
Audience and Purpose
Telecommunications networks are witnessing a technology paradigm shift with
the evolution of network functions virtualization (NFV). Adopting NFV significantly
increases service agility and reduces operational expenses. In addition, with most
communications service providers (CommSPs) moving to long term evolution (LTE)
for data and IoT scenarios, successful voice over LTE (VOLTE) service deployment is
emerging as a critical business necessity. The key challenge is successful migration
or expansion from physical to virtual LTE mobile core networks, and successful
deployment and verification of VOLTE services without compromising customer
quality of experience (QoE). This virtualization enables operators to introduce
new services more rapidly and compete with “over-the-top” (OTT) competitors
more effectively. Therefore, testing of VOLTE services in a virtual LTE mobile core
network must take place across the entire service lifecycle including evaluation,
field-trial, commercial deployment, and optimization phases. Timely verification
of these phases is vital to ensure scalability and interoperability. This technical
reference architecture document describes how verification can be achieved with
TCS NFV Concerto™ from Tata Consultancy Services (TCS) with integrated Brocade*
virtual Evolved Packet Core (vEPC), Metaswitch’s* virtual IP Multimedia Subsystem
(vIMS), and Ixia’s* IxLoad* Virtual Edition (VE). This complete virtual VOLTE
solution is deployed on Intel® Xeon® processor-based off-the-shelf servers, and
leverages Red Hat’s* OpenStack* platform for virtual infrastructure manager (VIM)
functionality.

Executive Summary
CommSPs are finding it difficult to keep pace with growing customer demands
because of their existing siloed and proprietary networks. This is because network
elements have traditionally been optimized for high packet throughput at the
expense of flexibility, thus hampering the development and deployment of
innovative new services. Another concern is that rapid advances in technology
and services are accelerating the obsolescence of installed hardware; and in turn,
hardware isn’t keeping up with other modes of feature evolution, which constrains
innovation in a more network-centric, connected world. With existing networks,
scalability is limited and deployment is often sluggish as expensive new equipment
must be acquired and provisioned. Staffing costs escalate, as increased expertise
is needed to design, integrate, operate, and maintain the various network function
appliances. All of these issues make it difficult to innovate and compete. Moreover,
OTT competitors and app developers are deploying new services with minimal
deployment timelines. All of these factors are driving CommSPs to improve service
deployment cycles.

Table of Contents

Audience and Purpose 1

Executive Summary 1

Reference Architecture
Participants . 2

Overview of vVOLTE NFV
Use Case . 3

Key Reference Architecture
Components . 4

Architectural Details 5

VOLTE Subscriber Attach
Validation and Auto Scaling 9

Appendix A: Abbreviation
Glossary . 9

Appendix B: Installation
Instructions . 10

References . 16

Reference design validates the functionality of Tata Consultancy Service’s TCS
NFV Concerto™ on Intel®-powered servers with technology from Brocade,*
Metaswitch,* Ixia,* and Red Hat .*

VOLTE Orchestration and
Validation Reference Architecture

Communications Service Providers
VOLTE

white paper

Network functions virtualization (NFV) can provide the
infrastructure flexibility and agility needed to successfully
compete in today’s evolving communications landscape.
Top drivers for NFV are new agility for service deployments
for increased revenue, in addition to new operational
efficiencies and reduced capital expenses stemming from
the use of commercial servers rather than special-purpose
network equipment. This virtualized approach decouples
the network hardware from the network functions and
results in increased infrastructure flexibility and reduced
hardware costs. Because the infrastructure is simplified and
streamlined, new and expanded services can be created
quickly and with less expense.

Intel and TCS are collaborating to demonstrate the technical
and business viability of NFV deployment and service
orchestration using cloud computing technologies. The
collaboration delivers a reference architecture and proof
of concept (PoC) that demonstrates a novel NFV-based
orchestration solution for a CommSP’s cloud-based VOLTE
network. Any mobile network operator wanting to migrate to
the cloud and operationalize a VOLTE solution in its end-to-
end network is a potential customer for this solution.

Reference Architecture Participants
Intel

The servers used in the reference architecture depend
on the processing power and network and virtualization
capabilities of the Intel® Xeon® processors E5-2600 and 10
Gigabit Ethernet Intel® technology. Intel architecture CPUs
provide CommSPs with a standard, reusable, shared platform
for NFV applications that is easy to upgrade and maintain.
Intel architecture-based servers, enable MNOs to take
advantage of the proven scalability of modern, virtualized
computing technology. Advantages of this approach include
a streamlined network and cost savings from hardware
reusability and power reduction. Particularly, data plane
processing has been greatly accelerated by open source Data
Plane Development Kit optimization techniques originally
developed by Intel.

TCS

Tata Consultancy Services is an IT services, consulting, and
business solutions organization that delivers real results
to global business, ensuring an amazing level of certainty.
TCS offers a consulting-led, integrated portfolio of IT and
IT-enabled infrastructure, engineering, and assurance
services. This is delivered through its unique Global Network
Delivery Model™, recognized as the benchmark of excellence
in software development. A part of the Tata Group, India’s
largest industrial conglomerate, TCS has a global footprint
and is listed on the National Stock Exchange and Bombay
Stock Exchange in India. For more information, visit
www.tcs.com.

