
 1

User Guide

Service Mesh - Crypto Accelerations in
Istio and Envoy with Intel® Xeon® Scalable
Processors

Authors
Ismo Puustinen

Mikko Ylinen

Ramesh Masavarapu

1 Introduction
Transport Layer Security (TLS) uses both asymmetric and symmetric cryptography.
Handshakes are done using asymmetric public key algorithms (RSA and ECDSA). During the
handshake, both ends agree on a key. The key is then used to encrypt/decrypt the
communication using symmetric cryptography (AES).

Cryptographic operations can be slow. RSA is known to be computationally expensive. This is
a known issue in edge ingress gateways, which handles thousands of new connections per
second.

Cryptographic operations, both symmetric (AES) and asymmetric (RSA), can be
accelerated using Intel® QuickAssist Technology (Intel® QAT) or Intel® Advanced Vector
Extensions 512 (Intel® AVX-512) instructions. Intel® QAT is a special hardware accelerator,
which is visible to the operating system as a PCI device. When using Intel® AVX-512 for
acceleration, the acceleration happens by using SIMD (Single Instruction, Multiple Data)
instructions. This is the reason that the acceleration is often referred to as “Multi Buffer”. In
Envoy-OpenSSL, both acceleration modes are available, but in Envoy-BoringSSL (which, is
the default in Istio) only asymmetric encryption acceleration can be used. This document
only describes Envoy with BoringSSL. Optimizations on Envoy with OpenSSL is currently not
supported and is expected to be supported in 2023.

The Intel AVX-512 instructions are available in the recent 3rd Gen Intel® Xeon® Scalable
processors and newer. The Intel QuickAssist Technology (Intel QAT) are only available on
4th Gen Intel® Xeon® Scalable processors.

This document is part of the Network Transformation Experience Kits.

https://networkbuilders.intel.com/intel-technologies/experience-kits

User Guide | Service Mesh - Crypto Accelerations in Istio and Envoy with Intel® Xeon® Scalable Processors

 2

Table of Contents
1 Introduction.. 1

1.1 Terminology .. 3
1.2 Reference Documentation .. 3

2 Design ... 3
2.1 Intel® QuickAssist Technology .. 3
2.2 Intel® Advanced Vector Extensions 512 ... 5

2.2.1 Asymmetric cryptography .. 5
2.2.2 Symmetric cryptography ... 7

3 Deployment .. 7
3.1 Intel® QAT Deployment ... 7

3.1.1 Hardware Setup ... 7
3.1.2 Container Environment Setup ...8
3.1.3 Kubernetes ..8
3.1.4 Istio ...8
3.1.5 Envoy ...8

3.2 Intel® AVX-512 Deployment ... 10
3.2.1 Istio ... 10
3.2.2 Envoy .. 11

4 Summary .. 12

Appendix 1: Debugging ISTIO QAT Issues ... 13

Appendix 2: Debugging Istio CryptoMB Issues .. 14

Figures
Figure 1. Synchronous TLS handshakes; Handshake function blocks until handshake is completed. .. 4
Figure 2. Asynchronous TLS handshakes; TLS library returns immediately during handshake function and a callback is

invoked after the handshake is completed. ... 4
Figure 3. Envoy with Intel QATLib ... 5
Figure 4. Private key provider handshake flow .. 5
Figure 5. Synchronous TLS handshakes; Handshake function blocks until handshake is completed. ... 6
Figure 6. Asynchronous TLS handshakes; TLS library returns immediately during handshake function and a call-back is

invoked after the handshake is completed. .. 6
Figure 7. Intel® Distribution of Istio Grafana Dashboard ... 12

Tables
Table 1. Terminology .. 3
Table 2. Reference Documents .. 3
Table 3. Speedup of vAES (times the baseline performance) on Intel® Xeon® 8380 Platinum @ 2.30GHz 7

Document Revision History

Revision Date Description
001 January 2023 Initial release.

