intel.

Optimization of YOLOv4 and YOLOv4-tiny Models
with Customized Configurations using Intel®
Distribution of OpenVINO™ Toolkit

White Paper

August 2023

Document number: 787419-1.0

intel.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject
matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product
specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by
visiting: http://www.intel.com/design/literature.ntm

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

© Intel Corporation

Optimization of YOLOv4 and YOLOv4-tiny

Models with Customized Configurations using

Intel® Distribution of OpenVINO™ Toolkit

White Paper August 2023
2 Document Number: 787419-1.0

http://www.intel.com/design/literature.htm

Contents

1.0 Introduction 5
1.1 0] 017/ 0 TP 5
1.2 REFEIrENCE DOCUMENTSceeeceeeeeeetentens et es s sees s bbb s s s 6
2.0 Optimization of YOLOv4 and YOLOv4-tiny Models 8
2.1 L =T =T o LU =P 8
2.2 Optimization of Models with Customized ClasSEs.......ourueeneeereemseeesersessseseessessssesseesssesseens 8
2.2.1 Verification of INfErenCe RESULLSoeeereenneeneeneeseeeseeeese e essesseeans 9
2.3 Optimization of Models with Customized Classes and ANChors......neneniennennenn. 10
2.3.1 Verification of INfErenCe RESULLS ... seessesssesssesssesssennes 11
3.0 Performance Improvement in Real-Time Object Detection Use Case 13
3.1 USE CASE it s et b s st 13
3.2 Performance IMPrOVEMENTS. ... e sssesns 13
4.0 Conclusion 15

Tables
Table 1. (0] 0177 0 5
Table 2. (=3 =TT aTal = B Lo ol U] g 4= o (PP 6
Table 3. DTV Tl U g o [= g I Ty 6
Table 4. Default Anchors in YOLOvV4 and YOLOVA4-tiny MOELScouceeneeneeeneenneesseemseesseessenssenseens 10

Figures

Figure 1. Model Optimization and Deployment WOTrKFlOWoeeneeneeneeneeseesseeseessessseessesssesssees 5
Figure 2. Detection Result of the Optimized YOLOVA4-tiny Model.......ouenreneerneemneemneesseesseessensenns 10
Figure 3. Detection Result with Inaccurate Prediction of Bounding BoOX.......cveeneenreeneeneenseeseeneenens 13
Figure 4. Detection Result with Accurate Prediction of Bounding BOX.......ccccueneeneensereeeseeseeneens 14
Optimization of YOLOv4 and YOLOv4-tiny
Models with Customized Configurations using
Intel® Distribution of OpenVINO™ Toolkit
August 2023 White Paper

Document Number: 787419-1.0

3

intel.

Revision History

Date

Revision

Description

August 2023

1.0

Initial release

Optimization of YOLOv4 and YOLOv4-tiny
Models with Customized Configurations using

Intel® Distribution of OpenVINO™ Toolkit

White Paper

4

August 2023
Document Number: 787419-1.0

Introduction

1.0

intel.

Introduction

Figure 1.

1.1

Table 1.

August 2023

This document presents two methods for optimizing the YOLOv4 and YOLOv4-tiny
models with customized classes and anchors using Intel® Distribution of
OpenVINO™ Toolkit. The object detection use case based on the optimized models
is used to verify the corresponding inference results. Furthermore, the decreased
inference time of the optimized model is demonstrated with the real-time use case
of an ISV.

The Intel® Distribution of OpenVINO" Toolkit enables developers to quickly
optimize and deploy the Al workloads with improved performance across the Intel®
platforms from edge to cloud. The following figure illustrates the workflow for
optimizing and deploying a pre-trained model using Model Optimizer and
OpenVINO™ Runtime API.

Model Optimization and Deployment Workflow

Get Your Run Model e OpenVINO™
Model Optimizer xml.bin Runtime

User
Application

Model Optimizer is a Python-based tool that creates an intermediate representation
(IR) of the model to facilitate the optimal execution of inference across the Intel®
devices (CPU, GPU, VPU). The OpenVINO" Runtime API contains the hardware-
specific plugins for implementing the inference with the optimized model in IR
format. This paper covers the BKMs for optimizing YOLOv4 and YOLOv4-tiny
models with customized configurations and demonstrates the decreased inference
time of the optimized YOLOv4-tiny model with the license plate detection use case.