Brocade

Brocade Communications Systems Inc. is an American
technology company specializing in data and storage
networking products. Originally known for its leadership in
fibre channel storage networks, the company has expanded
its focus to include a wide range of products for new IP and
third-platform technologies. Brocade provides a full-function
evolved packet core (EPC) designed from the ground-up for

a virtualized environment that consists of independent slices
of control, data, and session management.

Ixia

Ixia provides testing, visibility, and security solutions,
strengthening applications across physical and virtual
networks for enterprises, service providers, and network
equipment manufacturers. To support network operator
transformation and speed the introduction of new revenue-
generating services, Ixia provides both physical and virtual
solutions for SDN, NFV, IoT, Wireless, and DevOps. Ixia plays
an active role in the ETSI (NFV) Industry Standards Group
and is broadly involved in leading industry organizations
focused on standards, open source, and new technologies for
operators.

Metaswitch

Metaswitch, a cloud native communications software
company with award-winning solutions, develops
commercial and open-source software solutions that are
constructively disrupting the way that service providers
build, scale, innovate and account for communication
services. By working with Metaswitch, visionary service
providers are realizing the full economic, operational and
technology benefits of becoming cloud based and software-
centric. Metaswitch’s solutions are powering more than 1,000
service providers in today’s global, ultra-competitive, and
rapidly changing communications marketplace. For more
information, please visit www.metaswitch.com.

Red Hat

Red Hat plays a leading role in working with industry leaders
to deliver carrier-grade OpenStack solutions. They have a
proven record in developing commercial ecosystems around
an open infrastructure platform, fostering a strong network
of technology providers to deliver enterprise features
needed for mission-critical deployments.

White Paper | VOLTE Orchestration and Validation Reference Architecture

2

http://www.tcs.com
http://www.metaswitch.com

White Paper | VOLTE Orchestration and Validation Reference Architecture

Overview of vVOLTE NFV Use Case
The core components that are necessary to facilitate a VOLTE call include user equipment (UE), enhanced NodeB (eNB),
evolved packet core (EPC), and IP multimedia subsystem (IMS).

• The UE is the user’s mobile device, which is subscribed to the VOLTE services and is used to place a call request. The
typical UE is a mobile handset.

• The eNB is the radio access component of an LTE system that is based on universal mobile telecommunications system
(UMTS). Each eNB contains at least one radio transmitter, receiver, control section, and power supply. In addition to radio
transmitters and receivers, eNBs contain resource management and logic control functions. This capability allows eNBs to
directly communicate with each other.

• The EPC communicates with packet data networks in the outside world such as the Internet, private corporate networks, or
the IP multimedia subsystem. The interfaces between the different parts of the system are denoted Uu, S1, and SGi.

• The IMS has two primary functions: the call session control function (CSCF) that is responsible for the SIP session setup
and tear down, and the home subscriber server (HSS) that is responsible for provisioning, authentication and location
services.

These, along with policy and charging rules function (PCRF), are needed to provide the end-to-end architecture to work with
the EPC and other IP networks. Online charging systems (OCS) and offline charging systems (OFCS) collect and present the
data needed to charge for services as a part of session management. IMS uses the session initiation protocol (SIP) for session
setup and teardown while DIAMETER signalling is used as the authorization, authentication, and accounting (AAA) protocol.
The IMS provides access independence with the IMS core network serving as a common ‘glue’ layer for access aggregation for
service delivery over various access media—Wi-Fi, broadband, LTE, and others as they evolve.

The European Telecommunications Standards Institute (ETSI) use cases #5 and #6 describe the virtualization of the mobile
core and virtualization of mobile base station, including the EPC and the IMS elements. The goal of this virtualization is to
achieve reduced total cost of operation (TCO), efficient and flexible resource allocation, scale to achieve higher availability
and resiliency, and dynamic network reconfiguration. In addition, this can allow for dynamic reallocation of resources from
one service to another to address spikes in demand in a particular service (e.g., a natural disaster or other major event). These
virtualized solutions will have to coexist with legacy systems for some time as most operators will have mixed environments—
NFV-based deployments and legacy equipment—for many years. Any or all of the IMS elements—in any of the core network,
application, or transport layers are good candidates for virtualization.

Figure 2 . Description of vVOLTE Core. Blue blocks indicate the elements in the reference architecture that are orchestration
and test targets

3

White Paper | VOLTE Orchestration and Validation Reference Architecture

Key Reference Architecture Components
TCS NFV Concerto

TCS’ NFV Concerto is a comprehensive framework and a complete validation platform that provides end-to-end VOLTE
verification, in a virtual LTE mobile core, with fully automated orchestration. The following are the salient features of TCS NFV
Concerto.

• Comprehensive verification and validation of functional, system, performance, load, and resilience features of a VNF

• Vendor neutrality

• Enablement of isolated certification sandbox environments

• Zero-touch execution

• Pre-Integrated Industry standard test frameworks

• Provisioning DevOps interface for closed-loop validation of network functions

Key Features

The following are the key feature of NFV Concerto:

Reference Implementations: TCS NFV Concerto comes with reference implementations for key components, Network
function virtualization orchestrator (NFVO) and virtual network function manager (VNFM) in the ETSI MANO stack. Since NFV
Concerto comes with the reference implementations for key components in the ETSI MANO stack, it thus has the industry
standard orchestration and VNFM engines that take care of end-to-end network orchestration of the VNF components.

