
1. Introduction
As mobile operators are launching 5G services, they are uncovering a few key
challenges, including:

a.	Accelerating 5G service deployments with better customer experience leading
to increasing revenue, growth and market share.

b.	Increased carbon emissions and energy consumption not just due to more
bandwidth consumption but also the resulting additional costs for carbon offsets
as well as regulation from governments and policy makers globally.

Thus, operators are considering the adoption of power saving 5G network
infrastructure from access to core that has been designed to require less energy,
in addition to deploying edge computing infrastructure that can reduce the total
amount of data traversing the network by running applications at the edge. In edge
networks, data can be processed and stored nearer to the end user and devices,
rather than relying on data centers that can be hundreds of miles away. This could
lead to a significant reduction in energy consumption related to network transport,
while also benefiting from low latency that edge provides. So, to resolve the
operator’s challenge, this paper describes tests of power saving edge computing
capabilities on SKT’s 5G MEC servers by applying Intel reference software for
dynamic power control and Intel reference software for edge energy savings, a
feature that is available on 3rd Generation Intel® Xeon® Scalable processors and
Intel® Ethernet Adaptor E810.

Object of Test
This document describes the results of testing the SKT 5G MEC software running
on Intel® architecture server boards, including benchmarking data and instructions
on how to replicate the tests. Telecom equipment manufacturers (TEMs) and
independent software vendors (ISVs) can use the implementation guidelines from
this work to optimize and further develop power saving solutions for energy wise
high-performance edge computing services.

Test objectives were:

•	 Demonstrate microservices based application (VM, PoD) power measurement
using the telemetry plugin for Intel reference software for dynamic power control
and Intel reference software for edge energy savings to obtain data and using
AI inference for power prediction.

•	 Show a dynamic reduction in microservices applications (VM, PoD) and
Kubernetes node level power saving through CPU P-state control over a 24-hour
time frame and during specific off-peak time frames.

•	 Validate inter-operability between Intel reference software for dynamic power
control and Intel reference software for edge energy savings by testing multiple
application containers on SKT 5G MEC.

Authors

SK Telecom
Moonyoung, Aaron Chung

Mincheol, Daniel Park

Jian, Li

Keunhyun, Kim

Intel Corporation
Wooram, Alex Kim

Jayden, Lee

Kannan Babu, Ramia

Bhavik, Dhandhalya

Palaniappan, Ramanathan

S, Deepak

Sankar, Chokkalingam

Pinkesh, Shah

Power Saving Edge Computing
on SKT 5G MEC

White Paper

1

1.1 Overview of SKT 5G MEC 2.0
SKT 5G MEC2.0 is a cloud software stack for edge
environment that includes SKT EdgeStack. SKT 5G MEC 2.0
features services that are distributed from multiple sites that
are on a smaller scale than a central data center. SKT
EdgeStack is designed with a lightweight cloud architecture,
which provides compact control nodes. However, SKT
EdgeStack supports large scale deployment and carrier grade
high availability for enterprise level cloud services. SKT
EdgeStack provides virtual machines (VM) and managed
Kubernetes to support both NFV and container workloads.
They are managed by a single Kubernetes technology that
utilizes KubeVirt and cluster-API technologies, which require
less maintenance. VM and container workloads are deployed
in separate nodes called VM zone and container zone. The
data plane of each virtual resource is processed in a different
way. SKT EdgeStack provides ETSI MEC MM3 Interface as
a north bound interface. SKT EdgeStack is following the ETSI
MEC Reference Architecture. Figure 1 shows this architecture
with SKT EdgeStack capabilities highlighted in the blue area.
These include the MEC platform manager, virtualization
infrastructure manager, and data plane in virtualization
infrastructure.

SKT EdgeStack uses various open source software, with
Kubernetes used as a base system framework. All the
components are containerized and running as pods. VMs are
provisioned as pods, to provide them with more flexibility in
a lightweight way that is in accordance with how SKT uses
KubeVirt technology. To provide managed Kubernetes, the
Cluster API is used, which is a Cloud Native Computing
Foundation (CNCF) standard API that creates and manages
Kubernetes clusters. Cluster API is used for other third-party
cloud solutions such as OpenShift and VMware, and they are
integrated with SKT EdgeStack without additional
development using the Cluster API. As the network data plane
OVS is used, and SKT proprietary SDN controller based on
ONOS framework is used to compute and push flow rules to
control the VM and container network flows. Prometheus and
Elastic Search are used together as the monitoring system,
with a SKT proprietary dashboard system that leverages
Grafana and Kibana (see Figures 1, 2).

White Paper | Power Saving Edge Computing on SKT 5G MEC

Figure 1. ETSI MEC Reference Architecture and SKT EdgeStack

2

White Paper | Power Saving Edge Computing on SKT 5G MEC

Figure 2. SKT 5G MEC 2.0 Architecture

No Feature Description

1 Large scale VM deployment and life
cycle management

Using KubeVirt technology, VMs are created and managed by pods much more
elastically.

2 Large scale virtual resource
monitoring

Up to 500 hosts and all of VMs and containers inside the hosts are monitored, and all of
the metrics are provided through ElasticSearch DB.

3 High performance virtual overlay
network

Nearly line rate speed is delivered even when overlay network using SDN technology is
present.

4 High performance underlay network Provides line-rate network speed using Single Root IO Virtualization (SR-IOV)
technology.

5 Shared block storage All the VM and container data is stored securely in three node clustered storage
service.

6 Various guest OS support including
Windows OS

Support various Linux distribution including Ubuntu, CentOS, Fedora and Rocky. Also
support to provision Windows OS as a guest OS.

