
Open vSwitch* Enables
SDN and NFV Transformation
Intel’s collaboration with the Open vSwitch community on DPDK boosts Open vSwitch
performance by more than 12x to meet the demanding needs of SDN and NFV.

WHITE PAPER

Executive Overview
Open source software (OSS) and industry open standards will continue to play a critical
role in creating greater choice, faster time to market, and interoperability for software-
defined networking (SDN) and Network Functions Virtualization (NFV) commercial
solutions. For example, the Open vSwitch* (OvS*), which was first released in 2009, has
evolved over the last six years to become a production-quality, multilayer virtual switch
designed to enable network automation through standard management interfaces and
protocols. Now universally available in the Linux* kernel since version 3.3 and widely used
within the SDN and NFV developer communities, OvS is poised to play a key role as an
open source reference point for the industry to adopt, measure, and test multilayer packet
processing in a virtual switching environment in a number of ways:

•	 Packet processing performance

•	 Virtual switching functionality

•	 Interoperability

•	 Manageability

Until recently, it was widely believed within the networking industry and by Communication
Service Providers (CSPs) that single root input/output virtualization (SR-IOV) and PCIe* pass-
through were the only paths to achieve near bare metal line rate of networking workloads in
virtual machines (VMs). SR-IOV technology allows simple, yet inflexible fixed configuration
of the datapath between the VM and the physical I/O. For example, features such as network
virtualization overlay need to be implemented in the hardware. In addition, the traffic
steering capability of SR-IOV is limited by the hardware so, for example, if a 12-tuple lookup
is required and the hardware does not support it then a vSwitch is required.

The openvswitch.org project recently included Data Plane Development Kit (DPDK)
support as a user space option that helps accelerate datapaths across physical and virtual
interfaces. Through improvements introduced in OvS with DPDK OSS, a significant boost
in performance on Intel® architecture is made possible. Performance results of OvS with
DPDK reach 40 Gbps and scale nearly linearly to higher throughputs. This is nearly a 12x
improvement for aggregate switching between physical interfaces and a 7x improvement
for switching between virtual functions. Increasing throughput is only one key metric for
performance improvements. There is further optimization work ongoing within Intel and
the community that is expected to deliver not only higher throughput, but also improved
functionality and latency and jitter characteristics.

>12X FASTER
PERFORMANCE

http://www.openvswitch.org

2

White Paper  |  Open vSwitch* Enables SDN and NFV Transformation

While it may have previously been valid to conclude that a virtual switch is
unable to meet the needs of CSP data plane workloads, recent advances in the
use of DPDK coupled with virtual switch software provides a compelling solution
that meets NFV goals and ensures flexibility and manageability in the future.
This can be demonstrated with OvS as an open source solution, but there are
also commercial offerings available to meet a variety of deployment scenarios.

Intel continues to work with the community and across industries to help
accelerate SDN and NFV deployments. In addition to contributions to OvS
with DPDK, Intel developers contribute to Open Platform for NFV* projects to
advance open network platforms for NFV. The Intel® Open Network Platform
(Intel® ONP) reference architecture is an example of such a platform designed
to showcase the performance and functionality achievable through open
platforms. OvS with DPDK is integral to the Intel ONP. Intel plans to continue
to invest in OvS improvements to achieve improved performance, more
throughput, lower latency and jitter, and additional functionality.

Introduction
With software-defined networking (SDN) and Network Functions Virtualization
(NFV) gaining traction, CSPs, enterprises, and cloud providers are seeking
solutions based on open source software (OSS) and off-the-shelf hardware
platforms. Using OSS, standard high-volume servers (SHVS), and open
platforms, those providers are offered greater choice, lower cost, and no
single-source supplier lock-in, which is typical of dedicated hardware
solutions. Additionally, high-performance software-based solutions enable
faster delivery of flexible, innovative services using SDN and NFV to support
the experiences users are looking for.

Intel is enabling network transformation by working on open source
contributions to enable OSS to meet the demanding performance required in
network virtualization. One of these focused endeavors is with Open vSwitch*
(OvS*), a software switch layer used in virtualized environments. Intel’s focus
with OvS software has been to target bottlenecks in performance and enhance
functionality to meet CSP, enterprise, and cloud needs by using the Data Plane
Development Kit (DPDK) OSS libraries. OvS can be configured to support two
software architectures, both discussed in this document:

•	 Native OvS. OvS with an in-kernel datapath

•	 OvS with DPDK. OvS compiled with the DPDK datapath

Performance and functionality requirements differ from one market to another.
OvS provides adequate performance in a number of cloud and enterprise use
cases, but the performance seen so far has not met the needs of many Telecom
NFV use cases. By integrating the DPDK into OvS, virtual switching performance
is accelerated across virtual and physical connections, creating a virtual switch
layer targeting the performance required to meet Telecom and enterprise use case
deployment models.

