
1 Introduction

This document is intended for organizations and individuals who have
incorporated Post-Quantum Cryptography into their solutions through the Open
Quantum Safe liboqs library. We will review the benefits of Intel led liboqs
software optimizations on Intel® Xeon® processors.

Post-Quantum Cryptography (PQC) is crucial for protecting data against future
quantum computers, with the U.S. National Institute of Standards and
Technology (NIST) leading the standardization of new algorithms like ML-KEM
(key encapsulation) and ML-DSA (digital signatures).

The Open Quantum Safe (OQS) project and its liboqs library provide
implementations of these algorithms, optimized for Intel processors with
instruction sets such as Intel® Advanced Vector Extensions 2 (Intel® AVX2).

Furthermore, Intel led optimizations using Intel® Advanced Vector Extensions
512 (Intel® AVX-512) have demonstrated a significant performance boost for
cryptographic operations, especially for SHA3, SHAKE, ML-KEM, and ML-DSA
algorithms, with observed speed gains up to 1.64x over that of Intel AVX2.

These performance improvements are expected to enhance the efficiency of
applications such as secure communications and web servers as more of the
software stacks adopt PQC standards.

Authors

Erdinc Ozturk

Dan Zimmerman

Kirk Yap

Marcel Cornu

Tomasz Kantecki

Intel Corporation

Post-Quantum Cryptography:
Accelerating Open Quantum Safe Library with
Intel® AVX-512 Keccak 1600 Implementation

Technology Guide

Technology Guide | Post-Quantum Cryptography: Accelerating Open Quantum Safe Library with Intel® AVX-512 Keccak Implementation

Table of Contents

1.	 Introduction . . 1

	 1.1	 Terminology. 3

	 1.2	 Reference Documentation. 3

2.	 Post-Quantum Cryptography. 4

3.	 Open Quantum Safe Library. 4

4.	 Module-Lattice-Based Key-Encapsulation Mechanism Standard (ML-KEM). 4

5.	 Module-Lattice-Based Digital Signature Algorithm (ML-DSA). 4

6.	 Secure Hash Algorithm 3 (SHA3) and Secure Hash Algorithm Keccak (SHAKE). 4

	 6.1	 ML-DSA and ML-KEM Dependency on SHA3 and SHAKE. 5

	 6.2	Keccak Permute Optimization. 5

	 6.3	Intel® AVX-512 Optimization. 5

7.	 Software Configuration. 6

	 7.1	 Intel AVX-512 Optimized Configuration. 6

	 7.2	 Intel AVX2-Only Optimized Configuration. 6

8.	 Performance Results . 6

	 8.1	 Single Buffer SHA3 and SHAKE Results. 6

	 8.2	ML-KEM Results. 8

	 8.3	ML-DSA Results. 8

9.	 Summary. 9

10.	 System Configuration. 9

Tables

Table 1. Terminology. . 2

Table 2. Reference Documents. . 2

Table 3. SHA3 and SHAKE Performance Results with speed_common Tool. 6

Table 4. ML-KEM Performance Results with speed_kem Tool (lower cycles is better). 8

Table 5. ML-DSA Performance Results with speed_sig Tool. 8

2

Technology Guide | Post-Quantum Cryptography: Accelerating Open Quantum Safe Library with Intel® AVX-512 Keccak Implementation

Abbreviation Description

PQC Post-Quantum Cryptography

OQS Open Quantum Safe

ISA Instruction Set Architecture

AVX Advanced Vector Extensions

NIST National Institute of Standards and Technology

1.1 Terminology

Table 1. Terminology

1.2 Reference Documentation

Table 2. Reference Documents

Reference Source

Intel® Xeon® Scalable Platform
Built for Most Sensitive
Workloads

https://www.intc.com/news-events/press-releases/detail/1423/intel-xeon-scalable-
platform-built-for-most-sensitive