Modular Framework: The inherent framework modularity brings in innovation and intelligence from any layer of the ETSI
stack while offering the flexibility, when needed, to fall back and use the industry standard reference implementations already
in place. Any of the ETSI MANO stack can be plugged in and out of the framework.

Vendor Neutrality and Interoperability: TCS NFV Concerto is a complete vendor-neutral platform that deploys, manages, and
validates virtual network functions (VNFs) that belong to multiple vendors, making the platform interoperable and providing
the flexibility to orchestrate a complete network service involving components from across multiple vendors.

Figure 3 . TCS NFV Concerto Block Diagram

4

White Paper | VOLTE Orchestration and Validation Reference Architecture

TCS OpenVNFManager

The ETSI NFV MANO specification for NFV Service
Orchestration Framework details the VNF manager as the
entity responsible for lifecycle management of the virtual
network functions. Each VNF instance is associated with
a VNF manager. A VNF manager may be assigned the
management of a single VNF instance, or the management
of multiple VNF instances of the same or different types.
TCS OpenVNFManager is an open-source, automated
service orchestration framework for NFV. It encompasses
NFV orchestration and lifecycle management and is fully
compliant with the ETSI MANO specification and works
with the OpenStack REST API. The solution is completely
vendor neutral and self-installing, requiring minimal pre-
configuration. It is a scalable and modular framework
that interoperates with existing service orchestration
solutions via standard OpenStack-like northbound
REST API, enabling fully automated service provisioning.
With this solution, both TEMs and CommSPs gain the
responsiveness and service agility needed to meet customer
demands. OpenVNFManager manages VNF occurrences via
instance-specific plug-ins that communicate with the VNF
instance over NETCONF, SNMP, or proprietary interfaces.
Each VNF manager is capable of managing multiple VNF
instances of the same or different type with the help of
the plug-in framework. A sample plug-in is provided in the
OpenVNFManager github for reference.

Key Features

Though the ETSI NFV MANO reference architecture does
not mandate any specific realization of the NFV MANO
architectural framework, it recommends leveraging a few
best practices. Key best practices and their relevance in the
current framework are elaborated on below.

The architectural framework should

• Lend itself to virtualization and be implementable in
software only.

• Lend itself to possible distribution and scaling across the
NFVI in order to improve service availability and support
different locations.

• Lend itself to full automation (ability to react to
events within reasonable time delays without human
intervention, and execute actions associated with those
events, based on pre-provisioned templates and policies).

• Lend itself to implementations that do not contain any
single points of failures with the potential to endanger
service continuity.

• Lend itself to an implementation with an open
architecture approach, which includes exposing standard
or “de-facto” standard interfaces.

• Support and help realize the feasible decoupling of VNF
software from hardware.

• Support management and orchestration of VNFs and
network services using NFVI resources from a single or
across multiple NFVI points of presence (PoPs).

• Support modelling of NFVI resource requirements of
VNFs in an abstracted way.

• Support modelling of NFVI resources so that they can
be abstracted with the resources being exposed by

functionality in one layer, to functionality in a different
layer.

• Support service assurance by correlating multilayer
fault, performance, logging & service impact analysis.
This feedback is available to the policy management
component of the orchestration system for recovery.

• Integrate with DevOps for closed-loop validation of
network functions.

OpenVNFManager is a software-based VNF management
framework that is scalable within a NFVI-PoP. It has a
centralized component – VNF service daemon (vnfsvc)
and a distributed VNFManager component that makes this
possible. The framework enables automated service creation
and life-cycle management of the VNF instances. It exposes
standard OpenStack-like REST APIs. The NFV resource
requirements and other parameters are captured in service
descriptors as advised in the ETSI NFV MANO reference
documentation. Sample descriptors are added at the end of
the document for reference.

Open Platform for NFV Orchestration: OpenVNFManager
is open source software under the Apache 2.0 license
and this solution is available on github. The objective is to
promote a truly open and vendor neutral platform for service
orchestration.

Complements OpenStack: The solution does not by-pass
any features of OpenStack. It works in coordination with
OpenStack in the role of the Virtual Infrastructure Manager.
It provides OpenStack-like northbound REST APIs to enable
interoperability with other orchestration applications and
systems.

Standard telco interface-based VNF configuration: The
solution offers configuration of the VNF using NETCONF, a
standard interface protocol that is widely used in CommSP
environments. For VNFs that do not support this interface,
custom drivers can be used for the VNF configuration and
life-cycle management.

Architectural Details
Key steps in service orchestration via the OpenVNFManager
framework are as follows:

Service On-boarding

For a system to enable service creation, it is important to
have all the required resources readily available. For a VNF,
the VNF descriptor elaborately describes the configuration
and dependencies. Similarly for a network service, the
network service descriptor (NSD) describes the topology,
VNFs required, service end-points, and policies applicable
to that service. In order to ensure that the service creation
is performed properly, these dependencies are validated
before the VNF is made available in the system. This is called
service on-boarding and it is enabled by a REST API.