Table of Contents
Executive Overview 1

Introduction . 2

Virtual Switching and Open vSwitch*. . . 3
The Software Virtual Switch. 3
Open vSwitch. 5
Open vSwitch Architecture. 5

Open vSwitch with DPDK
Performance Benchmarks 7

Physical-to-Physical Performance. 8
Physical-To-Virtual-To-Physical
Performance. 8

Open vSwitch with DPDK, SR-IOV,
and PCIe Pass‑Through: A Continuum
of Solutions. 9

Problem Statement. 9
SR-IOV and PCIe Pass-Through
Approach . 9
VNF Interface Options and Constraints. . . 9
Open vSwitch, SR-IOV, and PCIe
Pass-Through Conclusions 10

Potential Future Enhancements. 10

OPNFV: A Continuing Commitment to
Open Platforms. 11

Features of Open vSwitch 2.4 Release
Enabled by Intel. 11

Data Plane Development Kit Support. . 11
vHost Cuse. 11
vHost User. 11
OpenDaylight*/OpenStack* Detection
of DPDK Ports. 12
User Space Link Bonding. 12
IVSHMEM. 12
vHost Performance Improvements. 12
Datapath Performance Improvements. 12

Conclusion. 13

http://opnfv.org

3

White Paper  |  Open vSwitch* Enables SDN and NFV Transformation

Native OvS and OvS with DPDK are critical components of open source-based NFV solutions on open
platforms. Advancements to OvS software, test tools, and integration by Intel are made through direct
contributions to the OvS project and through the Open Platform for NFV* (OPNFV*) community project.

Intel® Open Network Platform (Intel® ONP) is a reference architecture for SDN and NFV deployments that
provides updates through quarterly public releases. The Intel ONP includes reference software that showcases
the progress made in OvS with DPDK, offering service providers an accelerated time to solution delivery.

This paper describes OvS, the enhancements enabled with DPDK, the software performance gains achieved,
and the work of Intel in OPNFV to continue advancing OvS with DPDK.

Virtual Switching and Open vSwitch*
This section explains what virtual switching is and provides details about OvS and OvS with DPDK.

The Software Virtual Switch

SDN and NFV are transforming how new products for data centers and networks are designed and built.
A critical part of Network Functions Virtualization Infrastructure (NFVI) is the virtual switch, or vSwitch.
A vSwitch is a software layer in a server. The server also hosts virtual machines (VMs) or containers with
virtual Ethernet ports (vNICs). These ports connect to the vSwitch through a virtual interface (vIF), and the
vSwitch routes traffic between the VMs, both resident on the same server and across the rack or between
data centers. The vSwitch may serve as the ingress point into overlay networks running on top of physical
networks. Figure 1 illustrates a typical physical and virtual switching infrastructure.

The vSwitch is used in enterprise, cloud, and Telecom use cases. For example, vSwitch enables forwarding
traffic between VMs in a multitenant network virtualization setting, particularly with multiserver
virtualization deployments. With network overlays, encapsulated packets are transferred across multiple
vSwitches that forward packets on top of a physical network. In Service Function Chaining, the vSwitch’s role
is to switch packets between VMs while supporting dynamic service chaining configurations (see Figure 2 on
the next page).

Figure 1. A typical service and switching infrastructure used in a data center.

DATA CENTER 2

INTERNET
Cloud

DATA
CONTROL

DATA CENTER 1
Machine 1

VM
VSWITCH*

VM VM
Machine 2

VM
VSWITCH*

VM VM

CONTROLLER

Machine 3

VM
VSWITCH*

VM VM
Machine 4

VM
VSWITCH*

VM VM

Core Switch

Aggregation Switch

“Top of Rack” Switch

Core Switch

Aggregation Switch

“Top of Rack” Switch

4

White Paper  |  Open vSwitch* Enables SDN and NFV Transformation

The vSwitch plays a critical role in the NFV architecture. In particular, the vSwitch
enables a flexible, robust, and time-performance-centric NFVI. Figure 3 illustrates
the reference architecture defined by the European Telecommunications Standards
Institute (ETSI) for NFV deployment (ETSI NFV Reference Architecture).

The ETSI NFV group has specified many use cases for NFV deployment, which cover
both telecommunication and data communication domains. Examples of use cases
include the following:

•	 Virtual 4G Enhanced Packet Core (vEPC). Hosting a 4G EPC framework that
enables secure mobile services in a virtual environment.

•	 Virtual Customer Premise Equipment (vCPE) solutions. Moving high-level services
away from the customer site and provisioning them in the virtualized cloud.

•	 Virtual Provider Edge (vPE) solutions. Completely virtualizing the provider edge
router functionalities using both a monolithic model and a service chaining model.

In all these use cases, if the deployment model assumes an infrastructure as shown in
Figure 1, the role of the vSwitch is as follows:

•	 Complete isolation of the underlying hardware infrastructure for network I/O for
the virtualized network functions (VNFs) that are hosted, enabling greater flexibility
for the VNF in the event of its migration.

•	 Perform as a high-throughput logical layer-2 switch for traffic between the VNFs that
are hosted (either on the same platform or on a remote platform).

•	 Perform overlay termination, origination, and other intelligent functions for delivering
high-throughput network traffic to and from the VNFs.

Today, a wide range of software-based switches is available, both open source and
proprietary. Open source vSwitch solutions include Open vSwitch, Snabb Switch*, and
Lagopus*. Commercial offerings include VMware ESXi*, Wind River Titanium Edition*,
and 6Wind’s 6WINDGate*.

Figure 3. European Telecommunications Standards Institute (ETSI) NFV reference architecture.