Acronyms
Acronyms
Term Description
BKM Best Known Method
OpenVINO™ Open Visual Inference & Neural Network Optimization
ISV Independent Software Vendor
DUT Device Under Test
16-bit Floating Point |FP16

Optimization of YOLOv4 and YOLOv4-tiny
Models with Customized Configurations using
Intel® Distribution of OpenVINO™ Toolkit
White Paper

Document Number: 787419-1.0 5

intel.

1.2

Note:

Table 2.

Table 3.

Introduction

Term

Description

32-bit Floating Point | FP32

ALPR

Automatic License Plate Recognition

Reference Documents

Log in to the Resource and Documentation Center (rdc.intel.com) to search and
download the document numbers listed in the following table. Contact your Intel

field representative for access.

Third-party links are provided as a reference only. Intel does not control or audit
third-party benchmark data or the web sites referenced in this document. You
should visit the referenced web site and confirm whether the referenced data is

accurate.

Reference Document

Document

Document
No./Location

OpenVINO™ Toolkit

https://software.seek.intel.com/openvino-toolkit

YOLOv4 Model Optimization in
OpenVINO™ documentation

https://docs.openvino.ai/2022.2/openvino_docs_MO_DG
prepare_model_convert_model_tf_specific_Convert_ YO
LO_From_Tensorflow.html#converting-a-yolov4-model-
to-ir

Object Detection Demo in Open
Model Zoo

https://github.com/openvinotoolkit/open_model_zoo/tr
ee/master/demos/object_detection_demo/python

Pre-trained YOLOv4-tiny model
for fire detection

https://github.com/ngocdaumai/Fire-Detection-Using-
YoloV4/tree/main

Darknet Framework

https://github.com/AlexeyAB/darknet

Tensorflow* Keras YOLOv4
Model

https://github.com/david8862/keras-YOLOv3-model-set

Devices Under Test

DUT-1 Model NUC11TNHv5
CPU Intel® Core™ i5-1145G7 x 8
GPU Intel® Iris® Xe Graphics
Memory 16 GB
0sS Ubuntu 20.04 LTS
OpenVINO™ | 2022.2.0

DUT-2 |CPU Intel® Core™ i7-10750H x 12

Optimization of YOLOv4 and YOLOv4-tiny
Models with Customized Configurations using
Intel® Distribution of OpenVINO™ Toolkit

White Paper
6

August 2023
Document Number: 787419-1.0

https://www.intel.com/content/www/us/en/design/resource-design-center.html
https://software.seek.intel.com/openvino-toolkit
https://docs.openvino.ai/2022.2/openvino_docs_MO_DG_prepare_model_convert_model_tf_specific_Convert_YOLO_From_Tensorflow.html#converting-a-yolov4-model-to-ir
https://docs.openvino.ai/2022.2/openvino_docs_MO_DG_prepare_model_convert_model_tf_specific_Convert_YOLO_From_Tensorflow.html#converting-a-yolov4-model-to-ir
https://docs.openvino.ai/2022.2/openvino_docs_MO_DG_prepare_model_convert_model_tf_specific_Convert_YOLO_From_Tensorflow.html#converting-a-yolov4-model-to-ir
https://docs.openvino.ai/2022.2/openvino_docs_MO_DG_prepare_model_convert_model_tf_specific_Convert_YOLO_From_Tensorflow.html#converting-a-yolov4-model-to-ir
https://github.com/openvinotoolkit/open_model_zoo/tree/master/demos/object_detection_demo/python
https://github.com/openvinotoolkit/open_model_zoo/tree/master/demos/object_detection_demo/python
https://github.com/ngocdaumai/Fire-Detection-Using-YoloV4/tree/main
https://github.com/ngocdaumai/Fire-Detection-Using-YoloV4/tree/main
https://github.com/AlexeyAB/darknet
https://github.com/david8862/keras-YOLOv3-model-set

intel.

Introduction
GPU Intel® UHD Graphics
Memory 16 GB
oS Ubuntu 20.04 LTS
OpenVINO™ | 2022.2.0
8
Optimization of YOLOv4 and YOLOv4-tiny
Models with Customized Configurations using
Intel® Distribution of OpenVINO™ Toolkit
August 2023 White Paper

Document Number: 787419-1.0

7

intel.

