
 1

TECHNOLOGY GUIDE
Intel® Corporation

Node Feature Discovery - Orchestrating Intelligent
Workload Scheduling

Author
Gershon Schatzberg

1 Introduction
Node Feature Discovery (NFD) is a Kubernetes* add-on that detects and advertises
hardware and software capabilities of a platform that can, in turn, be used to facilitate
intelligent scheduling of a workload. This document details the deployment and usage of
NFD. It is written for developers and architects who want to integrate NFD into their
Kubernetes deployment to facilitate improved workload placement based on platform
capabilities.

NFD is an open source Kubernetes community project. The software is available at
GitHub*.

Note: This document does not describe how to set up a Kubernetes cluster. We
recommend that you perform those steps as a prerequisite.

This document is part of the Network Transformation Experience Kit, which is available at
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-
kits.

https://github.com/kubernetes-sigs/node-feature-discovery
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits

Technology Guide | Node Feature Discovery - Orchestrating Intelligent Workload Scheduling

 2

Table of Contents
1 Introduction .. 1

1.1 Terminology .. 3
1.2 Reference Documentation.. 3

2 Overview ... 3
2.1 Technology Description .. 4
2.2 Feature Labels... 5

3 Deployment .. 7
3.1 Deployment as a DaemonSet .. 7
3.2 Deployment as a Job .. 8
3.3 Deploying Custom-Built Version.. 8

4 Using Labels to Schedule Pods... 9
4.1 nodeSelector ... 9
4.2 nodeAffinity ... 9

5 Runtime Configuration .. 9
5.1 Command Line Options ... 10
5.2 Configuration File ... 10

6 Summary ... 11

Figures
Figure 1 Node Feature Discovery in Kubernetes ...5

Tables
Table 1. Terminology ..3
Table 2. Reference Documents ..3
Table 3. Feature Labels...6
Table 4. Command Line Options ... 10

Document Revision History

REVISION DATE DESCRIPTION

001 December 2018 Initial release.

002 February 2022 Added new features.

003 February 2022 Revised the document for public release to Intel® Network Builders.

Technology Guide | Node Feature Discovery - Orchestrating Intelligent Workload Scheduling

 3

1.1 Terminology

Table 1. Terminology

ABBREVIATION DESCRIPTION

CPUID CPU Identification

DPDK Data Plane Development Kit

EPA Enhanced Platform Awareness

etcd Distributed key value store that serves as a reliable way to store data across a cluster of machines

Intel® AVX Intel® Advanced Vector Extensions

Intel® RDT Intel® Resource Director Technology

Intel® VT-d Intel® Virtualization Technology (Intel® VT) for Directed I/O

IOMMU Input/Output Memory Management Unit

NFD Node Feature Discovery

NUMA Non-Uniform Memory Access

PF Physical Function

P-state CPU performance state

RDT Intel® Resource Director Technology

SLA Service Level Agreement

SR-IOV Single Root I/O Virtualization

VF Virtual Function

1.2 Reference Documentation

Table 2. Reference Documents

REFERENCE SOURCE

Enhanced Platform Awareness in Kubernetes Application Note https://networkbuilders.intel.com/solutionslibrary/enhanced-platform-
awareness-in-kubernetes-application-note

Enhanced Platform Awareness in Kubernetes Feature Brief https://networkbuilders.intel.com/solutionslibrary/enhanced-platform-
awareness-feature-brief

Enhanced Platform Awareness in Kubernetes Performance
Benchmark Report

https://networkbuilders.intel.com/solutionslibrary/enhanced-platform-
awareness-in-kubernetes-performance-benchmark-report

Enabling New Features with Kubernetes for NFV White Paper https://networkbuilders.intel.com/solutionslibrary/enabling-new-features-in-
kubernetes-for-nfv

2 Overview
In a standard deployment, Kubernetes reveals very few details about the underlying platform to the user. This may be a good
strategy for general data center use, but, in many cases a workload behavior or its performance, may improve by leveraging the
platform (hardware and/or software) features. Node Feature Discovery detects these features and advertises them through a
Kubernetes concept called node labels, which in turn, can be used to control workload placement in a Kubernetes cluster. NFD runs
as a separate container on each individual node of the cluster, discovers capabilities of the node, and finally, publishes these as
node labels using the Kubernetes API.