VNF
Manager(s)VNF

Manager(s)VNF
Manager(s)

Ve-Vnfm

Os-Ma

Se-Ma

Nf-Vi

OSS and BSS

Service, VNF, and
Infrastructure Description

Virtual
Computing

Virtualization Layer

Virtual
Storage

Virtual
Network

Computing
Hardware

Storage
Hardware

Network
Hardware

NFV Infrastructure

Hardware Resources

Vl-Ha

Orchestrator

NFV Management
and Orchestration

Virtualized
Infrastructure

Manager(s)

Vn-Nf

VNF 1

EMS 1

VNF 1

EMS 1

VNF 1

EMS 1

Vi-Vnfm

Or-Vnfm

Or-Vi

Other Reference Points
Execution Reference Points

Main Network Functions
Virtualization (NFV) Reference Points

REFERENCE POINTS:
Vl-Ha Virtualization Layer - Hardware Resources
Vn-Nf VNF - NFV Infrastructure
Os-Ma OSS/BSS - NFV Management and Orchestration
Se-Ma Service, VNF and Infrastructure Description - NFV

Management and Orchestration
Ve-Vnfm VNF/EMS - VNF Manager
Nf-Vi NFVI - Virtualized Infrastructure Manager
Or-Vnfm Orchestrator - VNF Manager
Vi-Vnfm Virtualized Infrastructure Manager - VNF Manager
Or-Vi Orchestrator - Virtualized Infrastructure Manager

Figure 2. The vSwitch as part of a virtualized
environment. Example for illustration
purposes only.

H
Y

P
ER

V
IS

O
R

Machine 1

VSWITCH

VM
VNIC

NIC NIC

VM
VNIC

VM
VNIC

VIF VIF VIF

Machine 2

H
Y

P
ER

V
IS

O
R

VSWITCH

VM
VNIC

NIC NIC

VM
VNIC

VM
VNIC

VIF VIF VIF

DATA FLOW

“TOP OF RACK” SWITCH

http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010201p.pdf
http://www.openvswitch.org
https://github.com/SnabbCo
http://lagopus.github.io

5

White Paper  |  Open vSwitch* Enables SDN and NFV Transformation

Open vSwitch

OvS is an open source vSwitch software stack project that can run as a virtual switch
in virtual environments, provide switching to host-based applications, and run as the
control stack of hardware switches. OvS is offered under the Apache 2.0 license.

Among the available virtual switches, OvS stands out as one that is widely known
and understood and, with the enhancements in progress, can meet a wide range of
deployment needs. OvS plays a vital role in several SDN/NFV open source projects,
including OpenStack*, OpenNebula*, and OpenDaylight*. OvS is the vSwitch that is
most widely deployed in OpenStack installations, according to the OpenStack.org 2014
survey.1 OvS has been ported into multiple commercial virtualization platforms and
added to switching chipsets. The kernel datapath software is included in the Linux*
kernel, making it widely available with Linux distributions. It is largely deployed in cloud
enterprise networks and is also being evaluated by leading service providers and CSPs
as the open source vSwitch of choice for NFV. For these reasons, Intel has adopted OvS
as the vSwitch in its Intel ONP reference architecture in order to illustrate data plane
performance on a multilayer, open source vSwitch within an open platform.

Open vSwitch Architecture

The OvS software is designed for Linux-based hypervisors and intended to address the
open source community’s needs for feature-rich virtual switching capabilities. These
capabilities include L2/L3 forwarding, VxLAN, Access Control Lists (ACLs), Quality of
Service (QoS) policy and traffic shaping, and monitoring and configuration. OvS enables
these features using standard network protocols, such as NetFlow*, IPFIX*, SPAN*, and
sFlow*. The OvS Database Management protocol (OVSDB), an OpenFlow* configuration
protocol, enables automated control and remote monitoring triggers.

As mentioned earlier, there are two salient configurations of OvS software: native OvS
(OvS with the datapath in the kernel) and OvS with DPDK (OvS with the datapath in the
user space). Both architectures are discussed in this document.

Native Open vSwitch Architecture

The native OvS architecture (see Figure 4) comprises two principle software
components: a kernel space fast path (openvswitch.ko) and a user space daemon (ovs-
vswitchd). The main purpose of the kernel space fast path is to process received frames
based on a lookup table of recently used flow-table entries that ovs-vswitchd programs.

The native OvS architecture’s main elements include the following:

•	 openvswitch.ko. This is the fast path through OvS (openvswitch.ko) and consists of
the lookup table, with each entry made up of a number of match fields and actions.

−− Match fields define a set of fields in the packet’s headers that can be used to
identify the type of packet received.

−− Actions define what can be done with the packet, such as push a VLAN tag,
modify the packet header, and output to a port.

•	 ovs-vswitchd. This is a set of several major libraries:

−− ofproto. Implements an OpenFlow switch.

−− netdev. Abstracts the interaction with network devices (physical and virtual).

−− dpif. Abstracts a simple single-table forwarding path.

Figure 4. Native Open vSwitch* software
architecture.

Native Open vSwitch*
Software Architecture

ofproto
implementation of OpenFlow* switch

dpif
user space forwarding

netdev
abstracts interaction with network devices

ovs-vswitchd
User space daemon

kernel packet processing
match fields and actions

openvswitch.ko
Kernel space fast path

NIC
Open Platform Hardware

http://superuser.openstack.org/articles/openstack-user-survey-insights-november-2014
http://superuser.openstack.org/articles/openstack-user-survey-insights-november-2014

6

White Paper  |  Open vSwitch* Enables SDN and NFV Transformation

When a frame is received, the fast path in the kernel space uses match fields to
determine which flow table entry to match on and, correspondingly, which set of
actions to execute. If the frame does not match an entry in the lookup table, it is sent to
ovs-vswitchd in the user space, which requires a costly context switch. The user space
component then determines how to handle frames of this type before sending it back
to the kernel space component, again with a costly context switch. ovs-vswitchd also
instructs openvswitch.ko how to handle future frames of this type by caching a flow
table entry in the fast path lookup table in the kernel.

While OvS performs reasonably well as a vSwitch, there is a need and an opportunity
for performance enhancements and added capabilities useful for NFV. Thus, Intel
has contributed to the open source community and the OvS project to develop and
enhance OvS with DPDK, boosting software performance across several fronts to
meet today’s NFV demands.