User Guide | Service Mesh - Crypto Accelerations in Istio and Envoy with Intel® Xeon® Scalable Processors

 3

1.1 Terminology

Table 1. Terminology

Abbreviation Description
CPU Central processing unit

ECDSA Elliptic Curve Digital Signature Algorithm

Intel® AVX-512 Intel® Advanced Vector Extensions 512

Intel® QAT Intel® QuickAssist Technology

PCI Peripheral Component Interconnect

RSA Rivest–Shamir–Adleman – A public-key cryptosystem

SIMD Single Instruction Multiple Data

TCP/IP Transmission Control Protocol/Internet Protocol

TLS Transport Layer Security

1.2 Reference Documentation

Table 2. Reference Documents

Reference Source
CryptoMB - TLS handshake acceleration for Istio https://istio.io/latest/blog/2022/cryptomb-privatekeyprovider/

Service Mesh – Istio and Envoy Optimizations for Intel® Xeon®
Scalable Processors Solution Brief

https://networkbuilders.intel.com/solutionslibrary/service-mesh-istio-
envoy-optimizations-intel-xeon-sp-solution-brief

Service Mesh - Envoy Regular Expression Matching
Acceleration with Hyperscan User Guide

https://networkbuilders.intel.com/solutionslibrary/service-envoy-regular-
expression-matching-acceleration-hyperscan-user-guide

Service Mesh - TCP/IP eBPF Bypass in Istio and Envoy with
Intel® Xeon® Scalable Processors User Guide

https://networkbuilders.intel.com/solutionslibrary/service-mesh-tcp-ip-
bypass-istio-envoy-intel-xeon-sp-user-guide

Service Mesh – mTLS Key Management in Istio and Envoy for
Intel® Xeon® Scalable Processors User Guide

https://networkbuilders.intel.com/solutionslibrary/service-mesh-mtls-key-
mgmt-istio-envoy-intel-xeon-sp-user-guide

2 Design
2.1 Intel® QuickAssist Technology

4th Gen Intel Xeon Scalable processor has 4xxx-series Intel QAT devices included on the Silicon. Support for the 4xxx Intel QAT
devices is included in the mainline kernel and Intel® qatlib library (https://github.com/intel/qatlib). The support for finding and
exposing Intel QAT devices to Envoy containers in kubernetes is provided by the Intel QAT device plugin
(https://github.com/intel/intel-device-plugins-for-kubernetes/blob/main/cmd/qat_plugin/README.md).

Any earlier Intel QAT devices (such as those which may be present in previous generations of Intel® Xeon® Scalable processor)
are not supported by qatlib. Since qatlib does not recognize those devices, they cannot be used by Envoy.

By default, the handshakes in Envoy are synchronous, that is, the handshake function blocks the Envoy worker thread execution
until the handshake has been completed. This will not work in a scheme such as Intel QAT acceleration, because the Intel QAT
performance benefit comes from the fact that Envoy is ready to do more processing while the QAT device handles the
cryptographic operations in parallel. If the Intel QAT calls were synchronous, there will not be any performance benefit. To
facilitate asynchronous processing, Envoy has an extension type called ”private key provider”, which performs the following two
functions:

• Allows running custom code for private key sign and decrypt operations

• Allows asynchronous handshakes

https://istio.io/latest/blog/2022/cryptomb-privatekeyprovider/
https://networkbuilders.intel.com/solutionslibrary/service-mesh-istio-envoy-optimizations-intel-xeon-sp-solution-brief
https://networkbuilders.intel.com/solutionslibrary/service-mesh-istio-envoy-optimizations-intel-xeon-sp-solution-brief
https://networkbuilders.intel.com/solutionslibrary/service-envoy-regular-expression-matching-acceleration-hyperscan-user-guide
https://networkbuilders.intel.com/solutionslibrary/service-envoy-regular-expression-matching-acceleration-hyperscan-user-guide
https://networkbuilders.intel.com/solutionslibrary/service-mesh-tcp-ip-bypass-istio-envoy-intel-xeon-sp-user-guide
https://networkbuilders.intel.com/solutionslibrary/service-mesh-tcp-ip-bypass-istio-envoy-intel-xeon-sp-user-guide
https://networkbuilders.intel.com/solutionslibrary/service-mesh-mtls-key-mgmt-istio-envoy-intel-xeon-sp-user-guide
https://networkbuilders.intel.com/solutionslibrary/service-mesh-mtls-key-mgmt-istio-envoy-intel-xeon-sp-user-guide
https://github.com/intel/qatlib
https://github.com/intel/intel-device-plugins-for-kubernetes/blob/main/cmd/qat_plugin/README.md

User Guide | Service Mesh - Crypto Accelerations in Istio and Envoy with Intel® Xeon® Scalable Processors

 4

Figure 1. Synchronous TLS handshakes; Handshake function blocks until handshake is completed.

Hence, the Intel QAT private key provider was implemented to allow for Intel QAT handshake processing. When the private key
provider is loaded, the handshake function call returns immediately and a callback is evoked when the handshake is ready to be
completed, that is, the cryptographic operation is ready.