7 Integrated system log management All systems logs are collected and stored in a central place.

8 MEC application HA/load balance as
a service

Load balance as a service is provided and can be used for MEC application high
availability.

9 Distributed firewall (security group) VMs are protected by security group service.

10 Scalable lightweight edge gateway MEC service is accessed via edge gateway from external network, even without deploying
additional nodes.

11 Direct attached storage Disk volume can be created and managed separately from VMs.

12 Public cloud integration AWS EC2 can be created and managed from SKT EdgeStack.

13 Managed Kubernetes Kubernetes cluster is easily provided on VM and managed by SKT EdgeStack.

14 High performance container network Container network performance has been tested to be similar to Kubernetes on bare
metal.

15 VMware TKG integration VMware TKG cluster can be created and managed from SKT EdgeStack.

Table 1. SKT 5G MEC 2.0 Features

SKT EdgeStack provides the following main features (See Table 1).

3

White Paper | Power Saving Edge Computing on SKT 5G MEC

1.2 Key Technology

1.2.1 Intel Reference Software for Dynamic
Power Control
This software provides the ability to minimize application
power using CPU core frequency (P-state) management
with the help of an AI model for applications that are running
on edge clusters. It controls in near real-time the frequency
of all the cores in a cluster worker node on which the
applications of interest are running. The objective is to use
the least amount of energy to process packets under given
loss rate condition. The software includes:

•	 Telemetry plugin: Delivers system and application
metrics (traffic rate, packet drop, core frequency)

•	 Frequency predictor: Dynamically predicts core
frequency based on traffic volume while keeping zero
packet drop with AI model (reinforcement learning)

•	 P-state controller sets target core frequency

1.2.2 Intel Reference Software Components
for Edge Energy Savings
This software is a set of cloud native components that can
be installed in a running MEC stack based on Kubernetes
resulting in power savings at both the application level and
the cluster level. The current list of components are as
follows:

•	 Intel AI-Estimator and Exporter – Used for measuring
application/container level power measurement.

•	 Intel AI-P-state Controller, Node Frequency Manager
– Used in conjunction with a given application for
operating in optimal power.

•	 Intel Node Auto Scalar, Edge Provider – Used for cluster
level power savings.

Another way edge network deployments are different from
cloud or data center deployment is that remote edge
locations can have limits on available power. Total available
power and availability of green energy are important
considerations. Optimizing the available power is important

because it impacts the battery life of green power sources
or reduces energy expenses. The rest results listed in this
paper will show that Intel’s reference software components
for edge energy savings, when deployed in an edge cluster,
are engineered to provide 20%-30% daily power savings
for the operation of the cluster (details are in sections 3.2
and 3.3).

2. Test Setup

2.1 Device Under Test Configuration
Figures 3 and 4 show the structure of the system architecture
used in the tests as well as the data plane traffic flow. The
overall hardware and software composition of the DUT and
test application configuration is shown in Table 2, Listing 1.
The system was configured to use application power
measurement and CPU P-states control in conjunction with
the SKT EdgeStack. To measure microservice application
power measurement and node level power saving, Intel
reference software for edge energy savings is installed on
each controller and worker node as below (see Figure 3) and
each component includes:

•	 AI-Estimator: Provides real time application power
metering.

•	 AI-P-state Controller: Provides core frequency change
per application.

•	 Edge Provider: Node insertion and deletion from K8S
cluster.

•	 Node Auto-Scaler: Monitors and controls the node for
longer C6 (low power state) residence.

This configuration can then provide:

•	 Power measurement of microservice based VM or PoD.

•	 AI backed P-state control per application.

•	 Scheduling enhancement for K8S node level to take
advantage of C-state benefits.

•	 Closed loop management based on power objectives.

To see more details about the test application (VM) under
test system configuration see Addendum 1.

Telemetry Plugin-Exporter

Controller

Cluster Frequency Manager

AI-Estimator AI-P-State Controller Edge Provider Node Auto-Scaler

Kubernetes/KubeVirt
Ubuntu 20.04 LTS

Intel® Xeon® 6338N

Telemetry Plugin-Exporter

Worker

Cluster Frequency Manager

Kubernetes/KubeVirt
Ubuntu 20.04 LTS

Intel® Xeon® 6338N

Figure 3. Test Systems Architectures

4

White Paper | Power Saving Edge Computing on SKT 5G MEC

Figure 4. Data Plane Traffic Flow Under Test System

Category Description

Processor

Product Intel® Xeon® Gold 6338N processors

Frequency 2.2 to 3.5GHz

Cores per processor 32

Memory

DIMM slots per processor 8 channels per processor

Capacity 512 GB DRAM (32 GB x16 DIMM)

Memory speed 2666 MHz (MT/s), DDR4

SGX EPC 64 GB per socket

Network Intel NIC 1x Intel® Ethernet Controller 10G X550T

Storage Intel
1x Intel S4610 960 GB SSD
INTEL_SSDSC2KG96

2RU Server Vendor Intel M50CYP WHITLEY

Host OS Vendor/version Ubuntu 20.04.2 LTS 5.4.0-126-generic

BIOS Vendor/version
Intel Corporation
Version: SE5C6200.86B.0022.D64.2105220049
Release Date: 05/22/2021

microcode Vendor/version Intel Corporation microcode: 0xd000363

Kubernetes Vendor/version Opensource, v1.23.7 (client and server)

kubevirt Vendor/version Opensource, v0.54.0

SKT EdgeStack Vendor/version V2.6

Other SW Open Source Intelligent Traffic Management (ITM), vflow 0.9.0, wrk

Tested By Intel

Test Date October 2022

Table 2. Device Under Test Configuration

5

White Paper | Power Saving Edge Computing on SKT 5G MEC

2.1.1 Application Power Measurement
Figure 5 shows logical structure of application power
measurement inside a typical cloud native Kubernetes
cluster; it has two important components:

•	 Exporter: A telemetry plugin on worker node: running
as a daemon-set, responsible to collect application and
system level metrics (such as cycles, uncore/core freq
etc.) then, creates Prometheus registry and pushes all
the metrics there. Exporter metric is cgroup_usage.