Open vSwitch Architecture with DPDK

The DPDK is a set of data plane libraries and network interface controller drivers that
enable high-throughput and low-latency packet processing. The openvswitch.org
project recently included DPDK support as a compile-time option for the user space
fast path that helps accelerate datapaths across physical and virtual interfaces.

DPDK uses Poll Mode Drivers (PMDs) for user space packet processing. It also uses
advanced Intel® instruction sets, among other techniques, to meet the throughput and
latency requirements that virtualized network functions need in today’s demanding
services. PMDs allow OvS to poll physical network interfaces, and other virtualized
or non-virtualized device types. This avoids costly interrupt-driven network device
models, while allowing OvS to take advantage of advanced Intel instruction sets, such
as SIMD (single instruction, multiple data) instructions.

Figure 5 shows the OvS with DPDK architectures and highlights the areas on which Intel’s
contributions focus. The following list explains the various components shown in the figure:

•	 dpif-netdev is the user space implementation of the fast path. It implements the
dpif API using netdev devices. Implementing all packet processing in the user space
eliminates the overhead associated with legacy kernel space code.

•	 ofproto-dpif implements the ofproto API using the dpif layer.

•	 netdev-dpdk enables a variety of DPDK vSwitch ports, implementing the netdev
API using DPDK libraries to implement each type of interface.

−− Physical ports (PMDs) are implemented using vfio (or igb_uio).

−− dpdkvhostuser and dpdkvhostcuse ports are implemented using librte_vhost.
These ports allow a user to add vHost User and vHost Cuse ports to the user space
datapath. These ports enable fast communication with a VM by implementing
a VirtIO user space vHost provider. VirtIO/vHost is a fast, secure, and standard
interface for communicating with VMs.

−− dpdkr interfaces are implemented using librte_ring. These ports allow a user
to add DPDK ring ports to the user space datapath. This enables fast zero-copy
communication with a VM using IVSHMEM or another process running on the host OS.

All of these architectural changes to OvS enable a wide variety of VNFs. OvS with
DPDK allows service providers to achieve significant performance improvements on
Intel® architecture when switching traffic from a physical network to a virtual network
and between VMs on a virtual network. Intel has benchmarked the performance
achievable from OvS with DPDK, as discussed in the next section.

Figure 5. Open vSwitch* with Data
Plane Development Kit (DPDK) software
architecture.

Open vSwitch* with DPDK
Software Architecture

ofproto
implementation of OpenFlow* switch

ofproto-dpif
implementation of ofproto API using dpif layer

dpif
user space forwarding

dpif-netdev
fast path implementation

netdev
abstracts interaction with network devices

ovs-vswitchd
User space daemon

openvswitch.ko
Kernel space fast path

NICRemote
Host

Remote
Host

netdev-dpdk
DPDK vSwitch ports

dpdkr
IVSHEM

vHost
dpdkvhostuser and

dpdkvhostcuse

Physical
Ports

librte_vhost

vfio

librte_ring

Intel Focus Areas

7

White Paper  |  Open vSwitch* Enables SDN and NFV Transformation

Open vSwitch with DPDK Performance Benchmarks
Intel has compared OvS to DPDK through both physical-to-physical and
physical-to-virtual-to-physical switching tests to produce benchmarks. These
tests can easily be duplicated for testing in the reader’s own environment.

The benchmarks achieved significant performance improvements with DPDK.
As seen if Figure 6, physical-to-physical performance tests with DPDK ran nearly
12x faster with DPDK than without DPDK, illustrating the aggregate switching
performance through OvS with DPDK. As seen if Figure 7, physical-to-virtual-to-
physical switching through a VM with OvS resulted in over a 7x improvement with
DPDK over native OvS. Both tests were done with 256-byte packets to focus on
the performance for small packet processing by OvS.

Table 1 shows the test platform setup for both physical-to-physical and
physical-to-virtual-to-physical tests.

Table 1. Test Platform Setup

HARDWARE COMPONENT

Platform Intel® WorkStation Board W2600CR

Processors 2x Intel® Xeon® processors E5-2680 v2 @ 2.80 GHz

Memory 8x 8 GB DDR3-1867 MHz DIMM

NICs 2x Intel® 82599 10 Gigabit Ethernet Controller

BIOS Revision: 04/19/2014 SE5C600.86B.02.03.0003.041920141333
• �Intel® Virtualization Technology enabled.
• �Hyper-threading enabled/disabled as indicated by test.
• �Intel SpeedStep® technology disabled.
• �Intel® Turbo Boost Technology disabled.
• �CPU power and performance policy: Performance.

SOFTWARE COMPONENT

Host OS Fedora* 21 x86_64 3.17.4-301.fc21.x86_64

Virtual machine Fedora 21 x86_64 3.17.4-301.fc21.x86_64

Virtualization
technology

QEMU‐kvm v2.2.0

DPDK DPDK 2.0.0

vSwitch Open vSwitch* v2.4.0 (pre-release)
git commit 44dbb3e4bd085588a1ebc70d9a25d2ed6b63e18b

IXIA IxNetwork 7.40.929.15 EA

gcc gcc (GCC) 4.9.2 20141101 (Red Hat 4.9.2-1)

CONFIGURATION

CPU isolation All cores isolated except core 0

Core affinitization Standard Open vSwitch: QEMU*, vHost processes core affinitized
OvS with DPDK: PMDs core affinitized through OvS pmd-cpu-mask

DPDK vhost-user disabled

vSwitch ovs-vswitchd --dpdk -c 0x8 -n 4 --socket-mem 1024,0
-- unix:/usr/local/var/run/openvswitch/db.sock –pidfile

QEMU VHost=on, mrg_rxbuff=off

Physical-to-Physical
 Performance Comparison

OvS with DPDKNative OvS

11.4x

1.0

Figure 6. Physical-to-physical test results
show that Open vSwitch* (OvS) with Data Plane
Development Kit (DPDK) is almost 12x faster than
native OvS. Intel internal measurements, July 2015.