Figure 2. Asynchronous TLS handshakes; TLS library returns immediately during handshake function and a callback is invoked
after the handshake is completed.

Internally, the Intel QAT private key provider first queries the hardware. Based on this, it sets up load balancing between the Intel
QAT instances that it can find. The load balancing uses a round-robin principle. The cryptographic operations are evenly
distributed between the Intel QAT instances and every Intel QAT instance has a corresponding polling thread set up to poll
operation completion from the Intel QAT instance.

When the private key provider receives a cryptographic request, it first transforms it to fit the Intel QAT internal data structures
and submits it to an instance for processing. The polling thread is then notified to start querying the instance periodically. When
the Intel QAT endpoint is ready, an internal callback function is called, which then notifies the worker thread over an internal IPC
mechanism. The worker thread asks the upper layer to redo the handshake, which instantly returns with the calculated
cryptographic value.

The Intel QAT private key provider polling threads have one parameter, which is user configurable that has a performance trade-
off: the poll delay.

Having a small value there improves latency because the polling thread notices that the processing is complete sooner.
However, a small value might lead to huge CPU utilization because the polling thread runs too often, and throughput may
decrease.

User Guide | Service Mesh - Crypto Accelerations in Istio and Envoy with Intel® Xeon® Scalable Processors

 5

Figure 3. Envoy with Intel QATLib

2.2 Intel® Advanced Vector Extensions 512

2.2.1 Asymmetric cryptography
The CryptoMb private key provider uses Intel AVX-512 multi-buffer instructions for accelerating handshakes. The Intel AVX-512
instructions are present starting with the 3rd Gen Intel Xeon Scalable processors, and they do not require any special hardware
enabling. Running Envoy on a suitable platform and enabling the CryptoMb private key provider in the Envoy configuration is
sufficient. The multi-buffer instructions gather several RSA operations into a shared buffer. When the 8-slot buffer is full or when
a timer expires, the RSA operations are processed using SIMD (single instruction, multiple data) instructions, which provide
greater throughput than processing the RSA operations separately. The downside of this approach is the potentially increased
latency because operations may need to wait in the buffer before the processing can be done.

 Intel® Integrated Performance Primitives Cryptography (Intel® IPP Cryptography) has a sub-library CryptoMB for
cryptographic operation acceleration. See https://github.com/intel/ipp-crypto/tree/develop/sources/ippcp/crypto_mb for the
source code. The MultiBuffer instructions operate on a buffer of eight RSA operations. The RSA operations gathered in the
buffer are then processed simultaneously.

Figure 4. Private key provider handshake flow

https://github.com/intel/ipp-crypto/tree/develop/sources/ippcp/crypto_mb

User Guide | Service Mesh - Crypto Accelerations in Istio and Envoy with Intel® Xeon® Scalable Processors

 6

By default, the handshakes in Envoy are synchronous, that is, the handshake function blocks the Envoy worker thread execution
until the handshake is completed. This will not work in a scheme such as Intel AVX-512 MultiBuffer acceleration, where the Envoy
worker thread is supposed to add more operations to the queue. To facilitate this, Envoy has an extension type called ”private
key providers”, which performs the following two functions:

• Allows running custom code for private key sign and decrypt operations

• Allows asynchronous handshakes

Figure 5. Synchronous TLS handshakes; Handshake function blocks until handshake is completed.

Hence, the CryptoMb private key provider was implemented to allow for Intel AVX-512 handshake processing. When the private
key provider is loaded, the handshake function call returns immediately and a call-back is evoked when the handshake is ready to
be completed, meaning that the cryptographic operation is ready.

Figure 6. Asynchronous TLS handshakes; TLS library returns immediately during handshake function and a call-back is invoked
after the handshake is completed.

There is an 8-slot RSA operations buffer for each Envoy worker thread. The number of Envoy worker threads normally
corresponds to the number of CPU cores on which Envoy is executing. For example, in a system with ten worker threads, there
are in total 80 ”slots” for RSA operations, and Envoy fairly distributes incoming connections between the worker threads. This
means that if there are many worker threads and if connections come in on a slower rate, the system will see increased latencies
because the buffers fill up slowly.