2.0

Optimization of YOLOv4 and YOLOv4-tiny Models

Optimization of YOLOv4 and YOLOv4-tiny
Models

2.1

2.2

Optimization of

Prerequisites

a. Create a Python* virtual environment and upgrade the pip version in DUT-1

python -m venv ov venv
source ov_venv/bin/activate
python -m pip install --upgrade pip

b. Install OpenVINO™ Development Tools including the model optimization utility
OpenVINO™ Runtime, and TensorFlow

|pip install openvino-dev[tensorflow]==2022.2.0 |

Optimization of Models with Customized Classes

The YOLOv4 models are trained in the Darknet framework and consist of two files:
.cfg file with model configurations and .weights file with model weights. Usually, the
models are pre-trained on the customized dataset by changing the input shape or
the number of classes in the configuration file. For these cases, the following steps
are used to convert the YOLOv4/YOLOv4-tiny model into IR format.

a. Download the models

i. YOLOv4

| omz downloader --name yolo-v4-tf |

The above command creates the public/yolo-v4-tf folder with the model
weights (yolov4.weights) trained on COCO dataset and the keras-YOLOv3-
model-set repository for converting the model into Tensorflow's
SavedModel format. Replace yolov4.weights and yolov4.cfg (in public/yolo-
v4-tf/keras-YOLOv3-model-set/cfg) with the customized YOLOv4 weights
and cfg files.

ii. YOLOv4-tiny

| omz downloader --name yolo-v4-tiny-tf |

The above command creates the public/yolo-v4-tiny-tf folder with the
model weights (yolov4-tiny.weights) trained on COCO dataset and the
keras-YOLOv3-model-set repository for converting the model into
Tensorflow's protobuf binary format. Replace yolov4-tiny.weights and
yolov4-tiny.cfg (in public/yolo-v4-tiny-tf/keras-YOLOv3-model-set/cfg) with
the customized YOLOv4-tiny weights and cfg files.

YOLOv4 and YOLOv4-tiny

Models with Customized Configurations using
Intel® Distribution of OpenVINO™ Toolkit

White Paper
8

August 2023
Document Number: 787419-1.0

https://github.com/AlexeyAB/darknet
https://github.com/david8862/keras-YOLOv3-model-set
https://github.com/david8862/keras-YOLOv3-model-set
https://github.com/david8862/keras-YOLOv3-model-set

Optimization of YOLOv4 and YOLOv4-tiny Models I n te I®

b. Convert the models from Darknet framework into IR format with FP32 and
FP16 precisions

i. YOLOv4

|omziconverter --name yolo-v4-tf

This command achieves the YOLOv4 model conversion in two steps: (1)
Converts the model weights from Darknet into TensorFlow's SavedModel
format; (2) Converts the model from TensorFlow into IR format with FP32
and FP16 precisions using Model Optimizer.

ii. YOLOv4-tiny

|omz_converter --name yolo-v4-tiny-tf

This command achieves the YOLOv4-tiny model conversion in three steps:
(1) Converts the model weights from Darknet into Keras (.h5) format; (2)
Converts the model from Keras into Tensorflow's protobuf binary (.pb)
format; (3) Converts the model from Tensorflow into IR format with FP32
and FP16 precisions using Model Optimizer.

2.2.1 Verification of Inference Results

For the verification purpose, the pre-trained YOLOv4-tiny model for fire detection is
optimized according to Section 2.2, and the detection results are presented using
the object detection demo in Open Model Zoo repository.

a. Clone the Open Model Zoo repository

git clone --recurse-submodules
https://github.com/openvinotoolkit/open model zoo.git

b. Verify the detection results of the optimized models in IR format using the
object detection demo

python3

open model zoo/demos/object detection demo/python/object d
etection demo.py -d CPU -i test input.jpg -m public/yolo-
v4d-tiny-tf/FPl6/yolo-v4-tiny-tf.xml -at yolov4d -r --labels
class names.txt -o pred out.jpg --no_show -nstreams 1 -
nireq 1

Optimization of YOLOv4 and YOLOv4-tiny

Models with Customized Configurations using

Intel® Distribution of OpenVINO™ Toolkit

August 2023 White Paper
Document Number: 787419-1.0 9

https://github.com/ngocdaumai/Fire-Detection-Using-YoloV4/tree/main
https://github.com/openvinotoolkit/open_model_zoo/tree/master/demos/object_detection_demo/python

m
I n te I o Optimization of YOLOv4 and YOLOv4-tiny Models

Figure 2. Detection Result of the Optimized YOLOv4-tiny Model

The detection result in Figure 2clearly illustrates that the optimized YOLOv4-tiny
model can detect fire in the input image.

