
1

User Guide

Service Mesh - TCP/IP eBPF Bypass in
Istio and Envoy with Intel® Xeon® Scalable
Processors

Authors
Luyao Zhong

Xu Yizhou

Ruijing Guo

Ramesh Masavarapu

1 Introduction
Istio implements service mesh by injecting a sidecar proxy for each pod. This side car will
redirect all traffic from or to the original pod app to the sidecar, which may lead to
degradation of network performance, since there will be additional packets traversing the
TCP/IP stack both on client and server side. This paper outlines an approach to bypass the
TCP/IP stack between the app and envoy and between envoy deployments on the same
host.

Linux has introduced eBPF (extended Berkeley Packet Filter) - a technology that allows safe
mini programs to be attached to various low-level hooks in the kernel. Focusing on
networking, eBPF can be utilized to communicate between Envoy side cars on the same host
through socket rather than traversing the same TCP/IP networking stack multiple times. In a
host, we could have two pods (each having a microservice + Envoy side car proxy) that are
communicating through eBPF sockets rather than multiple kernel TCP/IP networking stacks.
This is very similar to having two processes communicate to each other using a UNIX domain
socket while applications remain unchanged.

Traversing the TCP/IP networking stack introduces latencies. This solution aims to bypass
TCP/IP stack on the same host to accelerate Istio/Envoy implementation of service mesh
and reduce latencies. The additional benefit is that this solution benefits Kubernetes
Networking without service mesh because it bypasses the Linux Kernel Networking Stack for
communication between two microservices that reside on the same host.

The solution is available on 3rd Gen Intel® Xeon® Scalable processors and later.

This document is part of the Network Transformation Experience Kits.

https://networkbuilders.intel.com/intel-technologies/experience-kits

User Guide | Service Mesh - TCP/IP eBPF Bypass in Istio and Envoy with Intel® Xeon® Scalable Processors

 2

Table of Contents
1 Introduction.. 1

1.1 Terminology .. 3
1.2 Reference Documentation .. 3

2 Overview .. 3

3 System Requirements .. 4

4 Build Image .. 4

5 Deployment Details .. 4
5.1 Deploy TCP/IP Bypass via Docker .. 5
5.2 Deploy TCP/IP Bypass in Kubernetes Cluster ... 5

6 Results .. 6

7 Summary .. 6

Figures
Figure 1 . Bypass TCP/IP Stack using eBPF ... 3
Figure 2. Deployment of eBPF .. 4

Tables
Table 1. Terminology .. 3
Table 2. Reference Documents .. 3
Table 3: System Requirements ... 4

Document Revision History

Revision Date Description
001 December 2022 Initial release.

002 January 2023 Revised for public distribution on Intel Network Builders.

User Guide | Service Mesh - TCP/IP eBPF Bypass in Istio and Envoy with Intel® Xeon® Scalable Processors

 3

1.1 Terminology

Table 1. Terminology

Abbreviation Description
eBPF extended Berkeley Packet Filter

TCP/IP Transmission Control Protocol/Internet Protocol

1.2 Reference Documentation

Table 2. Reference Documents

Reference Source
Service Mesh – Istio and Envoy Optimizations for Intel® Xeon®
Scalable Processors Solution Brief

https://networkbuilders.intel.com/solutionslibrary/service-mesh-istio-
envoy-optimizations-intel-xeon-sp-solution-brief

Service Mesh - Crypto Accelerations in Istio and Envoy with
Intel® Xeon® Scalable Processors User Guide

https://networkbuilders.intel.com/solutionslibrary/service-mesh-crypto-
accelerations-istio-envoy-intel-xeon-sp-user-guide

Service Mesh - Envoy Regular Expression Matching
Acceleration with Hyperscan User Guide

https://networkbuilders.intel.com/solutionslibrary/service-envoy-regular-
expression-matching-acceleration-hyperscan-user-guide

Service Mesh – mTLS Key Management in Istio and Envoy for
Intel® Xeon® Scalable Processors User Guide

https://networkbuilders.intel.com/solutionslibrary/service-mesh-mtls-key-
mgmt-istio-envoy-intel-xeon-sp-user-guide

2 Overview
This solution aims to bypass TCP/IP stack on the same host to accelerate service mesh. If two pods are located on two different
nodes, the envoy-to-envoy still goes through the TCP/IP stack.