To keep the latencies tolerable, the CryptoMb private key provider needs to be configured with a poll delay. The poll delay
defines the duration of the timer that triggers the processing of CryptoMb in case the buffers haven’t filled up before the timer
expires. The timer is started when the first handshake in the queue is received and reset during the processing of the queue. If
the queue size hits the maximum value (eight queued operations) the SIMD operation can be executed without waiting for the
timer to trigger. Shorter poll delay values lead to shorter latencies at low loads because the timer triggers more quickly for
partially filled queues. Longer poll delay values lead to more simultaneously handled handshakes (if the load is sufficient).
Determining a good poll delay value can be challenging but according to testing done so far, a 10 ms poll delay value can work
well as a compromise between good performance at high loads and short latencies at low loads. Changing the poll delay value
from 10 ms might lead to better or worse performance but it is a good idea to keep it in a similar range (i.e., a short duration of
milliseconds).

CryptoMB has an Envoy histogram statistic to help with seeing the frequency of processed queue sizes. The more occurrences
of larger queue sizes can be seen in the statistics, the more efficiently CryptoMB is working by processing more operations
simultaneously. However, the processed queue sizes depend heavily on the incoming load and no conclusions be made by
observing only the queue size statistics.

User Guide | Service Mesh - Crypto Accelerations in Istio and Envoy with Intel® Xeon® Scalable Processors

 7

2.2.2 Symmetric cryptography

In addition to public key cryptography, AES symmetric cryptography can also be accelerated. Intel® Managed Distribution of
Istio* Service Mesh have support for vector AES (vAES) multi-buffer operations up until release 22.03. The feature is removed
from release 22.06 onwards.

The vAES patch set adds transparent acceleration to BoringSSL using Intel AVX-512 instructions. The acceleration is
transparent in the sense that no configuration is needed. If the processor supports the necessary Intel AVX-512 operations, the
speedup is automatic. The performance improvement depends on the processor model, the key size, and the buffer length
(amount of data to be encrypted at once).

Table 3. Speedup of vAES (times the baseline performance) on Intel® Xeon® 8380 Platinum @ 2.30GHz

 Payload in bytes

16 256 1350 8192 16384

AES-128-GCM
1.08 1.15 1.31 1.95 2.07

AES-256-
GCM 1.08 1.14 1.29 2.05 2.14

No hyperthreading, measured by `bssl speed`. Smallest performance increase is on short payload lengths, and the biggest
performance increase is on 16k buffers with a 256-bit AES key.

The vAES BoringSSL patch set is available from https://boringssl-review.googlesource.com/c/boringssl/+/48745. The patch
set is not merged in mainline BoringSSL and it is not expected to be in the near future.

3 Deployment
3.1 Intel® QAT Deployment

Intel® QAT is a special hardware accelerator, which is visible to the operating system as a PCI device. The Envoy Intel QAT
private key provider expects that the Intel QAT devices are available using the regular Linux kernel driver, present in Linux kernel
from version 5.15 onward. The Intel QAT endpoint is exposed to Envoy via an SR-IOV VF device, which is the standard Intel QAT
container deployment method used, for example, in Kubernetes via Intel QAT device plugin.

3.1.1 Hardware Setup

Note that to enable the QAT private key provider, you must have suitable hardware on which the Envoy proxy is running. The
hardware needs to be set up roughly as follows (this may require changes depending on your Linux kernel version and
distribution):

1. Make sure that VT-d is enabled in BIOS to get IOMMU support. Make sure that IOMMU is enabled in the kernel
command line.

2. Make sure that you have QAT firmware installed from the Linux Firmware repository
(https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git). Make sure QAT_4XXX driver is enabled
in your kernel as a module. The driver has been in the kernel since 5.11 but tested only on 5.17 onwards. Load the driver
(modprobe qat_4xxx).

3. Load the vfio-pci driver (modprobe vfio-pci).

4. Choose a QAT physical endpoint, which has cryptography support. The in-tree driver has half of the physical endpoints
reserved for cryptography and half for compression. This will become configurable in future kernel versions. You can
check the features from debugfs (grep ServicesEnabled
/sys/kernel/debug/qat_4xxx_0000\:6b\:00.0/dev_cfg for endpoint qat_4xxx_0000:6b:00.0). If you
have ServicesEnabled = dc it means that the physical endpoint is configured for compression, and if you have
ServicesEnabled = cy it means that the endpoint is configured for cryptography. If in doubt, enable all endpoints.

5. Create SRIOV instances out of the physical endpoint. You can echo 16 to the physical endpoint’s sriov_numfs file (echo
16 > /sys/devices/pci0000\:6b/0000\:6b\:00.0/sriov_numvfs).