•	 AI-Estimator: Power Prediction Application with AI
Inference, runs on the controller node, pulls data from
Prometheus. Estimator uses collected system and
application-level metrics and feeds those data to deep
learning model which runs inside the estimator. The
model predicts power, and the estimator creates its own
Prometheus registry to push the predicted power back
to Prometheus. Estimator metric is predicted_power.

Apart from the Estimator and Exporter components, there
is one more offline component called Analyzer, which is a
part of the AI training phase. The Analyzer component runs
in servers powered by either Intel® Xeon® Scalable
processors / Intel® Xeon® D processors. In these tests, the

aim of using Analyzer is to collect data for each SKU from a
CPU generation and train for the specific SKU for accurate
power prediction. There were three main phases:

•	 Data preparation: Different types of applications were
considered for model training with different workload
scenarios.

•	 Model training: Requires two inputs: input labeled data
and expected output for training.

•	 One data source is data that was prepared through the
analyzer and training test scenarios. The SKT EdgeStack
test scenarios also provide per application power as
expected output for use in model training. To derive per
application power, system power consumption levels were
calculated when no applications were running. Next, one
instance of an application was deployed, and system
power was measured. The difference provides per
application power that is used for training. System and
application-level metrics were collected for both scenario
(before and after application deployment) to find co-
relation between metrics and power.

•	 Model Evaluation: On unseen data, model has achieved
error < 5 watts mean absolute error.

Intel M50CYP
Telemetry Plugin-Exporter Cluster Frequency Manager

AI-Estimator

AI-P-State Controller

Controller node

Worker node1
Prometheus

PoD

DL Model

Node Cluster

Telemetry Plugin-Exporter

Worker node2

PoDTelemetry Plugin-Exporter

Edge Provider Node Auto-Scaler

System & App.
Metrics

Neural NW

App. Predicted
Power

Controller

Figure 5. Application Power Measurement High-Level Architecture

2.1.2 Application Power Saving Through
P-state Control
Application power minimization by core frequency
(P-state) management using an AI model for applications
that are running on Kubernetes clusters. The AI model
controls in near real-time, frequency of all the cores on
which the applications of interest are running in a cluster
worker node. The objective is to use the least amount of
energy to process packets under given loss rate condition.
Figure 6 shows the application power saving through P-state
control setup. The application frequency control has four
important components:

•	 Exporter (Telegraf Daemon-set) – Expor ter is a
telemetry plugin that is responsible for collecting
application and system metrics (such as application
traffic rate, dropped packets, uncore/core freq etc.).
Exporter creates a Prometheus registry and pushes all
the metrics into Prometheus, which stores the data in a
database. The exporter metric is application traffic,
packet drop, core frequency, socket power, and platform
power.

6

White Paper | Power Saving Edge Computing on SKT 5G MEC

•	 P-state Controller (nfm_Server) – This component is
on a worker node to control CPU P-states. It uses the user
space governor for the core frequency control. It listens
for requests from the frequency predictor to change core
frequency. Once the request is received to set a particular
frequency, it uses a Linux file system-based interface to
set desired core frequency.

•	 Frequency Predictor (inference by ReInforce Model) –
The Frequency Predictor uses data from Prometheus,
which runs on the control-plane node and uses collected

system and application-level metrics which are
processed by the deep learning model running inside the
predictor. The model predicts the lowest core frequency
for which zero loss traffic rate can be maintained. It sends
information about required frequency to P-state control
component on the worker node.

•	 Grafana Dashboard – The application core frequency is
displayed on this dashboard panel using Prometheus
query language (promQL).

Figure 6. Application Power Saving Through P-state Control

Apart from the component discussed above, there is one
more offline component called AI analytics training
framework that is needed for the training phase. The training
component shown in Figure 7 can run on any server or control-
plane node. It also requires the worker node to collect
telemetry data required for training. The training phase has
three main phases.

•	 Data Preparation - In this phase, the required training
data is prepared. Core frequency, application traffic rate,
and packet drop rate are required. These data are
received from the worker node and stored in the database
for the neural network to use for training.

•	 Model Training - Model training requires generating
traffic with different rates, changing frequency, and
recording packet loss. We generate traffic and send it to

worker node where system and application metrics are
captured and sent to the database. Traffic generation
starts at between 36Kpps to 91Kpps and the cycle
repeats. The model adjusts core frequencies and learns
with traffic rate, packet drop rate, and frequency value.
The cycle continues for as many iterations as defined in
the configuration file.

•	 Model Evaluation - At the end of the training cycles
specified in the configuration file, the recorded training
data is available for examination. Initially there will be
packets dropped as the model is learning, but toward the
end of the learning cycle there should not be any packet
drops for all possible traffic rates. If there is no packet
drop for the whole cycle, the model is considered trained
and ready for deployment.