In this phase, the descriptors are validated and the
dependencies are verified by the system and services are
made available in the catalogue. Successful on-boarding
indicates that the service is available for deployment. The
descriptors supported by this framework are ETSI-compliant
YAML-based network service descriptors and virtual network
function descriptors. Sample descriptors are provided in the
examples section of Appendix B.

5

White Paper | VOLTE Orchestration and Validation Reference Architecture

During the on-boarding phase, the descriptor is parsed to validate the availability of the required dependencies. For example,
the image files to launch the virtual network functions etc. The system also creates required references in the system for the
network service being on-boarded. The database is updated with the identifier for the service descriptor. Service on-boarding
is performed by the administrator. Once the on-boarding is successful, a user can request service creation. On-boarded
services are made available via a service catalogue or exposed via REST APIs. OpenStack Heat* enables the orchestration
of services that are successfully on-boarded into the system. As mentioned in the help documentation, the templates.json
file should be updated with the relevant descriptor information. For more details please refer to Appendix B for setup and
installation instructions.

Service Provisioning

Once a service is successfully on-boarded and made available in the system, a user can request service creation. Upon request
from the user via a client API, REST API or Heat service, the service orchestration is triggered. The request is validated for
privileges and availability of resources using standard OpenStack Nova* REST APIs. The required networks and ports are
created via the OpenStack Neutron* API. VM boot request is sent via the OpenStack novaclient.

Upon successful boot-up, the VNFManager connects to the VNF instance and pushes the required configuration via the
plug-in framework. The configuration of the network functions is carried over the management network as illustrated in the
architecture diagram below. Standard CommSP interfaces are used for service configuration, for example, in this use-case,
NETCONF. This platform provides open, vendor-neutral interfaces for service on-boarding and orchestration. This is achieved
via the plug-in framework. Examples of the plug-in modules can be found in the git repository. For example, users can refer to
the example for a plug-in module for HAProxy load balancer here and example driver for Ellis node in Project Clearwater IMS
here.

As mentioned above, service configuration is achieved via the plug-in framework. Based on the inputs provided for
management interface in the VNF descriptor, valid service configuration drivers are used for configuring the VNFs. Configure_
service method is implemented to push the initial configuration to the VNF instance via the NETCONF interface. This method
should be available in the plug-in that the user provides for the VNF configuration. Configure_service implementation in
the HAProxy and Ellis example drivers listed above can be referred to. An example YANG model is also provided. The core
components of TCS’ OpenVNFManager [OpenVNFM] solution are listed in Figure 4.

The configuration parameters, both compute and network, are coded in a YAML configuration file with which the Brocade
vEPC solution is on-boarded to perform further validations.

After a successful service onboard and provisioning, the service templates can be queried from the vnfsvc command line, the
installation steps for which are mentioned in Appendix B. The sample output is shown below:

Figure 4 . OpenVNFManager GitHub Screenshot

6

https://github.com/TCS-TelcoCloud/vnfmanager/blob/master/vnfmanager/drivers/haproxy_ncclient.py
https://github.com/TCS-TelcoCloud/vnfsvc_examples/tree/master/Enterprise/drivers
https://github.com/TCS-TelcoCloud/vnfsvc_examples/tree/master/Ims/drivers

White Paper | VOLTE Orchestration and Validation Reference Architecture

vnfsvc

This is the service orchestrator that performs the following functionality:

» Descriptor validation and on-boarding

Descriptor is parsed and each parameter of the network service descriptor is validated. The information elements of the
descriptor are detailed in the ETSI NFV MANO reference document. The NFV-MANO architectural framework identifies the
following data repositories:

* NS catalogue

* VNF catalogue

* NFV instances repository

* NFVI resources repository

Ideally, during on-boarding the new service is added to the network service catalogue. There are no updates to the instances
repositories. Upon successful validation, vnfsvc creates internal references for the service and the descriptors are added to
the data repository. A new vnfsvc database is created as part of setting up the service. Details are specified in the Appendix B.
The descriptors are added to the data repository of vnfsvc. As described in the setup procedure, the templates.json file should
be updated with the correct resource entries for NSD and VNFD. The service is now ready for instantiation.

» Network service instantiation and life-cycle management

The service instantiation request can be triggered via Heat or vnfsvc client or REST API. This triggers the creation of the VNF
instances via the OpenStack REST API. The networks are created first via the OpenStack Neutron API. After this, VNFs are
instantiated via the OpenStack Nova REST API.

Figure 5 . Service Initiation Block Diagram

7

White Paper | VOLTE Orchestration and Validation Reference Architecture

VNF Manager

The VNF Manager communicates with the virtual network functions over the management network. Communication between
the VNFManager and the virtual network functions/components can be over any standard management interface like
NETCONF. OpenVNFM is responsible for the following:

• Configuring VNFs over standard interfaces via plug-ins. Each VNF should provide an extension of the plug-in framework.
The OpenVNFManager communicates with the VNF instances via the extensions.

• For lifecycle management, the OpenVNFManager supports initialization of the VNF instances via the plug-in framework.
The initialization is automatically performed via the plug-in framework as soon as the VNF is up and running. The initial
configuration is captured in the VNF descriptor.