OvS with DPDK
Two Core

OvS with DPDK
Single Core

Native OvS

Physical-to-Virtual-to-Physical
Test Results

7.1x

12.9x

1.0

Figure 7. Physical-to-virtual-to-physical test results
show that Open vSwitch* (OvS) with Data Plane
Development Kit (DPDK) performs 7x faster than
native OvS. Intel internal measurements, July 2015.

8

White Paper  |  Open vSwitch* Enables SDN and NFV Transformation

Physical-to-Physical Performance
We provide physical-to-physical results as a reference baseline for comparing performance.
Physical-to-physical testing is uncomplicated but indicates the aggregate switching performance
through a simple OvS software datapath. It uses two physical 10 Gbps NIC ports with the data
routed bidirectionally through OvS (first in one direction and then in the other).

Figure 8, on the left, shows the steps for the packet path in one direction (it is identical for the
opposite direction).

As shown in Figure 6, OvS with DPDK compared to native OvS delivered an almost 12x speedup with
a single PMD thread. This test was performed with 256-byte packets with zero packet loss. These
results are important, because they show typical packet performance through OvS. Table 1 provides
full test setup and configuration details.

Physical-To-Virtual-To-Physical Performance

Loopback testing through a VM shows the performance for virtual switches and VMs. The test uses
two 10 Gbps NIC ports with data switched through virtual ports in OvS to a VM and back again.
Figure 8, on the right, shows the test setup for the packet path in one direction (it is identical for
the opposite direction).

As shown in Figure 7, OvS with DPDK provides over a 7x speedup. Note again that this test
uses typical 256-byte packets with zero packet loss. Table 1 provides the full test setup and
configuration details.

The match data is initially loaded into the OvS flow tables.
The packet arrives in physical port 0.
The packet is received directly into the OvS user space using the
DPDK PMD for the NIC.
A lookup is made to match the packet with an action.
The action in this case is to forward the packet to virtual port 0.
The packet is sent to the VM through the DPDK vHost library.
The packet is received in the VM and forwarded back to the host
using the DPDK VirtIO PMD.
The packet is received in the vSwitch from virtual port 1 using the
DPDK vHost library.
A lookup is made to match the packet with an action.
The action in this case is to forward the packet to physical port 1.
The packet is sent directly from the OvS user space to physical
port 1 using the DPDK PMD.

2

1

3

4

8

9

HOST MACHINE

TRAFFIC GENERATOR

PORT-0 PORT-1

OVS

VIRTUAL PORT-0 VIRTUAL PORT-1VM

2

1

3 4 7

5

6

8

9

5

6

7

Physical-to-Virtual-to-Physical
Test Setup

Figure 8. The steps for the physical-to-physical (left) and physical-to-virtual-to-physical (right) test setup describe the packet path in one
direction (it is identical in the opposite direction).

The match data is initially loaded into the OvS with DPDK fast path.
The packet arrives in physical port 0.
The packet is received directly into the OvS user space through the
DPDK PMD for the NIC, bypassing the Linux* kernel.
A lookup is made to match the packet with an action.
The action in this case is to forward the packet to physical port 1.
The packet is sent directly from the OvS user space to physical
port 1 using the DPDK PMD.

2

1

3

4

5

TRAFFIC GENERATOR

PORT-0 PORT-1

OVS

2

1

3 4

5

Physical-to-Physical
Test Setup

HOST MACHINE

9

White Paper  |  Open vSwitch* Enables SDN and NFV Transformation

Open vSwitch with DPDK, SR-IOV, and PCIe Pass‑Through:
A Continuum of Solutions
Problem Statement
CSPs have demanding data plane performance needs. Some have concluded that
the only way to achieve their goals is to bypass any software in the NFVI and pass
through direct hardware access using mechanisms such as SR-IOV or PCIe pass-
through. However, this approach does not satisfy many of the goals of NFV, as
described in the ETSI NFV Architectural Framework, including key ones, such as
standardized interfaces and flexibility in assigning VMs to different infrastructure.

The NFVI provides the hardware and software upon which the VNFs run (see
Figure 10).

SR-IOV and PCIe Pass-Through Approach
SR-IOV is a standard that makes a single PCI (peripheral component interconnect)
hardware device appear as multiple virtual PCI devices. The standard is defined
by the PCI Special Interest Group*, and it is supported on a variety of Ethernet
controllers.

Unlike in the various vSwitch proposals, where a vIF is used between the VNF and
NFVI, SR-IOV bypasses the NFVI software and exposes the hardware directly to
the VNF.

The driver for the hardware thus resides in the VM, rather than the NFVI. The
virtual functions (VFs) have drivers that are often a subset of the Physical
Function (PF) drivers, and thus not all features may be available in the VF. For
example, the controller might be set up in promiscuous mode, which for security
reasons may not be enabled in a VF driver. There are other constraints as well,
such as configuration parameters that could potentially affect all VFs.