7

White Paper | Power Saving Edge Computing on SKT 5G MEC

Application
Metrics

System
Metrics

Data
Preparation

Training/
Validation

Data

Training
Neural

Network

Kubernetes Minion
Node

Telemetry
Plugin

(Exporter)

P-state
Controller

Deploy
Trained

AI Model

Packet Loss 0
after training

iterations?

Yes
Traffic

Generator

No

1

2

5

3

4

3

6

7

8

9

Figure 7. Model Training Flow, from Data Preparation, Training, and Deployment Ready Model

Telemetry Plugin-Exporter

Controller

Cluster Frequency Manager

AI-Estimator AI-P-State Controller
Edge Provider

Node Auto-Scaler

Controller node

Worker node1
HPA

Auto-Scaler

Replication
Controller

Worker node2

Present/predicted
metric(Power/CPU)

1. Scale Down

PoD

PoD

2. Remove PoD
3. Watch node Util.

Node Cluster

4. Select under-utilized node

5. Removes node
from cluster, then
put to sleep 6. Node transition to sleep

by enabling CPU c-state

Cluster Frequency Manager

Cluster Frequency Manager

Figure 8. Node Auto-Scaler High-Level Architecture

2.1.3 Cluster Power Savings Through Adaptive Node Scaler
One set of tests measured cluster-level node power savings using an adaptive node scaler approach in combination with
edge provider green edge building blocks. Adaptive node scaler saves power by using appropriate policies that enable the
Kubernetes scheduler to keep cores in a node in C6 states for a longer time by de-scheduling and not-scheduling new pods
(see Figure 8).

8

White Paper | Power Saving Edge Computing on SKT 5G MEC

The components of the auto-scaler tests include:

•	 Edge provider: Mainly responsible for bringing in and
taking out a node from cluster as per direction from node
auto-scaler.

•	 Node auto-scaler: Monitors the metrics and upon
matching a policy it will try to free up a node or instructs
the edge provider to add a node back into the cluster. It
can migrate the workloads, if possible, to remove the
least loaded nodes from the cluster. This enabled the
workloads to migrate across nodes and help in an
effective scaling out of the nodes from the cluster. The
following declarative intents can prevent the pods from
migrating:

-	 Local storage (hostpath etc.).

-	 Node selector.

-	 Explicit pod specification: Pods that are not backed
by a controller object.

-	 Kube-system pods that are not run on the node by
default.

-	 Pods with restrictive PodDisruptionBudget.

•	 Visualization through Grafana Dashboard: Telegraf can
be run as a system daemon to collect platform power
telemetry from all nodes including those that are scaled
out by the auto-scaler. Application power is added to the
Grafana dashboard panel using Prometheus query
language (promQL).

•	 Kubernetes scheduler configuration: The kube-scheduler
c o n f i g u ra t i o n h a s b e e n m o d i f i e d t o u s e t h e
“MostAllocated” scoring strategy. This enables the pods
to be packed in the available nodes and thereby other
nodes can be kept in low power state as much as possible
(see Addendum 2).

•	 K8S deployment: The node auto-scaler is deployed using
helm at local directory. The Edge provider can be run as
a privileged pod or as a daemon. In the test setup it is run
as a daemon on the control plane node.

To see the auto-scalar and Kubernetes configuration, please
see Addendum 2.

2.2 Test Procedure

2.2.1 Application Power Measurement
To demonstrate the application power consumption
measurement, the Intel Intelligent Traffic Management
(ITM) sample application was deployed. This application
takes live stream coming from traffic cameras and predicts
the total number of vehicles passing the camera as well as
how many of those vehicles would become involved in a
collision. ITM was converted to a docker compose-based
deployment inside a VM running on the worker node of the
cluster.

Traffic was initiated from the video streamer capability in
traffic generation server (see Figure 4) which is outside the
MEC cluster using the Real Time Streaming Protocol (RTSP)
to stream video that was then fed to the Analytics component
running inside ITM. The data then went to the Measurement
function and was visualized through Grafana dashboard. The
application power consumption was displayed in Grafana
dashboard panel using promQL. To access the stream feed,
we used url 'rtsp://<trex_ip>:8554', “stream fps ~ 32 fps
(resolution 1920x1080).” The ITM Analytic component
performed per frame car detection, collision detection,
pedestrian detection and social distancing between
pedestrians. To see how to program the power measurement
see the code listed in Addendum 3.

2.2.2 Application Power Saving Through
P-state Control
To demonstrate the power reduction capability of P-state
control, Intel set up a test that deployed the open source
vFlow application on the worker node as shown in Figure 6.
This application decodes NetFlow data from a stream of
UDP packets that are generated by the vFlow traffic
generator. The tests included running four scenarios of
frequency management to compare the efficiency of the
solution. Following that, measurements were taken of power
consumption in a variety of scenarios: fixed frequency, power
under OS-based frequency management with turbo
frequency enabled and disabled, and lastly frequency
controlled by AI predictor.

•	 OS-based Application Power Management
Figure 6 shows test setup that was used when application
frequency was controlled by OS or kept fixed. There are
three systems used for the measurement, except
inference and nfm_server that is only used for AI-based
application power control tests. On the right is a traffic
generator that generates 120Byte UDP packets at a 50
Mbps to 130 Mbps transmission rate. The packets are sent
to the vFlow to consume. The second system is a vFlow
pod running the application that computes NetFlow stats
as well as a metrics collector that collects and sends
application metrics to Prometheus database on the worker
node. System metrics are also sent to the Prometheus
database as part of edge building block software from the
Telegraf PoD. The third system is a controller (control-
plane) node that hosts the Prometheus database and
Grafana dashboard for visualization.