6. Bind suitable sriov_numfs devices to the vfio-pci driver. You can either do this manually or use the convenient dpdk-
devbind.py script (python3 /home/ipuustin/dpdk-devbind.py -b vfio-pci 0000:6b:01.4 and so on
for all the SRIOV devices). The script is available from https://github.com/DPDK/dpdk/blob/main/usertools/dpdk-

https://boringssl-review.googlesource.com/c/boringssl/+/48745
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git
https://github.com/DPDK/dpdk/blob/main/usertools/dpdk-devbind.py

User Guide | Service Mesh - Crypto Accelerations in Istio and Envoy with Intel® Xeon® Scalable Processors

 8

devbind.py. You can alternatively load the vfio-pci driver in such a way that it binds the QAT VFs directly (modprobe
vfio-pci ids=8086:4941). In case the vfio-pci driver is built into the kernel, you can specify this on the kernel
command line (vfio-pci.ids).

7. After this is performed, you should see a bunch of devices in /dev/vfio/. Optional: you can change their permissions
in such a way that the Envoy process running in container can use them (chmod a+rw /dev/vfio/*). If you do not
do this, you need to tune your container runtime’s device node re-creation parameters as explained below.

After the hardware is set up, it is recommended to test whether QAT works at this point.

3.1.2 Container Environment Setup

After the hardware starts working, set up the container environment. You often need to increase the amount of lockable IPC
memory, which can be granted to the containers. For example, if you are using containerd, add this file as
/etc/systemd/system/containerd.service.d/memlock.conf:

[Service]

LimitMEMLOCK=16777216

You can also set up containerd in such a way that the QAT device recreation happens with suitable security context (to allow
non-root users access to the VFIO device files). You will need to set RunAsUser or RunAsGroup in your pod’s security context
and add this to the containerd configuration:

[plugins."io.containerd.grpc.v1.cri"]

 device_ownership_from_security_context = true

Then, restart containerd: systemctl daemon-reload && systemctl restart containerd

If the Envoy proxy is running on a host, which does not have Intel QAT cryptography VF support, any attempt to enable the Intel
QAT private key provider (either during startup or dynamically over SDS (Secret Discovery Service)) will fail.

3.1.3 Kubernetes

The Kubernetes device plugin can be used to find QAT resources and setup VFIO devices inside the container. Read the Intel
QAT device plugin documentation here https://github.com/intel/intel-device-plugins-for-
kubernetes/blob/main/cmd/qat_plugin/README.md. Note that you can skip the device binding step in hardware setup if you do
this. The Intel QAT device plugin will bind the Intel QAT VFs properly to the vfio-pci driver.

When you add Intel QAT resources to the Envoy/Istio pods, make sure that you are requesting the crypto resource.

resources:

 requests:

 qat.intel.com/cy: ‘1’

Note that if you increase the number of resources, which are allocated to the container you can potentially get more
performance, because the Intel QAT private key provider will automatically set up load balancing between the available Intel
QAT instances. If the crypto VFIO devices are made from different physical Intel QAT endpoints there is a speedup potential.
But, if the VFIO devices come from the same physical Intel QAT endpoint, there will be no performance increase.

3.1.4 Istio

The latest Istio yaml-file can be found here: https://intel.github.io/istio/README.html.

3.1.5 Envoy

To test Envoy Intel QAT, perform the following steps on a 4th Gen Intel Xeon scalable processor:

1. Generate a key-certificate pair. Depending on your setup, you may also need to run chmod a+r key.pem to the
resulting key file (due to potentially different Docker user UIDs).

$ openssl req -x509 -new -batch -newkey rsa:2048 -nodes -subj '/CN=localhost' -keyout
key.pem -out cert.pem

https://github.com/DPDK/dpdk/blob/main/usertools/dpdk-devbind.py
https://github.com/intel/intel-device-plugins-for-kubernetes/blob/main/cmd/qat_plugin/README.md
https://github.com/intel/intel-device-plugins-for-kubernetes/blob/main/cmd/qat_plugin/README.md
https://intel.github.io/istio/README.html

User Guide | Service Mesh - Crypto Accelerations in Istio and Envoy with Intel® Xeon® Scalable Processors

 9

2. Create an Envoy configuration file. The configuration below returns HTTP code “200” for every incoming request. Save
it to the name “conf.yaml”.

static_resources:

 listeners:

 - address:

 socket_address:

 address: 0.0.0.0

 port_value: 9000

 filter_chains:

 transport_socket:

 name: envoy.transport_sockets.tls

 typed_config:

 "@type":
type.googleapis.com/envoy.extensions.transport_sockets.tls.v3.DownstreamTlsContext

 common_tls_context:

 tls_certificates:

 certificate_chain: { "filename": "/etc/ssl/cert.pem" }

 private_key_provider:

 provider_name: qat

 typed_config:

 "@type":
"type.googleapis.com/envoy.extensions.private_key_providers.qat.v3alpha.QATPrivateKeyMethod
Config"

 poll_delay: 0.005s

 private_key: { "filename": "/etc/ssl/key.pem" }

 filters:

 - name: envoy.http_connection_manager

 typed_config:

 "@type":
type.googleapis.com/envoy.extensions.filters.network.http_connection_manager.v3.HttpConnect
ionManager

 codec_type: auto

 stat_prefix: ingress_http

 route_config:

 name: local_route

 virtual_hosts:

 - name: backend

 domains:

 - "*"

 routes:

 - match: { prefix: / }

 direct_response: { status: 200 }

 http_filters:

 - name: envoy.filters.http.router

 typed_config: {}

admin:

 access_log_path: "/dev/null"

 address:

 socket_address:

 address: 0.0.0.0

 port_value: 9001

User Guide | Service Mesh - Crypto Accelerations in Istio and Envoy with Intel® Xeon® Scalable Processors

 10

3. Start Envoy Istio image and mount the configuration file, key, and certificate to the container. This command also
exposes port 9000 from the container to the host. You need to add to the command line –device=/dev/vfio/<number>,
where <number> is a QAT crypto VFIO instance.

$ docker run -ti --rm -p 9000:9000 –device=/dev/vfio/vfio -v
$(pwd)/conf.yaml:/tmp/conf.yaml -v $(pwd)/cert.pem:/etc/ssl/cert.pem -v
$(pwd)/key.pem:/etc/ssl/key.pem --entrypoint=envoy intel/proxyv2:latest -c
/tmp/conf.yaml

4. From outside of the container, access Envoy port 9000 with curl to verify that everything works:

$ curl --cacert $(pwd)/cert.pem https://localhost:9000 -v

3.2 Intel® AVX-512 Deployment

Note that to enable the CryptoMb private key provider, you must have suitable hardware on which the Envoy proxy is running. If
the Envoy proxy is running on a host, which does not have Intel AVX-512 support, any attempt to enable the CryptoMb private
key provider (either during startup or dynamically over SDS) will fail.

3.2.1 Istio

The latest Istio yaml-file for cryptomb can be found here. A test setup using k6, Istio, and a Fortio server.

Below are instructions to view the queue size statistics when using Istio. When using the commands, the istio-ingressgateway
pod name (istio-ingressgateway-7c86d77d76-qrfbx) must be replaced with the name of the pod used in your setup.

The following command can be used to view the queue size statistics of cryptomb using the prometheus format (works since
release 22.03):

The output contains cumulative buckets, which have upper bounds, e.g., le=”2” has an upper bound of 2 (le stands for less than
or equal to but because of a bug it is only less than). All values in buckets with smaller upper bounds are included in buckets with
higher upper bounds (e.g., the bucket with le=”2” always has a value <= le=”3”). The le=”2” bucket value tells the frequency of
when the queue size is equal to 1. The le=”3” bucket value tells the frequency of when the queue size was equal to 1 or 2. By
subtracting the value of bucket le=”2” from le=”3” the frequency of queue size 2 can be deducted and so on.

The following command can be used to view the queue size statistics of cryptomb using an Envoy statistics format (does not
work in release 22.03 but should work in a later release):

The output contains disjoint buckets, which have upper bounds (e.g., B2 has an upper bound of 2, the upper bounds work exactly
like the Prometheus output explained above). However, since the buckets are disjoint, they don’t contain values from other
buckets (e.g., B9 would only contain the amount of queue size 8 occurrences).

https://intel.github.io/istio/README.html

User Guide | Service Mesh - Crypto Accelerations in Istio and Envoy with Intel® Xeon® Scalable Processors

 11

3.2.2 Envoy

An example configuration for running Envoy with Docker can be found here: https://intel.github.io/istio/README.html. The
directory contains scripts for running Envoy with different configs. A load generator script can also be found to test the Envoy
configuration.

The CryptoMb private key provider has been part of the Envoy contrib image since Envoy version 1.20. In order to test Envoy
CryptoMb, you need to perform the following on a 3rd Gen Intel Xeon Scalable processor or later:

1. Generate a key-certificate pair. Depending on your setup, you may also need to run chmod a+r key.pem to the resulting
key file (due to potentially different Docker user UIDs).