PCIe pass-through is a capability that allows the PF PCIe device to be allocated
in its entirety to the VM. The VM must have the relevant device drivers for the
hardware PF. Intel® Virtualization Technology for Directed I/O (Intel® VT‑d)
supports PCIe pass-through. Note that many of the same characteristics
(advantages and disadvantages) of SR-IOV also apply to PCIe pass-through.

VNF Interface Options and Constraints
Figures 11 and 12 show a high-level comparison between a vSwitch approach and the
SR-IOV approach. In the vSwitch approach (using OvS as an example), the hardware
is abstracted by the DPDK PMD in the NFVI. The interface, as seen by the VNF, uses
the widely supported VirtIO interface. In contrast, in the SR-IOV model the VFs of
the NIC are exposed directly to the VM. In this case the VF PMD resides within the
VM itself.

Table 2, on the following page, lists the advantages and disadvantages of both
approaches. Note that PCIe pass-through is equivalent to the model shown for
VNF 3 and VNF 4, with the VF replaced by a PF.

Another factor to consider is how the traffic is steered toward the VNF. In the
case of a vSwitch, this can be done in a variety of ways, such as by the 12-tuple
defined by OpenFlow rules. Steering traffic with SR-IOV, however, depends on the
capabilities of the specific hardware. For example, some hardware may only support
steering traffic by the VLAN or possibly the outer IP (Internet protocol) header.
Other hardware may allow a more flexible pipeline, although the number of flows
supported will be less than is possible in a software solution.

Figure 10. Network Functions Virtualization
Infrastructure (NFVI).

VNF 1 VNF 2 VNF 3

NFVI SOFTWARE
NFVI HARDWARE

NFVI

Virtualization
Infrastructure

VF VF

NETWORK
APP

DPDK
SOCKET

NIC VF PMD

VNF 3

DPDK

NETWORK
APP

NIC VF PMD

VNF 4

DPDK-enabled VNF
using SR-IOV

NFVI

H
A

RD
W

A
RE

SP
EC

IF
IC

DPDK netdev

DPDK PMD

Open vSwitch*

NIC

DPDK vHOST USER

NETWORK
APP

DPDK
SOCKET

VIRTIO

VNF 1

DPDK

NETWORK
APP

VIRTIO

VNF 2

DPDK-enabled VNF
using vSwitch

NFVI

H
A

RD
W

A
RE

SP
EC

IF
IC

NIC

VF VF

NETWORK
APP

DPDK
SOCKET

NIC VF PMD

VNF 3

DPDK

NETWORK
APP

NIC VF PMD

VNF 4

DPDK-enabled VNF
using SR-IOV

NFVI

H
A

RD
W

A
RE

SP
EC

IF
IC

DPDK netdev

DPDK PMD

Open vSwitch*

NIC

DPDK vHOST USER

NETWORK
APP

DPDK
SOCKET

VIRTIO

VNF 1

DPDK

NETWORK
APP

VIRTIO

VNF 2

DPDK-enabled VNF
using vSwitch

NFVI

H
A

RD
W

A
RE

SP
EC

IF
IC

NIC

Figure 11. DPDK-enabled Virtual Network
Functions (VNF) using vSwitch.

Figure 12. DPDK-enabled Virtual Network
Functions (VNF) using SR-IOV.

10

White Paper  |  Open vSwitch* Enables SDN and NFV Transformation

Table 2. Advantages and Disadvantages of Virtual Switch, SR-IOV, and PCIe* Pass-Through Solutions

REQUIREMENT SR-IOV PCIe* PASS-THROUGH NATIVE OvS OvS WITH DPDK

Maximum throughput
to an individual VM

Near native throughput. I/O
delivered directly to the VM

Same as SR-IOV < 1M pps >12x compared to native
vSwitch approach

Maximum throughput
from VM to VM

Limited by NIC internal
switching and PCIe bandwidth

Limited by PCIe bandwidth
and ToR switch

< 1M pps Scalable with additional
cores for switching

Latency/Jitter Lowest Same as SR-IOV Not a focus requirement Tuning in progress

Network virtualization
(programmability/SDN)

Overlay networks possible
with NIC or ToR switch support

Overlay networks possible
with ToR switch support

Core of enterprise and
cloud network virtualization
and SDN

Continued feature growth

VM live migration VM tied to specific hardware
port (workaround available)

Same as SR-IOV Key value of vSwitch Link bonding, vHost
migration

VM abstracted from
hardware

VM will need to include
specific driver

Same as SR-IOV Key value of vSwitch Yes when using standard
I/O API (VirtIO); if using
DPDK, requires a driver on
the guest VM

VNF longevity Additional validation and
certification with I/O hardware
updates

Same as SR-IOV Same binary will run across
generations of servers (x86)

Same binary will run across
generations of servers (x86)

Network monitoring Will need to copy additional
VM or be extracted from I/O
hardware

Same as SR-IOV Available in vSwitch Will eventually be available
in vSwitch

Hardware pool
utilization

Possible underutilization due
to VM being limited to specific
hardware mapping

Same as SR-IOV Full flexibility for VNF
assignment

Flexible under orchestration
configuration

Industry maturity
and adoption

Used by the Telecom industry Same as SR-IOV Appropriate for limited
Telecom workloads that
require low packet
processing

Telecom is waiting for
it; Intel is working with
suppliers to enable
adoption

DPDK – Data Plane Development Kit; OvS – Open vSwitch*; pps – packets per second; SDN – software-defined networking; SR-IOV – Single Root I/O Virtualization; ToR – top-of-rack;
VNF – virtualized network functions; VM –Virtual Machine

Open vSwitch, SR-IOV, and PCIe Pass-Through Conclusions

While it may have been valid in the past to conclude that a vSwitch is unable
to meet the needs of CSP data plane workloads, and thus SR-IOV or PCIe
pass-through were required, recent advances in the use of DPDK, coupled with
vSwitch software, provides a compelling solution that meets the NFV goals and
ensures flexibility in the future. This capability can be demonstrated with OvS
as an open source solution, but there are also commercial offerings available to
meet a variety of deployment scenarios.