Open Quantum Safe https://openquantumsafe.org/

FIPS203 https://csrc.nist.gov/pubs/fips/203/final

FIPS204 https://csrc.nist.gov/pubs/fips/204/final

Intel® AVX-512 - Instruction Set
for Packet Processing

https://builders.intel.com/docs/networkbuilders/intel-avx-512-instruction-set-for-
packet-processing-technology-guide-1645717553.pdf

liboqs 0.14.0 CAVP https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/
details?product=20098

BoringSSL https://boringssl.googlesource.com/boringssl

OpenSSL https://www.openssl.org/

PQClean https://github.com/PQClean

3

https://www.intc.com/news-events/press-releases/detail/1423/intel-xeon-scalable-platform-built-for-most-sensitive
https://www.intc.com/news-events/press-releases/detail/1423/intel-xeon-scalable-platform-built-for-most-sensitive
https://openquantumsafe.org/
https://csrc.nist.gov/pubs/fips/203/final
https://csrc.nist.gov/pubs/fips/204/final
https://builders.intel.com/docs/networkbuilders/intel-avx-512-instruction-set-for-packet-processing-technology-guide-1645717553.pdf
https://builders.intel.com/docs/networkbuilders/intel-avx-512-instruction-set-for-packet-processing-technology-guide-1645717553.pdf
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20098
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20098
https://boringssl.googlesource.com/boringssl
https://www.openssl.org/
https://github.com/PQClean

Technology Guide | Post-Quantum Cryptography: Accelerating Open Quantum Safe Library with Intel® AVX-512 Keccak Implementation

4

2 Post-Quantum Cryptography

Post-Quantum Cryptography (PQC) is a rapidly evolving
field aimed at developing cryptographic algorithms that
remain secure in the presence of quantum computers.
Quantum algorithms, most notably Shor’s algorithm,
can efficiently solve problems like integer factorization
and discrete logarithms, which underpin the security of
widely used public-key systems such as Rivest-Shamir-
Adleman (RSA), Digital Signature Algorithm (DSA),
and Elliptic Curve Cryptography (ECC). As quantum
computing advances, these traditional systems are at risk
of being rendered obsolete, potentially compromising the
confidentiality and integrity of digital communications and
stored data. PQC is essential to support the transition away
from these traditional public-key systems and for ensuring
the confidentiality and integrity of data both at rest, and in
transit across many sectors including telecommunications,
finance, government, healthcare, and critical infrastructure.

The U.S. National Institute of Standards and Technology
(NIST) has been leading a global standardization effort
since 2016, culminating in the selection of several
algorithms, such as Module-Lattice-Based Key Exchange
Mechanism (ML-KEM) for key encapsulation and Module-
Lattice-Based Digital Signature Algorithm (ML-DSA) for
digital signatures, as part of its first set of post-quantum
cryptographic standards. These efforts are paving the way
for a secure transition to quantum-resilient cryptographic
systems.

An increasing number of software libraries, including liboqs
from Open Quantum Safe, OpenSSL, and BoringSSL, are
incorporating quantum-resistant algorithms to facilitate the
transition to quantum-resilient cryptography. These tools
allow developers to implement and test secure protocols
such as TLS 1.3 with post-quantum capabilities. Projects
like PQClean offer portable C implementations of NIST
candidate algorithms for integration into other projects.

3 Open Quantum Safe Library
The liboqs library, developed by the Open Quantum
Safe (OQS) project, is a widely used software library that
combines implementations of NIST-selected post-quantum
cryptographic algorithms with ongoing academic and
industry research. It is designed to be portable and flexible,
offering multi-architecture support through unoptimized
scalar implementations that can run on a wide range of
hardware platforms. For performance-critical applications,
Intel AVX2-optimized implementations for select
algorithms are also provided for the Intel® architecture,
enabling improved performance on modern processors.