 $ openssl req -x509 -new -batch -newkey rsa:2048 -nodes -subj '/CN=localhost' -keyout key.pem -
out cert.pem

2. Create an Envoy configuration file. The configuration below just returns HTTP code “200” for every incoming request.
Save it with the name “conf.yaml”.

static_resources:

  listeners:
  - address:
      socket_address:
        address: 0.0.0.0
        port_value: 9000
    filter_chains:
      transport_socket:
        name: envoy.transport_sockets.tls
        typed_config:
          "@type":
type.googleapis.com/envoy.extensions.transport_sockets.tls.v3.DownstreamTlsContext

          common_tls_context:
            tls_certificates:
              certificate_chain: { "filename": "/etc/ssl/cert.pem" }
              private_key_provider:
                provider_name: cryptomb
                typed_config:
                  "@type":
"type.googleapis.com/envoy.extensions.private_key_providers.cryptomb.v3alpha.CryptoMbPrivate
KeyMethodConfig"

                  poll_delay: 0.01s
                  private_key: { "filename": "/etc/ssl/key.pem" }
      filters:
      - name: envoy.http_connection_manager
        typed_config:
          "@type":
type.googleapis.com/envoy.extensions.filters.network.http_connection_manager.v3.HttpConnecti
onManager

          codec_type: auto
          stat_prefix: ingress_http
          route_config:
            name: local_route
            virtual_hosts:
            - name: backend
              domains:
              - "*"
              routes:
              - match: { prefix: / }
                direct_response: { status: 200 }
          http_filters:

https://intel.github.io/istio/README.html

User Guide | Service Mesh - Crypto Accelerations in Istio and Envoy with Intel® Xeon® Scalable Processors

 12

          - name: envoy.filters.http.router
            typed_config: {}
admin:

  access_log_path: "/dev/null"
  address:
    socket_address:
      address: 0.0.0.0
      port_value: 9001

3. Start the Envoy contrib image and mount the configuration file, key, and certificate to the container. This command also
exposes port 9000 from the container to the host.

$ docker run -ti --rm -p 9000:9000 -v $(pwd)/conf.yaml:/tmp/conf.yaml -v
$(pwd)/cert.pem:/etc/ssl/cert.pem -v $(pwd)/key.pem:/etc/ssl/key.pem envoyproxy/envoy-
contrib:v1.21.2 -c /tmp/conf.yaml

4. From outside of the container, access Envoy port 9000 with curl to verify that everything works:

 $ curl --cacert $(pwd)/cert.pem https://localhost:9000 –v

Figure 7. Intel® Distribution of Istio Grafana Dashboard

4 Summary
Service mesh deployments that use Istio with Envoy cause latency and performance challenges due to the nature of the sidecar
implementation in Envoy. Intel has addressed this performance and latency challenges by utilizing Intel® Xeon® CPU features
such as Intel QuickAssist Technology (Intel QAT). The performance benefits on 4th Gen Intel® Xeon® Scalable processor are:

• Up to 1.6x CPU cycles saved, up to 2.37x throughput/RPS improvement and up to 1.95x latency reduction using Intel
QAT in a 1C-16C scaling experiment on the 4th Gen Intel® Xeon® Scalable processor

• Using 1x Intel QAT, for 8 core and 16 cores can save 42% and 60% respectively on the 4th Gen Intel Xeon Scalable
processor CPU cycles

• Using 2x Intel QAT, for 8 core and 16 cores can save 18% and 49% for 2x QAT on the 4th Gen Intel Xeon Scalable
processor CPU cycles

More on the performance charts are described in the “Service Mesh – Istio and Envoy Optimizations for Intel® Xeon® Scalable
Processors” Solution Brief.

User Guide | Service Mesh - Crypto Accelerations in Istio and Envoy with Intel® Xeon® Scalable Processors

 13

Appendix 1: Debugging ISTIO QAT Issues
Common errors and solutions:

1. Envoy does not start. Check dmesg and console.

a. If the device file cannot be found, probably there is no resource assigned to the container.

b. If the device file cannot be opened, the container probably does not have read and write access to it.

c. If there are memory errors, check that memlock ulimit in the container is high enough. Also try adding
IPC_LOCK capability. Alternatively IOMMU support may be missing.

d. If there are no errors in dmesg, probably the right Intel QAT instance type is missing (dc instead of cy).

2. The default value for the maximum number of devices in Kubernetes QAT device plugin is 16. If you want to have more
devices managed by Kubernetes, add the argument “-max-num-devices=xxx” in the daemonset configuration.

3. If you are using Ubuntu with the apparmor policy set, containers may not be allowed to open QAT devices. You can use
this kustomization yaml file to deploy the Intel QAT device plugin.