Heat

Heat is an OpenStack service that enables orchestration across various services. Clients can use Heat templates to create
services. The Heat engine parses templates and enables the required OpenStack resources to create the stack. Heat allows
CommSPs to extend the capabilities of the orchestration service by writing their own resource plug-ins. A resource plug-in
can extend a base resource class and implements relevant life cycle handler methods. The resource class is responsible for
managing the overall life cycle of the plug-in. It defines methods corresponding to the life cycle as well as the basic hooks
for plug-ins to handle the work of communicating with specific down-stream services. In our implementation, heat.engine.
resource.vnfsvc.vnfsvc.VNFSvcResource is the resource plug-in that extends the base resource class heat.engine.resource
resource and implements the required Heat life cycle handler methods. When the Heat engine determines it is time to create
a resource, it calls the create method of the applicable plug-in. This method is implemented in the resource base class, which
further calls a handle_create method defined in the plug-in class (heat.engine.resources.vnfsvc.vnf_template.Service), which is
responsible for using a specific service call.

The steps to set up the above three modules—Heat, vnfsvc, and VNFManager—are detailed in Appendix B. The required
source code and sample templates are provided in this document for reference. The latest version of this software, with
patches for updates, is available in the git repository at https://github.com/TCS-TelcoCloud. It is recommended to fetch the
code, examples, and sample descriptors from the git repository. Figure 6 illustrates the steps in the creation of a service via
Heat. Once the descriptor is on-boarded successfully by the administrator, the service can be instantiated by the user. In this
reference architecture, a Heat template is used to instantiate the service.

A sample Heat template is available in Appendix B for reference, and installation instructions are also provided. On triggering
the Heat orchestration, the request is first validated by the vnfsvc. A valid request is translated into Nova and Neutron API
calls, and the required VNF instances are created. This process is repeated until all the instances are created. Once the VNF
instance is up and running, the VNFManager configures the instance via the plug-in provided, which is a NETCONF driver in
this reference architecture. The configuration data is extracted from the descriptors.

Figure 6 . Using Heat to Instantiate a Service

8

https://github.com/TCS-TelcoCloud

White Paper | VOLTE Orchestration and Validation Reference Architecture

VOLTE Subscriber Attach Validation and Auto Scaling
To bring up the VOLTE, which is the system under test or test target, as a virtual network function (VNF), the configuration
parameters of the vVOLTE components need to be input to TCS NFV Concerto in the form of service descriptors. YAML is
one of the popular service descriptor types used. TCS NFV Concerto reads the configuration files and requests the service
orchestrator to deploy all the components as virtual machines by making REST calls to the virtual infrastructure manager
(VIM), a first step in a three step process. Once the system under test components are deployed as virtual machines on the
host infrastructure, TCS NFV Concerto configures them to work as a functional block. This process might involve configuring
the components in multiple iterations based on the complexity and the way the system is constructed. Once the above two
phases are completed, NFV Concerto introduces the test suite that is planned to be executed on the network service as a
whole.

NFV Concerto initiates VOLTE subscriber attaches using the UE components through the eNB provided by Ixia on the Brocade
EPC solution. As part of the validation process, as many as 100,000 subscriber attach requests are placed on the EPC network
service through multiple UE simulators. A policy configuration parameter is applied on to the network service in step one
of the above three step process, through which TCS NFV Concerto monitors the number of subscriber attach requests that
are placed on the EPC solution continuously throughout the lifetime of the network service, and notifies those events to
subscribers of the notification events. As soon as the number of subscriber attaches reaches the threshold value that is
configured as part of policy configuration, TCS NFV Concerto or the subscriber to the notification service can take an action.
The action defined in the policy for the verification suite discussed here is Auto Scale of Control Plane Slice component. Once
the auto scale is successful, TCS NFV Concerto configures the latest Control Plane Slice component to make it load ready.

The high level logical architecture of vEPC is as follows:

Appendix A: Abbreviation Glossary
This section gives the glossary of abbreviations and terms used in the document.

Figure 7 . vEPC logical architecture

ABBREVIATION DESCRIPTION

ACK Acknowledgement

API Application Programming Interface

BGCF Breakout Gateway Control Function

CLI Command Line Interface

CSCF Call Session Control Function

DC Data Center

DNS Domain Name Server/Service

eNB Evolved NodeB

GUI Graphical User Interface

HS Home Subscriber

HSS Home Subscriber Server

I-CSCF Integrating Call Session Control Function

KVM Kernel-based Virtual Machine

MAA Multimedia-Authorization-Answer

MANO Management and Orchestration

MAR Multimedia-Authorization-Request

ABBREVIATION DESCRIPTION
MME Mobility Management Entity

NETCONF Network Configuration Protocol

NFV Network Function Virtualization

NIC Network Interface Card

NS Network Service

NSD Network Service Descriptor

OVS Open vSwitch

P-CSCF Proxy Call Session Control Function

PGW Packet Data Network Gateway

PoC Proof Of Concept

SGW Software Gateway

UE User Equipment

VLAN Virtual LAN

VM Virtual Machine

VNF Virtualized Network Function

Ve-Vnfm A reference point between VNF and VNF

Vi-Vnfm A reference point between VIM and VNF

9

White Paper | VOLTE Orchestration and Validation Reference Architecture

Appendix B: Installation Instructions
Installation Instructions for vnfsvc

OpenVNFManager enables NFV service orchestration on OpenStack platform

git clone --recursive https://github.com/TCS-TelcoCloud/OpenVNFManager.git

It has 3 components:

» vnfsvc

» vnfManager

» python-vnfsvcclient

vnfsvc runs as a service [similar to OpenStack Neutron, etc.] on the OpenStack controller node.