To facilitate integration into existing cryptographic
infrastructure, the OQS project also maintains the OQS
provider, which allows seamless use of post-quantum
algorithms within OpenSSL 3.x. This makes it possible
for developers and organizations to more easily integrate
PQC support into their software stacks and speed up the
migration to a quantum-resilient future.

Version 0.14.0 of the liboqs library includes optimized
low-level implementations of the SHA3 and SHAKE
cryptographic hash functions. These implementations
utilize the Intel AVX-512 instruction set extensions, present
in current Intel processors, to enhance the efficiency

of performance-critical Keccak operations. As a result,
substantial performance gains have been achieved for
these hash functions and for algorithms that depend on
them, such as ML-KEM and ML-DSA.

4 Module-Lattice-Based Key-Encapsulation
Mechanism Standard (ML-KEM)

ML-KEM is a post-quantum cryptographic algorithm
designed to provide secure key encapsulation (see
FIPS203). It is based on the CRYSTALS-Kyber algorithm
and is known for its efficiency and security. The
algorithm involves three main operations: key generation,
encapsulation, and decapsulation.

•	 Key Generation: This process generates a public and
private key pair. The public key is used for encapsulation,
while the private key is used for decapsulation.

•	 Encapsulation: This operation takes the public key
and generates a ciphertext and a shared secret. The
ciphertext is sent to the recipient, and the shared secret
is used for secure communication.

•	 Decapsulation: The recipient uses their private key to
decrypt the ciphertext and recover the shared secret.

5 Module-Lattice-Based Digital Signature Algorithm
(ML-DSA)

ML-DSA is a post-quantum digital signature algorithm
based on the CRYSTALS-Dilithium algorithm (see
FIPS204). It is designed to provide secure and efficient
digital signatures, and its main operations are:

•	 Key Generation: This process generates a public and
private key pair. The public key is used for signature
verification, while the private key is used for signing.

•	 Signing: This operation takes the private key and a
message to generate a digital signature. The signature
ensures the authenticity and integrity of the message.

•	 Verification: The recipient uses the public key to verify
the digital signature. If the signature is valid, the
message is considered authentic and unaltered.

6 Secure Hash Algorithm 3 (SHA3) and Secure Hash
Algorithm Keccak (SHAKE)

SHA3 is a cryptographic hash function (see NIST SP
800-185) based on the Keccak algorithm. It uses a sponge
construction, which involves two main phases: absorption
and squeezing.

•	 Absorption Phase: The input message is divided into
blocks, and each block is absorbed into the internal
state of the sponge function. This involves XORing the
message blocks with the state and applying the Keccak
permutation.

•	 Squeezing Phase: After all message blocks are
absorbed, the sponge function produces the hash
output by squeezing the state. This involves applying the
Keccak permutation and extracting the output blocks.

SHAKE is an extendable-output function (XOF) based
on the Keccak algorithm (see NIST SP 800-185). It can
produce variable-length outputs and is used for various

5

Technology Guide | Post-Quantum Cryptography: Accelerating Open Quantum Safe Library with Intel® AVX-512 Keccak Implementation

cryptographic purposes, including key derivation and
pseudorandom number generation.

•	 SHAKE128 and SHAKE256 are two common variants
of SHAKE, with different security strengths. They follow
the same sponge construction as SHA3, with absorption
and squeezing phases.

6.1 ML-DSA and ML-KEM Dependency on SHA3 and SHAKE

ML-DSA (FIPS204) and ML-KEM (FIPS203), rely on the
SHA3 and SHAKE algorithms (NIST SP 800-185) for
various cryptographic operations. The SHA3 algorithm
is used for hashing and SHAKE algorithm is used for
generating pseudo-random values:

•	 Hashing:

o	 Before signing a message, ML-DSA uses SHA3 to
hash the message. This hash value is then used in the
signing algorithm to generate the digital signature.

o	 During the encapsulation process, ML-KEM uses
SHA3 to hash the public key and other input
values. This hash value is then used to generate the
ciphertext and the shared secret.