2.3 Optimization of Models with Customized Classes and
Anchors
The values of anchors in the YOLOv4/YOLOv4-tiny model configuration file depend
on the aspect ratio of the objects in the training dataset. Moreover, they determine

the position of bounding box in the detection results. The default anchors of the
two models trained on the COCO dataset are presented in Table 4.

Table 4. Default Anchors in YOLOv4 and YOLOv4-tiny Models

Model Anchors
YOLOv4 12,16, 19, 36, 40, 28, 36, 75,76, 55,72, 146, 142, 110, 192, 243,
459, 401
YOLOVA4-tiny 10,14, 23,27, 37,58, 81,82, 135,169, 344,319

If the aspect ratio of the objects in the use case varies drastically from those in the
COCO dataset, then the default anchors may not predict the accurate bounding
boxes in the detection results. In these cases, the anchors are computed from the
user's dataset and the method discussed in Section 2.2 may not give accurate
detection results. So, the following steps are proposed to accommodate the
changes in anchors while post-processing the inference results. The optimization
steps are slightly modified from those in the OpenVINO™ documentation to get the
accurate detection results with the customized inference script.

a. Clone the keras-YOLOv3-model-set repository

Optimization of YOLOv4 and YOLOv4-tiny

Models with Customized Configurations using

Intel® Distribution of OpenVINO™ Toolkit

White Paper August 2023
10 Document Number: 787419-1.0

https://docs.openvino.ai/2022.2/openvino_docs_MO_DG_prepare_model_convert_model_tf_specific_Convert_YOLO_From_Tensorflow.html#converting-a-yolov4-model-to-ir

Optimization of YOLOv4 and YOLOv4-tiny Models I n te I®

git clone https://github.com/david8862/keras-YOLOv3-model-
set

b. Convert the model to the TensorFlow's SavedModel format

python3 keras-YOLOv3-model-

set/tools/model converter/convert.py yolov4-tiny-
custom.cfg yolov4-tiny-custom.weights yolov4-tiny-tf2 --
yolo4 reorder

The execution of the above command creates the text file yolov4-tiny-
tf2_anchors.txt containing the customized anchors and the protobuf model and
variables are saved in the folder yolov4-tiny-tf2. To convert the YOLOv4 model,
simply replace the model weights and cfg file.

c. Convert the model from Tensorflow's SavedModel into IR formats with FP32
and FP16 precisions using Model Optimizer

mo —--saved model dir yolov4-tiny-tf2 --output dir yolové-
tiny-FP32 --input shape [1,416,416,3] --model name yolov4-
tiny --input=image input

mo --saved model dir yolov4-tiny-tf2 --output dir yolové-
tiny-FP16 --compress to fpl6 --input shape [1,416,416,3] -
-model name yolov4-tiny --input=image input

If the model input shape differs from the default value, set the value of
input_shape parameter to the target input shape of the model.
2.3.1 Verification of Inference Results

The Python script yolo_v4 ov_inference.py is developed by updating the existing
script yolo.py in keras-YOLOv3-model-set repository with the following changes:

1. Comment out the lines 12, 14-17, 20-22, 24-25, 33, 68

2. Insertthe following line in the import statements to use the OpenVINO™ Runtime
API

|from openvino.runtime import Core

3. Replace the _generate_model(self) function in YOLO_np class with the following
to load and compile the optimized YOLOv4/YOLOv4-tiny model using
OpenVINO™ Runtime

def generate model (self):
weights path = os.path.expanduser (self.weights path)
core = Core()
Read the optimized model
model = core.read model (weights path)
Load the model on the target device
compiled model = core.compile model (model, 'CPU')
return compiled model

Optimization of YOLOv4 and YOLOv4-tiny

Models with Customized Configurations using

Intel® Distribution of OpenVINO™ Toolkit

August 2023 White Paper
Document Number: 787419-1.0 11

https://github.com/david8862/keras-YOLOv3-model-set/blob/master/yolo.py

|
I n te I® Optimization of YOLOv4 and YOLOv4-tiny Models

4. Replace the predict(self, image_data, image_shape) function in YOLO_np class
with the following to post process the inference results using

def predict(self, image data, image shape):
num_anchors = len(self.anchors)

output blob = []
for i in range(len(self.yolo model.outputs)) :
output blob.append(self.yolo model.output(i))

output = self.yolo model ([image data])

predictions = []

for i in range(len(output blob)) :
predictions.append (output [output blob[i]])

out boxes, out classes, out scores =

yolo3 postprocess np(predictions, image shape,
self.anchors, len(self.class names),
self.model input shape, max boxes=100,
confidence=self.score, iou threshold=self.iou,
elim grid sense=self.elim grid sense)

return out boxes, out classes, out scores

5. Insert the following line in detect_img(yolo) function to save the detection results

|riimage.save('predictioniout.jpg') |

6. Verify the detection results with the inference script

a. Copy the customized inference script yolo_v4 ov_inference.py to the
folder keras-YOLOv3-model-set.