To install, execute the following commands

$ git clone https://github.com/TCS-TelcoCloud/OpenVNFManager.git

$ python setup.py install

Post Installation verify the following to ensure successful installation [for Red Hat Linux/Centos7/Fedora]:

»»/etc/vnfsvc/ should contain

* api-paste.ini,

* rootwrap.conf,

* rootwrap.d,

* templates.json,

* vnfsvc.conf

»»/etc/vnfsvc/vnfsvc.conf should contain correct passwords and URLs for OpenStack services.

»» Create keystone endpoints using following commands:

$ keystone service-create --name vnfsvc --type vnfservice --description “VNF service”

$ keystone endpoint-create --region RegionOne --service-id <vnfsvc_service_id> --publicurl
“http://<your_ip>:9010” --internalurl “http://<your_ip>:9010” --adminurl http://<your_ip>:9010

$ keystone user-create --tenant-id <service_tenant_id> --name vnfsvc --pass <passsword>

$ keystone user-role-add --user-id <vnfsvc_user_id> --tenant-id <service_tenant_id> --role-id
<admin_role_id>

Execute the following commands for database configuration:

$ mysql> create database vnfsvc;

$ mysql> grant all privileges on vnfsvc.* to ‘vnfsvc’@’localhost’ identified by <database
password>;

$ mysql> grant all privileges on vnfsvc.* to ‘vnfsvc’@’%’ identified by <database password>;

$ vnfsvc-db-manage --config-file /etc/vnfsvc/vnfsvc.conf upgrade head

$ mkdir /var/log/vnfsvc

Run with the following command to start the server:

$ python /usr/bin/vnfsvc-server --config-file /etc/vnfsvc/vnfsvc.conf --log-file /var/log/

vnfsvc/server.log

Installation Instructions for VNFManager

VNFManager interfaces with VNFs and vnfsvc for configuration and lifecycle management of virtual network functions. In
the current setup, init is the only supported lifecycle event.

• Sample descriptors and explanations are provided in the vnfsvc_examples folder. It has:

10

https://github.com/TCS-TelcoCloud/OpenVNFManager.git

White Paper | VOLTE Orchestration and Validation Reference Architecture

»» NSD

»» VNFD

»» Heat template

»» README for running the installation

After installing vnfsvc, python-vnfsvcclient and Heat updates, run the setup as detailed in vnfsvc_examples.

• To install:

$ git clone https://github.com/TCS-TelcoCloud/vnfmanager.git

$ python setup.py install

$ git clone https://github.com/TCS-TelcoCloud/vnfmanager.git

$ python setup.py install

Installation Instructions for python-vnfsvcclient

This is a client for the vnfsvc API. Execute the below commands to install:

$ git clone https://github.com/TCS-TelcoCloud/OpenVNFManager.git

$ python setup.py install

Command-line API

• The complete description of the vnfsvc command usage can be found by running:

$ vnfsvc help

• Create, List, Show and Delete are currently supported. Usage of the operations supported can be found by appending “-h”:

$ vnfsvc service-create -h

Example command for the create operation is given below:

$ vnfsvc service-create --name webservice --qos Silver --networks mgmt-if=’fce9ee06-a6cd-
4405-ba0f-d8491dd38e2a’ --networks public=’b481ac9c-19bb-4216-97b5-25f5bd8be4ae’ --networks
private=’6458b56a-a6a2-42d5-8634-bdec253edf4e’ --router ‘router’ --subnets mgmt-if=’0c8ccdf2-
3808-462c-ab1e-1e1b621b0324’ --subnets public=’baf8bae2-3e4c-4b8b-bdb9-964fb1594203’ --subnets
private=’ad09ac00-c4d7-473f-94ec-2ad22153d1ca’

• Networks, subnets and routers given in the command should be created and corresponding UUIDs should be specified in the
 command-line.

• Command for the list operation is given below:

$ vnfsvc service-list <service-id>

• Command for the show operation is given below:

$ vnfsvc service-show <service-id>

• Command for the delete operation is given below:

$ vnfsvc service-delete <service-id>

• After installing vnfsvc, python-vnfsvcclient and Heat updates, run the setup as detailed in vnfsvc_examples.

11

White Paper | VOLTE Orchestration and Validation Reference Architecture

Installation Instructions for Heat

The Heat module is updated to enable orchestration of VNFs with vnfsvc. Details of the setup for Red Hat/Fedora/CentOS
platforms is as follows:

$ git clone https://github.com/TCS-TelcoCloud/OpenVNFManager.git

1. Copy heat/heat/common/config.py to
/usr/lib/python2.7/site-packages/heat/common/config.py

2. Copy heat/heat/engine/clients/__init__.py to
/usr/lib/python2.7/site-packages/heat/engine/clients/__init__.py

3. Copy heat/heat/engine/clients/os/vnfsvc.py to
/usr/lib/python2.7/site-packages/heat/engine/clients/os/vnfsvc.py

4. Copy heat/heat/engine/resource.py to
/usr/lib/python2.7/site-packages/heat/engine/resource.py

5. Copy heat/heat/engine/resources/vnfsvc/__init__.py to
/usr/lib/python2.7/site-packages/heat/engine/resources/vnfsvc/__init__.py