•	 Pseudo-Random Value Generation:

o	 During key generation and signing, ML-DSA uses
SHAKE to generate pseudo-random values.

o	 ML-KEM uses SHAKE to generate pseudo-random
values during key generation and encapsulation.

Subsequently, performance of ML-KEM and ML-DSA
operations depend on the performance of SHA3 and
SHAKE compute components.

6.2 Keccak Permute Optimization

The Keccak permute operation, specifically the Keccak-f
variant, is a core component of the SHA3 and SHAKE
cryptographic hash functions.

•	 SHA3: Secure Hash Algorithm 3, which produces fixed-
length hash values.

•	 SHAKE: Secure Hash Algorithm Keccak, which
produces variable-length extendable outputs.

The Keccak-f permute operation ensures the security and
efficiency of these cryptographic functions by providing
strong diffusion and mixing of the input data.

The Keccak-f permute operation consists of a sequence of
24 rounds. Each round applies a series of transformations to
the 1600-bit state, ensuring the security and randomness of
the permutation.

Steps of the Keccak-f Permute Operation include the
following transformations:

1.	 Initialization: The internal state of the Keccak algorithm
is initialized with the input data. The state is represented
as a 3-dimensional array of bits.

2.	 Round Constants: Each round of the Keccak-f permute
operation uses a unique round constant to ensure the
security and randomness of the permutation. These
constants are pre-defined and vary for each round.

3.	 Round Function: The round function consists of five
main steps, which are applied sequentially to the state
array:

o	 Theta: This step ensures the diffusion of bits across
the state array by XORing each bit with a parity value
computed from neighbouring bits.

o	 Rho: This step rotates the bits within the state array
to further mix the data.

o	 Pi: This step permutes the bits within the state array
by rearranging their positions.

o	 Chi: This step applies a non-linear transformation
to the bits within the state array, ensuring the
complexity and security of the permutation.

o	 Iota: This step XORs the state array with the round
constant, adding an additional layer of randomness.

4.	 Final State: After all 24 rounds are completed, the final
state of the Keccak algorithm is produced. This state is then
used to generate the hash output or extendable output,
depending on the specific function (SHA-3 or SHAKE).

6.3 Intel® AVX-512 Optimization

In our advanced implementation of the Keccak algorithm,
Intel AVX-512 instruction set architecture (ISA) was
leveraged to maximize throughput and parallelism, using
modern Intel processors. Each logical state register within
the Keccak permutation is directly mapped to a native
single instruction, multiple data (SIMD) register, ensuring
that computation remains tightly bound to the hardware for
minimal latency. Specifically, with the extended vector length
of Intel AVX-512 enabled, we assign each state register
to a YMM register, preserving compatibility from the first
generation of Intel® Xeon® Scalable processor onward.

To enhance computational density, we make extensive
use of ternary logic instructions - an advanced feature
introduced with Intel AVX-512. Unlike traditional binary
logic operations that operate on two inputs, ternary logic
instructions can simultaneously process three input values
within a single operation. This capability significantly
broadens the range of logical combinations achievable in
hardware, streamlining complex sequences that would
otherwise require multiple instructions. See Intel® AVX-
512 - Instruction Set for Packet Processing for more details
about ternary logic instructions.

In the context of the Keccak algorithm, this means operations
like those found in the Chi and Theta steps - where intricate
bitwise manipulations and conditional logic are essential - can
be executed more efficiently by condensing them into fewer
instructions reducing both instruction count and execution
time. This not only improves the speed of single-state
hashing but also scales efficiently when handling multiple
states in parallel, making our implementation highly suitable
for modern cryptographic workloads.