b. Install the dependencies required for running the inference script

pip install keras applications imgaug |

c. Run the inference script

python3 yolo v4 ov inference.py --weights path <path to
yolov4-tiny.xml> --classes path <path to class name.txt> -
-image --anchors path <path to yolov4-tiny-

tf2 anchors.txt>

Optimization of YOLOv4 and YOLOv4-tiny

Models with Customized Configurations using

Intel® Distribution of OpenVINO™ Toolkit

White Paper August 2023
12 Document Number: 787419-1.0

|
Performance Improvement in Real-Time Object Detection Use Case I n te I o

3.0 Performance Improvement in Real-Time

Object Detection Use Case

3.1 Use Case

Automatic License Plate Recognition (ALPR) is commonly used in security barrier
use cases to monitor the entry of vehicles into/out of the target workspace. It uses
the deep learning models for vehicle detection, license plate detection, and optical
character recognition for recognizing the license plate number. An ISV would like to
increase the inference speed of license plate detection using OpenVINO™ toolkit.
However, the license plate detection is based on the YOLOv4-tiny model with
customized anchors and classes, where the anchors are computed from their
dataset. The subsequent section demonstrates the improved detection accuracy
and inference speed using the method presented in Section 2.3.

3.2 Performance Improvements

First, the pre-trained YOLOv4-tiny model provided by the ISV is optimized
according to Section 2.2. The corresponding detection result in Figure 3 shows the
inaccurate prediction of bounding box (in blue) for the target license plate in the
given image. On the other hand, the YOLOv4-tiny model optimized by the steps in
Section 2.3 enables accurate prediction of bounding box (in red) which is aligned
closely to the license plate as shown in Figure 4. Thus, the proposed method in
Section 2.3 significantly improves the detection accuracy as the post-processing
steps in the inference script are customized based on the anchors.

Figure 3. Detection Result with Inaccurate Prediction of Bounding Box

Optimization of YOLOv4 and YOLOv4-tiny

Models with Customized Configurations using

Intel® Distribution of OpenVINO™ Toolkit

August 2023 White Paper
Document Number: 787419-1.0 13

m
I n te I o Performance Improvement in Real-Time Object Detection Use Case

Figure 4. Detection Result with Accurate Prediction of Bounding Box

Moreover, the ISV reported that the inference time per image is decreased by 98%
from 680ms (using Darknet framework) to 16ms with the optimized YOLOv4-tiny
model on DUT-2 (Intel® Core™ i7-10750H CPU).

Optimization of YOLOv4 and YOLOv4-tiny

Models with Customized Configurations using

Intel® Distribution of OpenVINO™ Toolkit

White Paper August 2023
14 Document Number: 787419-1.0

Conclusion I n te I®

4.0 Conclusion

This white paper presents the BKMs for optimizing YOLOv4 and YOLOv4-tiny
models with customized classes and anchors using OpenVINO™ toolkit. This also
covers the steps to verify the inference results of the optimized models. The
resulting performance improvement is demonstrated through the YOLOv4-tiny-
based license plate detection in the real-time ALPR use case of an ISV. The results
reveal that the proposed method improves the detection accuracy while decreasing
the inference time by 98%.

Optimization of YOLOv4 and YOLOv4-tiny

Models with Customized Configurations using

Intel® Distribution of OpenVINO™ Toolkit

August 2023 White Paper
Document Number: 787419-1.0 15

	White Paper
	Notices and Disclaimers
	Contents
	Revision History
	1.0 Introduction
	1.1 Acronyms
	1.2 Reference Documents

	2.0 Optimization of YOLOv4 and YOLOv4-tiny Models
	2.1 Prerequisites
	2.2 Optimization of Models with Customized Classes
	2.2.1 Verification of Inference Results

	2.3 Optimization of Models with Customized Classes and Anchors
	2.3.1 Verification of Inference Results

	3.0 Performance Improvement in Real-Time Object Detection Use Case
	3.1 Use Case
	3.2 Performance Improvements

	4.0 Conclusion