•	 AI-based Application Power Management
Compared to above OS-based Application Power
Management, the AI-based frequency predictor
(Inference) was used on the controller node to predict
frequency based on application and system metrics. An
additional pod called nfm_server which is a user-space
P-state controller also ran on the worker node. The nfm_
server pod receives instructions from inference pod on
what core frequency to run at, and then it sets that
frequency.

9

White Paper | Power Saving Edge Computing on SKT 5G MEC

For each case, power was measured with respective
configuration to control P-state and Turbo frequency.

a. Fixed P1 & Turbo-Off for base line:

e c h o u s e r s p a c e > /s y s /d e v i c e s /s y s te m /c p u /
cpu<4,5,68,69>/cpufreq/scaling_governor
e c h o 2 2 0 0 0 0 0 > /s y s /d e v i c e s /s y s t e m /c p u /
cpu<4,5,68,69>/cpufreq/scaling_setspeed

b. OS based P-state enabled/Turbo-Off:

e c h o o n d e m a n d > /s y s /d ev i c e s /s y s te m /c p u /
cpu<4,5,68,69>/cpufreq/scaling_governor
e c h o 2 2 0 0 0 0 0 > /s y s /d e v i c e s /s y s t e m /c p u /
cpu<4/5/68/69>/cpufreq/scaling_max_freq

c. OS based P-state enabled/Turbo-On:

e c h o o n d e m a n d > /s y s /d ev i c e s /s y s te m /c p u /
cpu<4,5,68,69>/cpufreq/scaling_governor
e c h o 2 2 0 1 0 0 0 / s y s / d e v i c e s / s y s t e m / c p u /
cpu<4/5/68/69>/cpufreq/scaling_max_freq

d. AI based P-state enabled/Turbo-Off:

e c h o u s e r s p a c e > /s y s /d e v i c e s /s y s te m /c p u /
cpu<4,5,68,69>/cpufreq/scaling_governor
e c h o 2 2 0 0 0 0 0 > /s y s /d e v i c e s /s y s t e m /c p u /
cpu<4/5/68/69>/cpufreq/scaling_max_freq

2.2.3 Cluster Power Savings Through
Adaptive Node Scaler
Node scaling has been tested with edge provider using both
kubeadm and kubespray. Kubespray takes a longer time to
add or delete a node compared to the kubeadm. When
removing the node, in addition to remove the node from the

cluster, it also deletes the downloaded images, removes the
related system software and configuration. The kubespray
can be further improved with additional flags so that the node
addition and removal time can be reduced, particularly for
use by the cluster node auto-scaler (with warm start features).

We deployed the modified sample application to test the
native K8S horizontal pod autoscale (HPA). https://
kubernetes.io/docs/tasks/run-application/horizontal-pod-
autoscale-walkthrough/

•	 Native K8S CPU manager was enabled by manual at each
worker node.

•	 php test pod, deployment service was instantiated, the
configuration included

•	 Patch the nodes with provider ID, as the node auto-scaler
handles nodes with this ID set,

•	 Start the edge-provider as below,

•	 ./edge_server &> ./server_log &

•	 Used a local docker registry running on the control plane
node to store the node auto-scaler image, and helm to
deploy the node auto-scaler (see Addendum 3)

•	 The telegraf (or any node exporter) does read the RAPL
(/sys/devices/virtual/powercap/intel-rapl/*/energy_uj
and converts to watts).

The Kubernetes scheduler and pod configuration can be
found in Addendum 4. To increase the node CPU load, use
the wrk tool, by sending the query request over multiple
threads and connections to the exposed php service. When
the load reduces, the HPA scales down the number of
workload instances (replicas). Then wrk can be run as below,
to generate requests from multiple threads to php-service
IP: port wrk -t 12 -d 1200 -c 20 http:// 10.233.43.4:80

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/

White Paper | Power Saving Edge Computing on SKT 5G MEC

Figure 10. Power Consumption of ITM VM After RTSP Stream Coming from External Traffic Generator

Figure 9. Power Consumption of ITM VM with No Traffic

3. Test Results

3.1 Application Power Measurement
As per Figure 9, before the RTSP stream, the VM was
consuming ~8 watts of power. but after RTSP stream feed,
because of Analytics component, it started consuming
~17watts of power as per Figure 10.

The inference accuracy can be verified by deploying the same
application to fresh system and measuring power
consumption before and after deployment using RAPL
library. RAPL library reports total package power, so one can
subtract after and before to calculate application power.

11

White Paper | Power Saving Edge Computing on SKT 5G MEC

Figure 11 shows external camera stream that is created by ITM Analytics component running inside cluster for vehicle and
collision detection.

Traffic Rate(pps)

CPU Frequency(MHz)

Drop Rate

CPU0 Power(Watt)
Lower is Better!

Non-Drop!

Lower is Better!

Figure 12. OS based Application Power Management Results (P-state enabled/Turbo-Off)

3.2 Application Power Saving Through P-state Control
Figure 12 shows results when application power was controlled by OS-based P-state enabled/Turbo disabled cases. Top
right chart shows packet dropped which is zero and bottom right chart shows CPU power. We can see that core frequency
and package power follows traffic pattern.