A notable aspect of our optimization is the multi-state
capability: the design allows the simultaneous processing of
up to four independent Keccak states in parallel. This batch
processing approach is crucial for applications requiring
high-throughput hashing, i.e. multi-buffer SHAKE128 or
SHAKE256.

https://builders.intel.com/docs/networkbuilders/intel-avx-512-instruction-set-for-packet-processing-technology-guide-1645717553.pdf
https://builders.intel.com/docs/networkbuilders/intel-avx-512-instruction-set-for-packet-processing-technology-guide-1645717553.pdf

Technology Guide | Post-Quantum Cryptography: Accelerating Open Quantum Safe Library with Intel® AVX-512 Keccak Implementation

7 Software Configuration

libOQS location: https://github.com/open-quantum-safe/liboqs

To obtain tested software version please follow the steps below:

>	 git clone https://github.com/open-quantum-safe/liboqs.git

>	 git checkout 0.14.0

Note: 8f926065ebd90591106e121a847f586488e6071f is the liboqs commit ID from which Intel AVX-512 optimized code
is available. This corresponds to version 0.13.1-dev (major: 0, minor: 13, patch: 1, pre-release: -dev).

The steps below show how to configure and compile the software to obtain Intel AVX-512 and Intel AVX2 optimized
versions. Intel AVX-512 optimizations are available by default on Intel architecture processors. If the hardware platform
doesn’t support Intel AVX-512 instructions, then the code falls back to implementation suitable for the hardware.

7.1 Intel AVX-512 Optimized Configuration

To compile Intel AVX-512 optimized software configuration please follow the following instructions:

>	 mkdir build _ avx512

>	 cd build _ avx512

>	 cmake ..

>	 make -j

After successful build, “speed_common”, “speed_kem” and “speed_sig” applications can be found in “build_avx512/tests”
directory.

7.2 Intel AVX2-Only Optimized Configuration

To compile Intel AVX2 optimized software configuration please follow the following instructions:

>	 mkdir build _ avx2

>	 cd build _ avx2

>	 cmake -DOQS _ USE _ SHA3 _ AVX512VL=OFF ..

>	 make -j

After successful build, “speed_common”, “speed_kem” and “speed_sig” applications can be found in “build_avx2/tests”
directory.

8 Performance Results

The liboqs library comes with several performance tests applications. “speed_common”, “speed_kem” and “speed_sig”
are used to measure gains from Intel AVX-512 optimization for SHA3 and SHAKE, as well as ML-KEM and ML-DSA.

See below how the tools were used and performance results captured on the test system (see 9 for more details).

8.1 Single Buffer SHA3 and SHAKE Results

The liboqs “speed_common” tool doesn’t benchmark multi buffer SHAKE implementations which are available in the
library. However, it provides comprehensive tests for single buffer algorithm implementations which is the point of focus in
this section.

6

Algorithm Intel® Advanced Vector
Extensions 2 (Intel® AVX2)

[CPU Cycles Mean]

Intel® Advanced Vector
Extensions 512

(Intel® AVX-512)
[CPU Cycles Mean]

Intel® AVX-512 Gain

OQS_SHA3_sha3_256 72,879 46,374 1.57

OQS_SHA3_sha3_384 93,990 59,823 1.57

OQS_SHA3_sha3_512 135,044 86,221 1.57

OQS_SHA3_shake128 114,866 73,485 1.56

OQS_SHA3_shake256 142,704 91,488 1.56

Table 3. SHA3 and SHAKE Performance Results with speed_common Tool

https://github.com/open-quantum-safe/liboqs

Technology Guide | Post-Quantum Cryptography: Accelerating Open Quantum Safe Library with Intel® AVX-512 Keccak Implementation

7

This is the command used to get throughput and cycle cost of single buffer SHA3-256, SHA3-384 and SHA3-512
operations on for a 8,192 byte message:

>	 taskset -c 4 ./speed _ common -d 3 --msglen 8192 sha3

Note that “taskset -c 4” schedules execution of the subsequent command on CPU 4. “-d 3” speed common option executes
the test for 3 seconds, see “./speed_common -h” for more options.