6. Copy heat/heat/engine/resources/vnfsvc/vnfsvc.py to
/usr/lib/python2.7/site-packages/heat/engine/resources/vnfsvc/vnfsvc.py

7. Copy heat/heat/engine/resources/vnfsvc/vnf_template.py to
/usr/lib/python2.7/site-packages/heat/engine/resources/vnfsvc/vnf_template.py

8. Update [heat.clients] section in entry_points.txt with
“vnfsvc = heat.engine.clients.os.vnfsvc:VnfsvcClientPlugin”

9. Update [clients_vnfsvc] in /etc/heat/heat.conf.

Examples

Sample NSD Template (in YAML) for IMS orchestration

12

nsd:
name: ims_template
vendor: ETSI
description: “Ims service”
version: “1.0”

monitoring-parameter:
param-id: “num-requests”
description: “Number of http requests
load balancer can handle”
endpoints:
apn-router-gateway:
end-point-id: Router-gateway
description: Router gateway

apn-webserver:
end-point-id: WebServer
vnf: vLB:pkt_in
description: web server

flavors:
Silver:
flavor-id: Silver
description: “Silver Service flavor”
monitoring:
param-id: “num-requests”

description: “Number of http requests
load balancer can handle”

assurance-params:
param-id: “num-requests”
value: 1000
member-vnfs:

• name: Ims
member-vdu-id: vHS

• name: Ims
member-vdu-id: vBono
dependency: Ims:vSprout

• name: Ims
member-vdu-id: vSprout
dependency:

- Ims:vHomer
- Ims:vHS

• name: Ims
member-vdu-id: vHomer

• name: Ims
member-vdu-id: vHomer

• name: Ims
member-vdu-id: vEllis
dependency:

- Ims:vHomer
- Ims:vHS

member-vlds:
mgmt-if:

White Paper | VOLTE Orchestration and Validation Reference Architecture

Sample VNFD (in YAML) for IMS

vnfd:
id: Ims
vendor: TCSL
description: “Ims service”
version: “1.0”
connection-point:
private:
name: private
description: “Private interface”
mgmt-if:
name: “mgmt-if”
description: “Management interface”

flavors:
Silver:
description: ‘Silver service flavor’
flavor-id: Silver
assurance-params:
param-id: “num-requests”
value: 100
vdus:
vHomer:
vdu-id: vHomer
implementation_artifact:
cfg_engine: puppet
deployment_artifact: ”/home/ccc/
userdata_ims.yaml”

num-instances: 1
lifecycle_events:
init: “”

vm-spec:
container_format: “bare”
disk_format: “qcow2”
image: “/home/XYZ/vnfd.img.tar.gz”
is_public: “True”
min_disk: 8
min_ram: 512
name: vHomer
password: tcs
username: “tcs”
storage: 8
memory:
total-memory-mb: 512
cpu:
num-vcpu: 1
network-interfaces:
pkt-in:
name: “pkt-in”
description: “Packet in interface”
connection-point-ref: “connection-
points/private”

management-interface:
name: “management-interface”
description: “Interface Used
for management interface”
connection-point-ref:
“connection-points/mgmt-if”
properties:
driver: ‘’

13

property: internal
member-vnfs:

Ims:vHomer:
connection-point: ‘mgmt-if’

Ims:vHS:

connection-point: ‘mgmt-if’

Ims:vEllis:

connection-point: ‘mgmt-if’

Ims:vSprout:

connection-point: ‘mgmt-if’

Ims:vBono:

connection-point: ‘mgmt-if’

private:

property: internal

member-vnfs:

Ims:vHomer:

connection-point: ‘private’

Ims:vHS:

connection-point: ‘private’

Ims:vEllis:

connection-point: ‘private’

Ims:vSprout:

connection-point: ‘private’

Ims:vBono:

connection-point: ‘private’

Router: apn-router-gateway

forwarding-graphs:

XYZAccess:

direction: bidirection

network-forwarding-path:

• name: apn-router-gateway

 type: endpoint

• name: Ims:vBono

 type: vnf

connection-point: private

White Paper | VOLTE Orchestration and Validation Reference Architecture

The above descriptor is derived from the ETSI MANO reference document. Some of the tags are described in the table below:

Examples are indicated for reference. For the latest version of source, configuration and updates please refer to the github
repository.

The following parameters should be updated as per the local settings before on-boarding the service.

NOTE: Either image or image-id has to be specified but not both.

IDENTIFIER DESCRIPTION

Dependency This identifier is used in the member-vnfs section of the network service descriptor. It lists the dependencies of a
given vdu and would mandate that those VNF instances be instantiated before this VDU.

Driver This identifier is used in the network-interfaces section of the VNFD. It describes the management driver required
to manage and configure the VNF instance via the management network (the TCS OpenVNFManager).

Endpoints This descriptor is used in the NSD to define the start and termination points for a service.

Forwarding-graphs This identifier is used in the NSD to identify a static path traversal within this service chain. This enables the
orchestrator to block or allow traffic between the virtual network function instances.

