw-mmap-10 - Total Time hw-mmap-10 - User Time

Total Time Increases, hw-100 Much

Larger Than hw-mmap-100

User Time and Total Time Are the

Same for hw-mmap-100
hw-100 User Time Remains Flat,

Variation in Time in Device Driver Only

13 | System Architecture Exploration Using Wind River Simics

Applying Simics Analyzer

Using Wind River Simics Analyzer, some additional insight is
gained in the execution patterns of the various driver modes.
Figure 17 shows the execution history timeline. The argo0
machine is running the driver in its default mode (which is
known to be slow), and the argo1 machine is running it in
mmap mode. Note how on argo0 the kernel (gray time on the
processor cores) dominates the execution. On argo1, in
contrast, the program is almost always running in user mode.
The only exception is the short burst of kernel activity that
results from a completion interrupt from the hardware
accelerator.

With this additional insight, you might consider adding a new
mode to the accelerator, where it does not actually send
completion interrupts but relies entirely on polling to signal
completion to software.

Jitter

Using an operating system affects the execution time of
software, making it more variable as interrupts and task
switches interfere with the execution. This effect is also
captured in the Simics virtual platform, as shown in the graph
in Figure 18. It compares the maximum observed execution
time with the average observed execution time for some
execution modes and packet lengths.

This diagram has some interesting information in it:

• For the char mode, the jitter gets lower as the packet
lengths increase. For a compute-intense workload like this
on a lightly loaded system, the jitter should decrease as
the overall execution time gets longer.

• For the hardware-based modes, jitter is higher for short
packets but not with as pronounced an effect.

Figure 18: Investigating jitter

Maximum Compared to Average Time
9

8

7

6

5

4

3

2

1

0

M
ax

im
um

 E
xe

cu
ti

o
n

Ti
m

e
D

iv
id

ed
 b

y
A

ve
ra

g
e

E
xe

cu
ti

o
n

Ti
m

e

8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

20
0

20
8

21
6

22
4

23
2

24
0

24
8

25
6

char hw-100 hw-1000 hw-10000 hw-mmap-100 hw-mmap-1000

Packet Length

14 | System Architecture Exploration Using Wind River Simics

There are some occasional spikes of very high jitter for the
hw-x modes. This is likely due to the fact that they give up the
CPU, waiting for a completion interrupt, giving the OS a
chance to swap the process out. It also indicates that for
reliable real-time end-to-end latencies for processing, it is
necessary to do some more work on the software stack (but
hw-mmap seems more stable because it never gives up the
CPU in the same way).

Sanity Checks

The previous investigation was performed using a fast
functional model of the processor and memory system,
where the caches were not modeled, which is a necessary
optimization to run large-scale software loads on a virtual
platform. To check that this kind of optimization does not
skew the results, some overnight runs were done with an
added cache model.

The cache parameters were chosen not to reflect any
particular machine but to clarify the performance impact of
caches on the workload in general. Three configurations were
tested:

• 16KB cache, latency 100 cycles to main memory
• 16KB cache, latency 50 cycles to main memory
• 128KB cache, latency 100 cycles to main memory
• Hardware vs. hardware 2

The first check is to compare the main hardware accelerator
modes with the cache modes (and without cache).

As shown in Figure 19, adding a cache model does provide some
new insights, even though it does nothing to impact the
superiority of hw-mmap over hw. The cache model increases the
execution time of the hw mode by about 10%. The same is true
for hw-mmap. Therefore, caches have no impact on the previous
results, and a fast functional simulator can safely be used for this
type of executable specification and early performance
requirement work.

Figure 19: Hardware modes with cache model

Execution Time with Cache Model

450000

400000

350000

300000

250000

200000

150000

100000

50000

0

A
ve

ra
g

e
E

xe
cu

ti
o

n
Ti

m
e

p
er

 P
ac

ke
t

8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

20
0

20
8

21
6

22
4

23
2

24
0

24
8

25
6

hw-100 - 0 - 0 hw-100 - 50 - 128kB hw-100 - 50 - 16kB hw-100 - 100 - 16kB

hw-mmap-100 - 0 - 0 hw-mmap-100 - 50 - 128kB hw-mmap-100 - 50 - 16kB hw-mmap-100 - 100 - 16kB

Software and Hardware

In Figure 20 the performance of the two software modes is
plotted with caches as well as one hardware mode for
reference. It shows some interesting results:

• Without a cache, the char-based implementation is faster
because it executes fewer instructions per iteration. However,
most of these are memory accesses to various arrays.

• With a cache, the bit-based implementation is faster
because it performs much fewer memory accesses per
iteration. This implementation is not shown here, but it
essentially only accesses memory twice for each 32-bit
segment of a line processed.

This indicates that if the hardware accelerator is skipped
altogether and a software-based implementation is used, it
would make sense to use the bit-based implementation if the
memory system of the target machine is expected to be slow
or caches to be small.

The point where hardware is faster than software moves to
short packet lengths as memory gets slower. Compared to
the char-based mode, the crossover moves from 88 to 64,
while the change is much less pronounced for the bit-based
software implementation. However, the impact does not
really change the high-level view of the accelerator design.
The conclusion that hardware acceleration is worthwhile at
packet lengths around 90 or so for the standard driver model
and always for the mmap-based model remains true.

The conclusion is that investigating cache behavior is a good
way to check the overall sanity of results, but it does not have
a significant impact on high-level results. The differences

between software stack variants and hardware accelerator
latencies are much larger than the effect caused by caches.
From a system-design perspective, most everything can be
learned from a pure fast functional simulation.

Conclusion

Wind River Simics can be used to perform system design and
specification with respect to hardware offloading of critical
software functions. Working at the software timing level of
abstraction, a complete view of the performance landscape is
obtained because large-scale workloads involving hundreds of
billions of target instructions can be executed in a reasonable
time frame. Overall the measurements presented here required
more than a trillion target instructions to be executed.

Because of the ease of modeling offered by fast functional
models, the Simics DML modeling tools, and the reuse of an
existing compute kernel, a complete hardware model could
be quickly created and tests performed using a complete real
software stack, including an operating system and device
drivers.

The result of the work is significant insights into the important
performance parameters for the design as well as an executable
specification of a hardware accelerator. The hardware
accelerator specification includes the complete software-facing
programming interface as well as requirements on operation
latencies and golden reference for the results calculated.

Simics features were also leveraged to completely automate
the evaluation of performance (and checks of correctness) after
each change to the software stack or hardware accelerator.

Wind River is a leader in embedded and mobile software. We enable companies to develop,
run, and manage device software faster, better, at lower cost, and more reliably. www.windriver.com

© 2010 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc.
Other marks used herein are the property of their respective owners. For more information, see www.windriver.com/company/terms/trademark.html. Rev. 08/2010

Figure 20: Software modes with cache model

Execution Time with Cache Model

1400000

1200000

1000000

800000

600000

400000

200000

0

A
ve

ra
g

e
E

xe
cu

ti
o

n
Ti

m
e

p
er

 P
ac

ke
t

The Point Where Hardware Is Better

Than Software Is Between 64 and 80

8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

20
0

20
8

21
6

22
4

23
2

24
0

24
8

25
6

bit - 0 - 0 bit - 50 - 128kB bit - 50 - 16kB bit - 100 - 16kB char - 0 - 0 char - 50 - 128kB

char - 50 - 16kB char - 100 - 16kB hw-100 - 0 - 0 hw-100 - 50 - 128kB hw-100 - 50 - 16kB hw-100 - 100 - 16kB

Char Mode Is Much More Sensitive

to Caches Than Bit Mode