Figure 11. Map UI of Live Camera (Blue Point in Map)¹

12

White Paper | Power Saving Edge Computing on SKT 5G MEC

Figure 13 shows output when AI-based application power
management was run. See that core frequency and package
power follows traffic pattern as well as OS-based power
management cases and see that with AI-based frequency
prediction, when traffic is slow, core frequency is lower than

OS selected frequency also see that frequency change is
more gradual in AI-based frequency management. On the
bottom right chart, which shows package power, we see more
time spent at lower package power compared to OS control-
based package power.

Parameter
AI based P-state

/turbo-Off
OS based P-state

/turbo-On
OS based P-state

/turbo-Off
Fixed P1 Base

/turbo-Off

Avg. core Freq- core 4
(MHz)

1877.13 2208.28 1939.22 2194.90

Avg. core Freq- core 68
(MHz)

1888.52 2237.28 1943.97 2195.11

Avg. core Freq- core 5
(MHz)

1877.51 2199.36 1938.53 2195.22

Avg. core Freq- core 69
(MHz)

1876.93 2221.37 1940.31 2195.17

Avg. CPU Power-CPU0
(W)

59.72 63.81 64.33 79.86

Table 3. Application Power Management Results

Table 3 shows average core frequency and CPU power for
four different configurations to compare them and can see
in column “AI based P-state” that it has the lowest average
core frequency and CPU power compared to all other
options. It saves approximately 25% of the power by using
AI-based application power management compared to base

line configuration (fixed P1 frequency/turbo-off) and 7%
power compared to OS-based power management with turbo
disabled. With the AI-trained model, inference picks the
minimal frequency required for the given Tx Rate with 0
packet drop. On the other hand, OS-based P-state
management not always the minimal required one.

Traffic Rate(pps)

CPU Frequency(MHz)

Drop Rate

CPU0 Power(Watt)
Lower is Better!

Non-Drop!

Lower is Better!

Figure 13. AI based Application Power Management Results

13

White Paper | Power Saving Edge Computing on SKT 5G MEC

3.3 Cluster/Node Level Power Savings Through Adaptive Auto Scaler
The node auto-scaler requests the edge-provider to remove the mec-w2 from the cluster. With mec-w2 out of the cluster,
as workloads are not running in the mec-w2 node, it can go into the C6 power saving mode. Figure 14 shows the power
consumption output for the three nodes in the cluster. We see a savings of ~110W, when the mec-w2 is removed from the
cluster (see Addendum 5).

Figure 14. Power Consumption of the Node (mec-w2) when it is scaled-in and scaled-out

4. Summary
Mobile networks have periods of low traffic which provide an
oppor tunity for power savings and energy efficiency
improvement. With more advancement in technology for
sustainability and green energy, operators can reduce energy
consumption by using infrastructure that is designed to require
less energy by matching power saving techniques to different
workload requirements. These test results present a reference
architecture of a microservice-based power saving edge to
validate the functionality of Intel reference software for edge
energy savings on SKT EdgeStack for commercial services,
leveraging Intel 3rd Generation Xeon Scalable processor’s
enhanced power saving features with network AI prediction.
The tests described in this paper, based on the SUT
configuration in Table 2, include:

•	 Demonstrated microservice-based application power
monitoring and full functionality of Intel reference software
for edge energy savings on the SKT 5G EdgeStack.

•	 Proven AI-based P-state control, up to 25% average saving
for PoD under busy-hour with zero packet loss in comparing
with default base configuration (fixed P1 with turbo-off).
The inference picks the minimal frequency for given traffic
levels, so it can be an effective power control solution
especially for user plane micro services application running
24 hours every day on MEC.

•	 Proven cluster level power savings features by enabling
CPU power management (C6 power saving mode) at node,
whenever an appropriate utilization (CPU/memory/IO, etc.)
policy is met.

The above results indicate that TEMs and ISVs can utilize
power saving edge functionalities to help and meet the
requirements for less carbon emissions, and energy
consumption on microservice-based workloads on open edge
computing services.

Mobile operators can leverage this power saving functionality
to also meet government regulation and customer demand of
new energy saving requirement with growth of managed B2B/
B2B2C sales revenues.

5. Resources

3rd Generation Intel® Xeon® Scalable processors

K8S HPA

Wireless Network-Ready Intelligent Traffic Management
Reference Implementation

Linux Kernel 5.4 Power Capping Framework

VFlow: PFIX, sFlow and Netflow collector

Intel® Xeon® P-states

14

https://www.intel.com/content/www/us/en/products/docs/processors/xeon/3rd-gen-xeon-scalable-processors-brief.html
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
https://github.com/intel/wireless-network-ready-intelligent-traffic-management
https://github.com/intel/wireless-network-ready-intelligent-traffic-management
https://www.kernel.org/doc/html/v5.4/power/powercap/powercap.html?highlight=capping
https://github.com/Edgio/vFlow
https://networkbuilders.intel.com/solutionslibrary/power-management-technology-overview-technology-guide