These are two commands used to get throughput and cycle cost of SHAKE128 and SHAKE256 operations absorbing and
squeezing 8,192 bytes:

>	 taskset -c 4 ./speed _ common -d 3 --outlen 8192 --msglen 8192 shake128

>	 taskset -c 4 ./speed _ common -d 3 --outlen 8192 --msglen 8192 shake256

The Intel AVX-512 optimized code gain over previously used Intel AVX2 optimized code gravitates around 1.56x for the
8,192 byte message size.

Figure 1. SHA3 and SHAKE Performance results with speed_common Tool on 8192 Byte Message (lower is better)

Technology Guide | Post-Quantum Cryptography: Accelerating Open Quantum Safe Library with Intel® AVX-512 Keccak Implementation

8

8.2 ML-KEM Results

These three commands were used to get throughput and CPU cycle cost of ML-KEM-512, ML-KEM-768 and ML-KEM-1024:

>	 taskset -c 4 ./speed _ kem ML-KEM-512

>	 taskset -c 4 ./speed _ kem ML-KEM-768

>	 taskset -c 4 ./speed _ kem ML-KEM-1024

Note that “taskset -c 4” schedules execution of the subsequent command on CPU 4.

The Intel AVX-512 optimized SHA3 and SHAKE implementation helps improve ML-KEM operations from 1.42x to 1.54x.
Most performance gain is observed for the highest ML-KEM security level (ML-KEM-1024).

8.3 ML-DSA Results

These three commands were used to get throughput and CPU cycle cost of ML-DSA-44, ML-DSA-65 and ML-DSA-87:

>	 taskset -c 4 ./tests/speed _ sig ML-DSA-44

>	 taskset -c 4 ./tests/speed _ sig ML-DSA-65

>	 taskset -c 4 ./tests/speed _ sig ML-DSA-87

Note that “taskset -c 4” schedules execution of the subsequent command on CPU 4.

The Intel AVX-512 optimized SHA3 and SHAKE also helps improve ML-DSA performance and gains depend on security
level and type of operation. Key pair operation gains range from 1.51x for ML-DSA-44 to 1.62x for ML-DSA-87. Verify
operation gains range from 1.52x for ML-DSA-44 to 1.64x for ML-DSA-87. Sign operation gains range from 1.33x for ML-
DSA-44 to 1.39x for ML-DSA-87.

Algorithm Operation Intel® AVX2
[CPU Cycles Mean]

Intel® AVX-512
[CPU Cycles Mean]

Intel® AVX-512 Gain

ML-KEM-512 decaps 33,462 22,492 1.49

ML-KEM-512 encaps 27,651 19,493 1.42

ML-KEM-512 keygen 25,179 17,401 1.45

ML-KEM-768 decaps 51,746 34,376 1.51

ML-KEM-768 encaps 42,047 28,593 1.47

ML-KEM-768 keygen 41,002 27,548 1.49

ML-KEM-1024 decaps 71,117 46,145 1.54

ML-KEM-1024 encaps 57,460 37,865 1.52

ML-KEM-1024 keygen 55,382 36,224 1.53

Table 4. ML-KEM Performance Results with speed_kem Tool (lower cycles is better)

Algorithm Operation Intel® AVX2
[CPU Cycles Mean]

Intel® AVX-512
[CPU Cycles Mean]

Intel® AVX-512 Gain

ML-DSA-44 keypair 80,918 53,562 1.51

ML-DSA-44 sign 224,482 167,985 1.33

ML-DSA-44 verify 80,227 52,746 1.52

ML-DSA-65 keypair 134,847 84,628 1.59

ML-DSA-65 sign 360,848 267,424 1.34

ML-DSA-65 verify 131,733 82,849 1.59

ML-DSA-87 keypair 211,912 130,721 1.62

ML-DSA-87 sign 439,121 314,118 1.39

ML-DSA-87 verify 206,553 125,279 1.64

Table 5. ML-DSA Performance Results with speed_sig Tool (lower cycles is better)