Potential Future Enhancements
As has been shown, there are significant performance gains when using OvS
with DPDK. There are possibilities for further improvements using DPDK
techniques, such as bulk processing, prefetching, and advanced Intel instruction
sets. There are also possibilities to directly offload some of the processing to
highly optimized DPDK libraries, as well as take advantage of new DPDK features
(for example, multi-queue vHost User).

Intel continues to explore such techniques and to work on OvS with the
community in collaboration with the OPNFV project in order to enhance OvS
performance and capabilities even further. Intel’s goals for OvS are to help
make it the open source vSwitch of choice for SDN and NFV.

OPNFV is an open source
project focused on accelerating
NFV's evolution through an
integrated, open platform.
As an open source project,
OPNFV is uniquely positioned
to bring together the work of
standards bodies, open source
communities and commercial
suppliers to deliver a de facto
standard open source NFV
platform for the industry.

www.opnfv.org

11

White Paper  |  Open vSwitch* Enables SDN and NFV Transformation

OPNFV: A Continuing Commitment to Open Platforms
Successful deployments of NFV services and appliances require platforms with
performance and capabilities to support the different virtualized functions.
The Intel ONP reference architecture is one such design, on which Intel has
based much of its work and evaluation for OvS with DPDK. The industry has
joined the collaborative OPNFV project. Intel is a Platinum member of the
project, helping to advance the development of open platforms.

In addition to its work with OvS, Intel is leading other vSwitch projects in
OPNFV.org as part of its continuing commitment to advance SDN and NFV on
open platforms. See the Intel’s vSwitch Projects sidebar.

Features of Open vSwitch 2.4 Release Enabled by Intel
Intel has enabled many features that are part of OvS release 2.4. Intel is focused
on enhancing the functionality of the OvS user space to meet CSP, cloud, and
enterprise requirements. Contributions to date include DPDK support, vHost
User, IVSHMEM, and more. The following provides an overview of the new
capabilities introduced in OvS release 2.4.

Data Plane Development Kit (DPDK) Support
OvS supports DPDK versions up to 2.0. Allows OvS to execute using the
DPDK 2.0 library.

vHost Cuse
User space vHost enables fast packet transfer between host and guest. This
is achieved by offloading the servicing of VirtIO-net devices to a user space
device, using KVM*/QEMU*. This offloading reduces context switching and
packet copying involved in traditional VirtIO-net, which in turn provides
a significant performance boost for VM communications (compared to
traditional methods).

There are two implementations of vHost, both of which have been enabled in OvS:
vHost Cuse, where VirtIO-net devices are offloaded to a character device, and
vHost User, where VirtIO-net devices are offloaded to a socket server device.

The vHost Cuse feature adds support for a new port type to the user space
datapath called dpdkvhost. This allows KVM/QEMU to offload the servicing of
VirtIO-net devices to its associated dpdkvhost port.

vHost User
vHost User is the standard QEMU-adopted user space vHost (VirtIO is the front
end in the VM). This feature adds support for a new port type to the user space
datapath called dpdkvhostuser. It adds to the existing infrastructure of vhost-
cuse; however, it disables vhost-cuse ports as the default port type in favor of
vhost-user ports. vhost-cuse ‘dpdkvhost’ ports are still available; they can be
enabled using a configure flag.

A new dpdkvhostuser port will create a Unix* domain socket, which, when
provided to QEMU, is used to facilitate communication between the VirtIO-net
device on the VM and the OvS port on the host.

Intel’s vSwitch Projects
Intel is a leader of several vSwitch
projects in OPNFV.org and is committed
to the advancement of SDN and NFV on
open platforms. These projects include
the following.

Characterizing vSwitch Performance for
Telecom NFV Use Cases
This project develops a generic and
architecture-agnostic vSwitch testing
framework with associated tests that
serve as a basis for validating the suit-
ability of different vSwitch implemen-
tations in a Telecom NFV deployment
environment.

The project implements a modular test
framework, combining traffic gen-
erator, vSwitch, virtualized network
functions, and characterization test
cases. It generates a performance
benchmark report for any of the
supported test cases. Each of the
modules (for example, the traffic
generator) is pluggable: a test setup
using any traffic generator can be sup-
ported within this framework.

Open vSwitch for NFV
This project proposes modifying the
Open Platform for NFV* (OPNFV*)
build to include a deployment option
for the OvS build with a software-
accelerated user space design.
Changes will significantly improve the
performance of the Network Func-
tions Virtualization Infrastructure for
network I/O.

Future work will encompass collabora-
tive development within the OvS proj-
ect to add functionality and improve
the performance of the OvS version
with a software-accelerated user space
fast path and increase its suitability for
Telecom NFV deployments.

For more information, see the
OPNFV Wiki.

http://www.opnfv.org
http://www.OPNFV.org
https://wiki.opnfv.org/characterize_vswitch_performance_for_telco_nfv_use_cases

12

White Paper  |  Open vSwitch* Enables SDN and NFV Transformation

OpenDaylight*/OpenStack* Detection of DPDK Ports
This feature enables an ovsdb client (for example, OpenDaylight or
OpenStack) to query the datapath to determine whether certain datapath
and port types exist. In particular, an ovsdb client can determine whether an
instance of ovs-vswitchd was compiled with DPDK support.