Term Description

K8S Kubernetes

NFV Network Function Virtualization

NFVi Network Function Virtualization Infrastructure

MEC Mobile Edge Computing

TEM Telecom Equipment Manufacturer

ISV Independent Software Vendor

ITM Intelligent Traffic Management

HPA Horizontal Pod Autoscaler

VM Virtual Machine

PoD A grouping of one or more K8S containers

6. Glossary of Terms

White Paper | Power Saving Edge Computing on SKT 5G MEC

Addendum 1 - Test Application (VM) Under Test System

intel@mec-m:~$ edgectl list-networks
+-----------+-------+-----------+---------------+------+------------+----------+-------------------------+
| NAME | TYPE | SEGMENTID | CIDR | MTU | GATEWAY IP | EXTERNAL | AGE |
+-----------+-------+-----------+---------------+------+------------+----------+-------------------------+
| external | FLAT | N/A | 2.2.2.0/24 | 1500 | 2.2.2.1 | True | 1 month and 26 days ago |
+-----------+-------+-----------+---------------+------+------------+----------+-------------------------+
| internet1 | VXLAN | 1010 | 30.30.30.0/24 | 1500 | 30.30.30.1 | False | 1 month and 26 days ago |
+-----------+-------+-----------+---------------+------+------------+----------+-------------------------+
intel@mec-m:~$ edgectl list-routers
+--------+-------+-------------------+-----------+----------+------------+----------------+-------------------------+
| NAME | SNAT | MAC | INTERNAL | EXTERNAL | VROUTER IP | PEER ROUTER IP | AGE |
+--------+-------+-------------------+-----------+----------+------------+----------------+-------------------------+
| router | False | 52:54:00:02:32:5c | internet1 | external | 2.2.2.2 | 2.2.2.1 | 1 month and 26 days ago |
+--------+-------+-------------------+-----------+----------+------------+----------------+-------------------------+
intel@mec-m:~$ edgectl list-sgs
+--------------------------------------+-------------+---------------------------+-------------------------+
| ID | NAME | DESCRIPTION | AGE |
+--------------------------------------+-------------+---------------------------+-------------------------+
| c5071a6b-d606-4fde-86c1-6bcc3160bb28 | default | Allow all egress traffic | 1 month and 26 days ago |
+--------------------------------------+-------------+---------------------------+-------------------------+
| eb99fdd0-560f-4f85-b3a4-3780a22f3a00 | ingress-all | Allow all ingress traffic | 1 month and 26 days ago |
+--------------------------------------+-------------+---------------------------+-------------------------+
intel@mec-m:~$ edgectl list-vms
+----------+-------------------+--------------------+-------+-----------+----------+---------------------------------+-------------+
| NAME | IMAGE | STATE | READY | FLAVOR | KEY PAIR | IPS | AGE |
+----------+-------------------+--------------------+-------+-----------+----------+---------------------------------+-------------+
| powertel | ubuntu-2004-image | ErrorUnschedulable | False | m1.large | N/A | internet1: 30.30.30.198 | 6 days ago |
+----------+-------------------+--------------------+-------+-----------+----------+---------------------------------+-------------+
nfm	ubuntu-2004-image	Running	True	m1.large	N/A	k8s-pod-network: 10.233.103.196	13 days ago
						internet1: 30.30.30.25	
						floating: 2.2.2.169	
+----------+-------------------+--------------------+-------+-----------+----------+---------------------------------+-------------+							
itm	ubuntu-2004-image	Running	True	m1.xlarge	N/A	k8s-pod-network: 10.233.103.176	15 days ago
						internet1: 30.30.30.221	
						floating: 2.2.2.116	
+----------+-------------------+--------------------+-------+-----------+----------+---------------------------------+-------------+
intel@mec-m:~$ k get vmi
NAME AGE PHASE IP NODENAME READY
itm 7d23h Running 10.233.103.176 mec-w1 True
nfm 5d17h Running 10.233.103.196 mec-w1 True
powertel 5d17h Scheduling False

15

White Paper | Power Saving Edge Computing on SKT 5G MEC

Addendum 2 - Kubernetes Scheduler, Node Auto-Scaler Configuration

root@mec-m:~# cat /etc/kubernetes/cluster-autoscaler.yaml
apiVersion: kubescheduler.config.k8s.io/v1beta2
kind: KubeSchedulerConfiguration
leaderElection:
 leaderElect: true
clientConnection:
 kubeconfig: /etc/kubernetes/scheduler.conf
profiles:
- schedulerName: default-scheduler
 pluginConfig:
 - name: NodeResourcesFit
 args:
 scoringStrategy:
 resources:
 - name: cpu
 weight: 1
 - name: memory
 weight: 1
 type: "MostAllocated"

intel@mec-m:~$ ps ax | grep edge_server
1542459 pts/0 S+ 0:00 grep --color=auto edge_server
3025827 ? Sl 43:38 ./edge_server

intel@mec-m:~$ k get pod edge-ca-release-edge-cluster-autoscaler-ddbbf4fbf-8p9nr -n kube-system
NAME READY STATUS RESTARTS AGE
edge-ca-release-edge-cluster-autoscaler-ddbbf4fbf-8p9nr 1/1 Running 2 (28d ago) 36d

Addendum 3 - Application Power Measurement Component

root@mec-m:~/aipower/helmFiles# gedge
NAME READY STATUS RESTARTS AGE
pod/estimator-f66bdbb6-p76vw 1/1 Running 1 (28m ago) 3h14m
pod/exporter-6fq2k 1/1 Running 0 3h15m
pod/exporter-tcm7b 1/1 Running 0 3h15m
pod/grafana-5f66798fd6-2znb5 1/1 Running 0 12d
pod/prometheus-node-exporter-6v6mb 0/1 CrashLoopBackOff 1704 (5m4s ago) 6d1h
pod/prometheus-node-exporter-j7b6j 1/1 Running 0 6d1h
pod/prometheus-server-644dd7756d-258gw 2/2 Running 0 6d1h
pod/telegraf-5f28w 1/1 Running 0 26d
pod/telegraf-rhrnq 1/1 Running 2 (6d3h ago) 26d