Technology Guide | Post-Quantum Cryptography: Accelerating Open Quantum Safe Library with Intel® AVX-512 Keccak Implementation

9

9 Summary

Optimized Intel AVX-512 Keccak-1600 provides substantial performance enhancements for SHA-3 and SHAKE
algorithms, especially the multi-buffer implementation. As fundamental hash functions in NIST FIPS203 ML-KEM and
FIPS204 ML-DSA PQC standards, this optimization delivers up to 1.64x speedup compared to Intel AVX2. Specifically,
it enhances ML-KEM performance up to 1.54x and ML-DSA up to 1.64x. Such algorithmic speed-ups are expected
to proportionally improve application-level efficiency, notably in web server connections and other use cases where
cryptographic processing is a bottleneck.

With the growing adoption of post-quantum cryptography, Intel AVX-512-optimized implementation, integrated through
the liboqs library, delivers enhanced security and efficiency on Intel processors. This advancement supports the
development of resilient and high-performance digital infrastructure for the quantum era. Notably, Intel AVX-512 optimized
liboqs v0.14.0 has earned CAVP certification from NIST on a range of Intel Xeon processors and Intel Xeon SoCs; for
further details, refer to Table 2: liboqs 0.14.0 CAVP.

10 System Configuration

CPU Model Intel® Xeon® 6767P processor

Microarchitecture GNR_X2

Sockets 2

Cores per Socket 64

Hyperthreading Enabled

CPUs 256

Intel Turbo Boost Enabled
(Note: Intel Turbo Boost was disabled through software during the tests.)

Base Frequency 2.4GHz

All-core Maximum Frequency 3.6GHz

Maximum Frequency 3.9GHz

NUMA Nodes 4

Prefetchers L2 HW, L2 Adj., DCU HW, DCU IP

PPINs 6a706332a9a77d92,08023a6fd13095a5

Accelerators Available [used] DLB 0 [0], DSA 8 [0], IAA 8 [0], QAT 0 [0]

Installed Memory 256GB (16x16GB DDR5 5600 MT/s [5600 MT/s])

Hugepagesize 2048 kB

Transparent Huge Pages madvise

Automatic NUMA Balancing Enabled

NIC 1x Intel(R) Ethernet Controller I210 Gigabit Network Connection, 2x BCM57416 NetXtreme-E
Dual-Media 10G RDMA Ethernet Controller

Disk 1x 894.3G Micron_7450_MTFDKBG960TFR

BIOS BHSDCRB1.IPC.3544.O01.2503110235

Microcode 0x10003a5

OS Ubuntu 24.04.1 LTS

Kernel 6.8.0-50-generic

TDP 350 watts

Power & Perf Policy Normal (6)

Frequency Governor performance

Frequency Driver intel_pstate

Max C-State 9

Vulnerability CVE-2017-5715:OK, CVE-2017-5753:OK, CVE-2017-5754:OK, CVE-2018-12126:OK, CVE-2018-
12127:OK, CVE-2018-12130:OK, CVE-2018-12207:OK, CVE-2018-3615:OK, CVE-2018-3620:OK,
CVE-2018-3639:OK, CVE-2018-3640:OK, CVE-2018-3646:OK, CVE-2019-11091:OK, CVE-
2019-11135:OK, CVE-2020-0543:OK, CVE-2022-40982:OK, CVE-2023-20569:OK, CVE-2023-
20593:OK

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or
component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as
well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata
are available on request.

Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See Intel’s Global Human Rights Principles. Intel’s products
and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of
others.

1025/TK/PDF 367250-001US		 Please Recycle (if printed)

Technology Guide | Post-Quantum Cryptography: Accelerating Open Quantum Safe Library with Intel® AVX-512 Keccak Implementation

10

http://www.Intel.com/PerformanceIndex
https://www.intel.com/content/www/us/en/policy/policy-human-rights.html