Figure 1 . Bypass TCP/IP Stack using eBPF

https://networkbuilders.intel.com/solutionslibrary/service-mesh-istio-envoy-optimizations-intel-xeon-sp-solution-brief
https://networkbuilders.intel.com/solutionslibrary/service-mesh-istio-envoy-optimizations-intel-xeon-sp-solution-brief
https://networkbuilders.intel.com/solutionslibrary/service-mesh-crypto-accelerations-istio-envoy-intel-xeon-sp-user-guide
https://networkbuilders.intel.com/solutionslibrary/service-mesh-crypto-accelerations-istio-envoy-intel-xeon-sp-user-guide
https://networkbuilders.intel.com/solutionslibrary/service-envoy-regular-expression-matching-acceleration-hyperscan-user-guide
https://networkbuilders.intel.com/solutionslibrary/service-envoy-regular-expression-matching-acceleration-hyperscan-user-guide
https://networkbuilders.intel.com/solutionslibrary/service-mesh-mtls-key-mgmt-istio-envoy-intel-xeon-sp-user-guide
https://networkbuilders.intel.com/solutionslibrary/service-mesh-mtls-key-mgmt-istio-envoy-intel-xeon-sp-user-guide

User Guide | Service Mesh - TCP/IP eBPF Bypass in Istio and Envoy with Intel® Xeon® Scalable Processors

 4

This solution is totally independent, which:
• Does not require changes to the Linux kernel
• Does not require changes to Istio and Envoy (>= v1.10)
• Does not require changes to the CNI plugin

3 System Requirements
The system requirements for 3rd Gen Intel® Xeon® Scalable processor and 4th Gen Intel® Xeon® Scalable processor are given
below:

Table 3: System Requirements

 3rd Gen Intel® Xeon® Scalable
processor

4th Gen Intel® Xeon® Scalable
processor

CPU Cores per socket 36 56

Total Sockets 2 2

Intel Turbo Boost Enabled Enabled

Operating System Ubuntu 20.04 Ubuntu 20.04

Linux Kernel 5.4.0-74.generic or greater 5.4.0-74.generic or greater

Kubernetes 1.24.4 1.24.4

CNI Calico 3.24.3 Calico 3.24.3

4 Build Image
If you want to build the image based on latest code, you can download source code from the “main” branch:

$ git clone https://github.com/intel/istio-tcpip-bypass.git

Then, build Docker image:

$ docker build --network=host -t bpf_bypass_tcpip.

5 Deployment Details

Figure 2. Deployment of eBPF

https://github.com/intel/istio-tcpip-bypass.git

User Guide | Service Mesh - TCP/IP eBPF Bypass in Istio and Envoy with Intel® Xeon® Scalable Processors

 5

5.1 Deploy TCP/IP Bypass via Docker
1. Deploy the docker image.

$ docker run --mount type=bind,source=/sys/fs,target=/sys/fs,bind-propagation=rshared --net=host --
privileged --name tcpip-bypass bpf_bypass_tcpip

5.2 Deploy TCP/IP Bypass in Kubernetes Cluster

Deploy the solution in the Kubernetes Cluster.

$ kubectl apply -f - <<EOF

apiVersion: apps/v1

kind: DaemonSet

metadata:

 name: bypass-tcpip

 namespace: kube-system

 labels:

 k8s-app: bypass-tcpip

spec:

 selector:

 matchLabels:

 name: bypass-tcpip

 template:

 metadata:

 labels:

 name: bypass-tcpip

 spec:

 tolerations:

 # this toleration is to have the daemonset runnable on master nodes

 # remove it if your masters can't run pods

 - key: node-role.kubernetes.io/master

 effect: NoSchedule

 containers:

 - name: bypass-tcpip

 image: intel/istio-tcpip-bypass:latest

 imagePullPolicy: IfNotPresent

 securityContext:

 privileged: true

 volumeMounts:

 - name: sysfs

 mountPath: /sys/fs

 mountPropagation: Bidirectional

 volumes:

 - name: sysfs

 hostPath:

 path: /sys/fs

EOF

User Guide | Service Mesh - TCP/IP eBPF Bypass in Istio and Envoy with Intel® Xeon® Scalable Processors

 6

6 Results
Deploying the TCP/IP eBPF Bypass solution results in lower latencies between microservices that deploy Istio/Envoy
as a Service Mesh Environment on the 3rd Gen Intel® Xeon® Scalable processors and 4th Gen Intel® Xeon® Scalable
processors. The additional benefit is that this solution benefits Kubernetes Networking without Service Mesh because
it bypasses the Linux Kernel Networking Stack for communication between two microservices that reside on the same
host.

7 Summary
TCP/IP eBPF Bypass solution helps in reducing latency between microservices that deploy Istio/Envoy as a service
mesh deployment. The solution is available at: https://github.com/intel/istio-tcpip-bypass.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

 0123/DN/WIT/PDF 761925-002US

https://github.com/intel/istio-tcpip-bypass
http://www.intel.com/PerformanceIndex

	1 Introduction
	1.1 Terminology
	1.2 Reference Documentation

	2 Overview
	3 System Requirements
	4 Build Image
	5 Deployment Details
	5.1 Deploy TCP/IP Bypass via Docker
	5.2 Deploy TCP/IP Bypass in Kubernetes Cluster

	6 Results
	7 Summary