Sometimes you do not see any performance benefit with the Intel QAT private key provider. Please check the following to verify
that your setup is correct:

1. Are you using an RSA key? Intel QAT acceleration is enabled only for RSA keys (for now).

2. Try changing the poll delay. 5ms is a good starting point.

3. Do you get reasonable performance numbers in your benchmarking without acceleration? Envoy can handle without
acceleration (very roughly) 500-1500 RSA 2k handshakes per core. If you are seeing less, you probably have a
bottleneck elsewhere in your benchmarking setup. If you are seeing much more, it’s likely that your test setup is in fact
reusing SSL session keys and the handshakes are not performing new RSA operations at all. Many HTTPs load
generators have an option to configure this. For the same reason you can’t expect much performance increase from
sidecar TLS acceleration, because TLS handshakes are not very common there.

4. Is the Envoy listening socket really configured to use Intel QAT? You can dump the configuration with these commands:
 kubectl port-forward -n istio-system istio-ingressgateway-change-me 15000 &
 curl localhost:15000/config_dump

5. Are you running Envoy on an isolated CPUset? Envoy performance is sensitive to cache issues, and the best
performance is had when the CPUset is separate from other payloads in the system. You can use the Kubernetes CPU
manager static policy to achieve this.

6. Make sure that the number of Envoy worker threads is equal to the CPUset size. You can use Envoy’s --cpuset-threads
parameter or set the concurrency parameter manually.

7. Read the official Envoy benchmarking checklist and apply the steps (as applicable):
https://www.envoyproxy.io/docs/envoy/latest/faq/performance/how_to_benchmark_envoy

https://github.com/intel/intel-device-plugins-for-kubernetes/blob/main/deployments/qat_plugin/overlays/apparmor_unconfined/kustomization.yaml
https://www.envoyproxy.io/docs/envoy/latest/faq/performance/how_to_benchmark_envoy

User Guide | Service Mesh - Crypto Accelerations in Istio and Envoy with Intel® Xeon® Scalable Processors

 14

Appendix 2: Debugging Istio CryptoMB Issues
Sometimes you do not see any performance benefit with the CryptoMb private key provider. Please check the following to verify
that your setup is correct:

1. Are you using an RSA key? CryptoMb acceleration is enabled only for RSA keys. ECDSA support is disabled due to
BoringSSL internal restrictions.

2. Do you get reasonable performance numbers in your benchmarking without acceleration? Envoy can handle without
acceleration (very roughly) 500-1500 RSA 2k handshakes per core. If you are seeing less, you probably have a
bottleneck elsewhere in your benchmarking setup. If you are seeing much more, it’s likely that your test setup is in fact
reusing SSL session keys and the handshakes are not performing new RSA operations at all. Many HTTPs load
generators have an option to configure this.

3. Is the Envoy listening socket really configured to use CryptoMb? You can dump the configuration with these
commands:
kubectl port-forward -n istio-system istio-ingressgateway-change-me 15000 &
curl localhost:15000/config_dump

4. Are you running Envoy on an isolated CPUset? Envoy performance is sensitive to cache issues, and the best
performance is had when the CPUset is separate from other payloads in the system. You can use Kubernetes CPU
manager static policy to achieve this.

5. Make sure that the number of Envoy worker threads is equal to the CPUset size. You can use the Envoy’s cpuset-
threads parameter or set the concurrency parameter manually.

Read the official Envoy benchmarking checklist and apply the steps there (as applicable):
https://www.envoyproxy.io/docs/envoy/latest/faq/performance/how_to_benchmark_envoy

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

 0123/DN/WIT/PDF 763503-001US

https://www.envoyproxy.io/docs/envoy/latest/faq/performance/how_to_benchmark_envoy
http://www.intel.com/PerformanceIndex

	1 Introduction
	1.1 Terminology
	1.2 Reference Documentation

	2 Design
	2.1 Intel® QuickAssist Technology
	2.2 Intel® Advanced Vector Extensions 512
	2.2.1 Asymmetric cryptography
	2.2.2 Symmetric cryptography

	3 Deployment
	3.1 Intel® QAT Deployment
	3.1.1 Hardware Setup
	3.1.2 Container Environment Setup
	3.1.3 Kubernetes
	3.1.4 Istio
	3.1.5 Envoy

	3.2 Intel® AVX-512 Deployment
	3.2.1 Istio
	3.2.2 Envoy

	4 Summary
	Appendix 1: Debugging ISTIO QAT Issues
	Appendix 2: Debugging Istio CryptoMB Issues