User Space Link Bonding
DPDK link bonding implements active/backup mode bonding. This enables
transparent failover between a pair of redundant Ethernet links. If the active
link fails, traffic is transferred to the backup link, and the previously active
link is designated as the backup. Active/backup mode bonding is only one of
several link bonding modes that are supported.

IVSHMEM
This feature enables a different method for sending packets to the VM than
vHost, which copies between separate memory spaces. Shared memory
transfer is a more efficient transfer method, because it is copying only packet
pointers and not packet data. However, it lacks security, since the VM can see all
the packet buffer memory space at all times. The system user can determine the
relative importance of efficiency or security, using knowledge about whether
the system is a closed environment.

vHost Performance Improvements
A number of user space vHost performance improvements were made in the
OvS 2.4 time frame, increasing the throughput to the VM by approximately 3x,
including the following:

•	 vHost packet batch size changed to 32.

•	 Retries added in the enqueue to vHost.

Datapath Performance Improvements
A number of datapath performance improvements were made in the OvS 2.4
time frame, increasing physical-to-physical throughput, including the following:

•	 Rx vectorization was added in the OvS PMD I/O path.

•	 Miniflow fix.

•	 The EMC table size increased from 1K to 8K.

Open vSwitch 2.4 Features
Enabled by Intel
• �Data Plane Development Kit

(DPDK) Support
• �vHost User
• �OpenDaylight*/OpenStack* Detection of

DPDK Ports
• �User Space Link Bonding
• �IVSHMEM
• �vHost Performance Improvements
• �Datapath Performance Improvements

White Paper  |  Open vSwitch* Enables SDN and NFV Transformation

 1	 “OpenStack User Survey Insights: November 2014.” http://superuser.openstack.org/articles/openstack-user-survey-insights-november-2014
	 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system

configuration. Check with your system manufacturer or retailer or learn more at intel.com.
	 Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference

in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components
they are considering purchasing. For more information on performance tests and on the performance of Intel products, reference intel.com/performance/resources/benchmark_limitations.htm or
call (U.S.) 1-800-628-8686 or 1-916-356-3104.

	 THE INFORMATION PROVIDED IN THIS PAPER IS INTENDED TO BE GENERAL IN NATURE AND IS NOT SPECIFIC GUIDANCE. RECOMMENDATIONS (INCLUDING POTENTIAL COST SAVINGS)
ARE BASED UPON INTEL’S EXPERIENCE AND ARE ESTIMATES ONLY. INTEL DOES NOT GUARANTEE OR WARRANT OTHERS WILL OBTAIN SIMILAR RESULTS.

	 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS AND SERVICES. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS AND SERVICES INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

	 Copyright © 2015 Intel Corporation. All rights reserved. Intel, the Intel logo, Intel SpeedStep, and Xeon are trademarks of Intel Corporation in the U.S. and other countries.
 	 *Other names and brands may be claimed as the property of others.	 Printed in USA	 1015/LBEC/KC/PDF 	 Please Recycle	 333441-001

Conclusion
Working with the open source community, Intel has significantly contributed to the
enhancement of OvS performance to meet the business needs of enterprise and CSPs
implementing SDN and NFV in their infrastructures. By adding DPDK to OvS, switching
performance increased nearly 12x in physical-to-physical testing and 7x when switched
through a VM. This is a significant leap forward for advancing OvS deployments,
especially for applications where small packet performance is paramount.

OvS with DPDK is integral to the Intel ONP reference architecture, showcasing the
work Intel has done with OvS and highlighting the value of using open network
platforms for SDN/NFV solutions.

Intel remains committed to investments in open source contributions for SDN and
NFV and to collaborating with the community, such as with the OPNFV project, to help
drive deployments of software-defined networks and NFV.

To find out more about the OPNFV project, visit the
OPNFV website.

For more information about Open vSwitch, visit the
Open vSwitch website.

For more information about the Intel Open Network
Platform Reference Architecture, visit the Intel® Open
Network Platform website.

http://superuser.openstack.org/articles/openstack-user-survey-insights-november-2014
http://www.intel.com
http://www.intel.com/performance/resources/benchmark_limitations.htm
http://www.opnfv.org/
http://www.openvswitch.org/
http://www.intel.com/content/www/us/en/communications/open-network-platform-server.html
http://www.intel.com/content/www/us/en/communications/open-network-platform-server.html

	_GoBack
	Executive Overview
	Introduction
	Virtual Switching and Open vSwitch*
	The Software Virtual Switch
	Open vSwitch
	Open vSwitch Architecture

	Open vSwitch with DPDK Performance Benchmarks
	Physical-to-Physical Performance
	Physical-To-Virtual-To-Physical Performance

	Open vSwitch with DPDK, SR-IOV, and PCIe Pass‑Through: A Continuum of Solutions
	Problem Statement
	SR-IOV and PCIe Pass-Through Approach
	VNF Interface Options and Constraints
	Open vSwitch, SR-IOV, and PCIe Pass-Through Conclusions

	Potential Future Enhancements
	OPNFV: A Continuing Commitment to Open Platforms
	Features of Open vSwitch 2.4 Release Enabled by Intel
	Data Plane Development Kit (DPDK) Support
	vHost Cuse
	vHost User
	OpenDaylight*/OpenStack* Detection of DPDK Ports
	User Space Link Bonding
	IVSHMEM
	vHost Performance Improvements
	Datapath Performance Improvements

	Conclusion