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/estimator-service ClusterIP None <none> 8000/TCP 3h14m
service/grafana NodePort 10.233.19.110 <none> 3000:31210/TCP 12d
service/prometheus-node-exporter ClusterIP 10.233.10.249 <none> 9100/TCP 6d1h
service/prometheus-server NodePort 10.233.29.163 <none> 80:30418/TCP 6d1h

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
daemonset.apps/exporter 2 2 2 2 2 <none> 3h15m
daemonset.apps/prometheus-node-exporter 2 2 1 2 1 <none> 6d1h
daemonset.apps/telegraf 2 2 2 2 2 <none> 26d

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/estimator 1/1 1 1 3h14m
deployment.apps/grafana 1/1 1 1 12d
deployment.apps/prometheus-server 1/1 1 1 6d1h

NAME DESIRED CURRENT READY AGE
replicaset.apps/estimator-f66bdbb6 1 1 1 3h14m
replicaset.apps/grafana-5f66798fd6 1 1 1 12d
replicaset.apps/prometheus-server-644dd7756d 1 1 1 6d1h

16

White Paper | Power Saving Edge Computing on SKT 5G MEC

Addendum 4 - Kubernetes Scheduler and PoD Configuration

root@mec-w1:~# cat /etc/kubernetes/kubelet.env
KUBE_LOGTOSTDERR="--logtostderr=true"
KUBE_LOG_LEVEL="--v=2"
KUBELET_ADDRESS="--node-ip=192.168.10.52"
KUBELET_HOSTNAME="--hostname-override=mec-w1"
KUBELET_ARGS="--bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf \
--config=/etc/kubernetes/kubelet-config.yaml \
--kubeconfig=/etc/kubernetes/kubelet.conf \
--container-runtime=remote \
--container-runtime-endpoint=unix:///var/run/containerd/containerd.sock \
--runtime-cgroups=/systemd/system.slice \
--cpu-manager-policy=static \
 --housekeeping-interval=30s "
KUBELET_NETWORK_PLUGIN="--network-plugin=cni --cni-conf-dir=/etc/cni/net.d --cni-bin-dir=/opt/cni/bin"
KUBELET_CLOUDPROVIDER=""
PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

intel@mec-m:~$ k get pod -o=wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
php-hpa-deployment-575bb55bbd-qvbpd 1/1 Running 0 4d2h 10.233.103.185 mec-w1 <none> <none>
php-hpa-deployment-575bb55bbd-sljnf 1/1 Running 0 4d6h 10.233.103.170 mec-w1 <none> <none>
php-hpa-deployment-575bb55bbd-vbsnz 1/1 Running 0 4d2h 10.233.103.186 mec-w1 <none> <none>native K8S
cpu manager was enabled by manual

intel@mec-m:~$ k get svc,pod,ep
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/php-service NodePort 10.233.43.4 <none> 80:30008/TCP 17d

NAME READY STATUS RESTARTS AGE
pod/php-hpa-deployment-575bb55bbd-qvbpd 1/1 Running 0 4d2h
pod/php-hpa-deployment-575bb55bbd-sljnf 1/1 Running 0 4d6h
pod/php-hpa-deployment-575bb55bbd-vbsnz 1/1 Running 0 4d2h

NAME ENDPOINTS AGE
endpoints/php-service 10.233.103.170:80,10.233.103.185:80,10.233.103.186:80 17d

intel@mec-m:~$ kubectl patch node <host-name> -p '{"spec":{"providerID":"edge://<host-name>" } }'

Addendum 5 - Kubernetes Clusters Node Status

intel@mec-m:~$ k get node -o=wide
NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE KERNEL-VERSION
CONTAINER-RUNTIME
mec-m Ready control-plane,master 55d v1.23.7 192.168.10.51 <none> Ubuntu 20.04.2 LTS 5.4.0-122-generic
containerd://1.6.4
mec-w1 Ready worker 55d v1.23.7 192.168.10.52 <none> Ubuntu 20.04.2 LTS 5.4.0-126-generic
containerd://1.6.4

17

White Paper | Power Saving Edge Computing on SKT 5G MEC

Table of Contents

1. Introduction... 1

1.1 Overview of SKT 5G MEC 2.0..2

1.2 Key Technology..4

1.2.1 Intel Reference Software for Dynamic Power Control...4

1.2.2 Intel Reference Software for Edge Energy Savings...4

2. Test Setup...4

2.1 Device Under Test Configuration...4

2.1.1 Application Power Measurement..6

2.1.2 Application Power Saving Through P-state Control..6

2.1.3 Cluster/Node Level Power Savings Through Adaptive Auto Scaler...8

2.2 Test Procedures..9

2.2.1 Application Power Measurement...9

2.2.2 Application Power Saving Through P-state Control..9

2.2.3 Cluster/Node Level Power Savings Through Adaptive Auto Scaler.. 10

3. Test Result.. 11

3.1 Application Power Measurement.. 11

3.2 Application Power Saving Through P-state Control... 12

3.3 Cluster/Node Level Power savings Through Adaptive Auto Scaler.. 14

4. Summary... 14

5. Resources... 14

6. Glossary of Terms.. 15

		 Notices & Disclaimers

	 ¹	OpenStreetMap® is open data, licensed under the Open Data Commons Open Database License (ODbL) by the OpenStreetMap Foundation (OSMF).

		 Performance varies by use, configuration and other factors. Learn more on the Performance Index site.
		 Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. No product or component can be absolutely secure.
		 Your costs and results may vary.
		 Intel technologies may require enabled hardware, software or service activation.
		 © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
		 0323/LV/H09/PDF	  Please Recycle	 354847-001US

18

https://www.openstreetmap.org/copyright
https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/