Flavors This identifier is a list with the possible flavors to be supported for this service. Each flavor offers a particular
quality of service and configuration. However the entry points and the forwarding graph remain the same and
hence are defined globally within the network service descriptor.

14

IDENTIFIER DESCRIPTION

deployment_artifact Specify path of the userdata file

driver Specify the class path to the specific driver which is placed under vnfmanager/drivers

image Specify path of the image

image-id Specifiy image uuid present in glance

vm-spec The following child tags should be updated:

min_ram: RAM to be allocated to the VNF

min_disk: Disk to be allocated to the VNF

username: User ID with pseudo privileges to enable NETCONF configuration on the VNF

password: Password for the above user ID

storage: Any additional storage to be provisioned above minimum disk

White Paper | VOLTE Orchestration and Validation Reference Architecture

Sample Heat Template

heat_template_version: 2013-05-23

description: A simple template which creates
a device template and a device

parameters:
mgmt-if:
type:string
description : management Subnet
default : 30.0.0.0/24

private:

type: string
description: Packet-IN Subnet
default : 20.0.0.0/24

name:

type: string
description: Name of the service
default : Ims

router:

type: string
description: Router name
default : VNF_Router

quality_of_service:
type: string
description: Quality of service
default : Silver

resources:
router_n:
type: OS::Neutron::Router
properties:
name:VNF_Router

network_m:
type: OS::Neutron::Net
properties: {name:management}

subnet_m:
type: OS::Neutron::Subnet
properties:
name : management _subnet
network _id: {Ref: network_m}
cidr: { get_param: mgmt-if }
ip_version: 4

network_private:
type: OS::Neutron::Net
properties: {name: private}

subnet_private:
type: OS::Neutron::Subnet
properties:
name : private_subnet
network _id: {Ref: network_private}
cidr: { get_param: private }
ip_version: 4

router_intrfc_m:
type: OS::Neutron::RouterInterface

properties:
router_id: {Ref: router_n}
subnet_id: {Ref: subnet_m}

service:

type: OS::VNFSvc::Service
properties:
name:{get_param: name}
description: VNF Service quality_of_
service: {get_param: quality_
of_ service attributes: {‘networks’:{‘mgmt-
if’: {get_ attr: [subnet_m, network_id]},
‘private’:{get_ attr: [subnet_private,
network_id]}}, ‘router’ : {get_param :
router},’subnets’:{‘mgmt-if’:
{“Ref”: “subnet_m”}, ‘private’:{“Ref”:
“subnet_private”}, ‘router-iface’:{Ref:
router_intrfc_m}}}

zopier_network:
type: OS::Neutron::Net
properties:
name: user_network_1
depends_on: service

zopier_subnet:

type: OS::Neutron::Subnet
properties:
name: user_subnet_1
network_id: { Ref: zopier_network }
cidr: 80.0.0.0/24

my_router_interface:

type: OS::Neutron::RouterInterface
properties:
router_id: {Ref: router_n}
subnet_id: {Ref: zopier_subnet}

my_instance:

type: OS::Nova::Server
properties:
name: zopier_1
image: 2a2eb7af-1989-4865-a8d4-038f36fca5e2
flavor: m1.medium
networks: [network:Ref:zopier_network}

zopier_network_1:

type: OS::Neutron::Net

properties:

name: user_network_2

depends_on: service

zopier_subnet_1:

type: OS::Neutron::Subnet
properties:
name: user_subnet_2
network_id:{Ref: zopier_network_1}
cidr: 90.0.0.0/24

15

White Paper | VOLTE Orchestration and Validation Reference Architecture

16

References

IDENTIFIER SOURCE

[NFV WP] Network Function Virtualization White paper - Network Operator Perspectives on Industry Progress
(http://portal.etsi.org/NFV/NFV_White_Paper2.pdf)

[NFV E2E Arch] Network Function Virtualization Reference Architecture
(http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf)

[IMS] Project Clearwater (http://www.projectclearwater.org/)

[OpenVNFManager] TCS’ OpenVNFManager (https://github.com/TCS-TelcoCloud/OpenVNFManager)

[OpenStack] http://www.openstack.org

 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration. No computer system can be absolutely secure . Check with your system manufacturer or retailer or learn more at intel.com.

 Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost
savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

 © Copyright 2017. This White Paper is a joint copyright of Tata Consultancy Services Limited and Intel Corporation. All Rights Reserved.
 Intel, Intel, the Intel logo, and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
 TCS NFV Concerto and Global Network Delivery Model are trademarks of Tata Consultancy Services.
 *Other names and brands may be claimed as the property of others. 0217/DO/H09/PDF Please Recycle 335605-001US

my_router_interface_1:

type: OS::Neutron::RouterInterface
properties:
router_id:{Ref: router_n}
subnet_id:{Ref: zopier_subnet_1}

my_instance_w1:

type: OS::Nova::Server
properties:
name: zopier_2
image: 2a2eb7af-1989-4865-a8d4-038f36fca5e2
flavor: m1.medium
networks:[network:{Ref: zopier_net work_1}]

http://portal.etsi.org/NFV/NFV_White_Paper2.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf
http://www.projectclearwater.org/
https://github.com/TCS-TelcoCloud/OpenVNFManager
http://www.openstack.org
http://intel.com