NFD only handles non-allocatable features, that is, unlimited capabilities that do not require any accounting and are available to all
workloads. Allocatable resources that require accounting, initialization, and other special handling (such as Intel® QuickAssist
Technology, GPUs, and FPGAs) are presented as Kubernetes Extended Resources and handled by device plugins. They are out of
the scope of NFD.

NFD currently detects the following features:

• CPUID: Intel® processors have a special CPUID instruction for determining the CPU features, including the model and
support for instruction set extensions, such as Intel® Advanced Vector Extensions (Intel® AVX), CLDEMOTE, ENQCMD, 5G-

https://networkbuilders.intel.com/solutionslibrary/enhanced-platform-awareness-in-kubernetes-application-note
https://networkbuilders.intel.com/solutionslibrary/enhanced-platform-awareness-in-kubernetes-application-note
https://networkbuilders.intel.com/solutionslibrary/enhanced-platform-awareness-feature-brief
https://networkbuilders.intel.com/solutionslibrary/enhanced-platform-awareness-feature-brief
https://networkbuilders.intel.com/solutionslibrary/enhanced-platform-awareness-in-kubernetes-performance-benchmark-report
https://networkbuilders.intel.com/solutionslibrary/enhanced-platform-awareness-in-kubernetes-performance-benchmark-report
https://networkbuilders.intel.com/solutionslibrary/enabling-new-features-in-kubernetes-for-nfv
https://networkbuilders.intel.com/solutionslibrary/enabling-new-features-in-kubernetes-for-nfv

Technology Guide | Node Feature Discovery - Orchestrating Intelligent Workload Scheduling

 4

ISA, MOVDIR, etc. Certain workloads, such as machine learning, may gain a significant performance improvement from
these extensions (for example Intel® AVX-512). NFD advertises all CPU features obtained from the CPUID information.

• SR-IOV networking: Single Root I/O Virtualization (SR-IOV) is a technology for isolating PCI Express* resources. It allows
multiple virtual environments to share a single PCI Express hardware device (physical function, PF) by offering multiple
virtual functions (VF) that appear as separate PCI Express interfaces. In the case of network interface cards (NICs), SR-IOV
VFs allow direct hardware access from multiple Kubernetes pods, increasing network I/O performance, and making it
possible to run fast user-space packet processing workloads (for example, based in Data Plane Development Kit). NFD
detects the presence of SR-IOV-enabled NICs, allowing optimized scheduling of network-intensive workloads.

• Intel® RDT: Intel® Resource Director Technology (Intel® RDT) allows visibility and control over the usage of last-level cache
(LLC) and memory bandwidth between co-running workloads. By allowing allocation and isolation of these shared
resources, and thus reducing contention, RDT helps in mitigating the effects of noisy neighbors. This provides more
consistent and predictable performance which, may be essential in meeting Service Level Agreements (SLA), for example.
NFD detects the different RDT technologies supported by the underlying hardware platform.

• Intel® Speed Select Technology: Intel® Speed Select Technology is a family of features providing nuanced control over
CPU. NFD detects the state of Intel® Speed Select Technology, allowing optimal scheduling of workloads that can benefit
from this technology.

• IOMMU: An input/output memory management unit (IOMMU), such as Intel® Virtualization Technology (Intel® VT) for
Directed I/O (Intel® VT-d) technology, allows isolation and restriction of device accesses. This enables direct hardware
access in virtualized environments, highly accelerating I/O performance by removing the need for device emulation and
bounce buffers. This can be crucial for I/O heavy workloads in Kubernetes deployments using hypervisor-based container
runtimes, such as Kata* Containers. NFD detects if an IOMMU is supported by the host hardware platform and enabled in
the kernel of the host operating system.

• SSD storage: Solid state drives (SSD) have a huge performance advantage over traditional rotational hard disks. This may
be important for disk I/O intensive workloads. NFD detects the presence of non-rotational block storage on the node,
making it possible to accelerate workloads requiring fast local disk access.

• PMEM storage: NFD detects the presence of Persistent Memory storage on the node, providing good cost/performance
trade-off option.

• NUMA topology: Non-uniform memory access (NUMA) is a memory architecture where CPU’s memory access times are
dependent on the memory location. Access to CPU’s local memory is faster than to non-local memory (local memory of
another CPU) which can cause workloads to perform poorly if not properly designed for NUMA systems. On the other
hand, some highly NUMA-aware applications may experience negligible performance penalties. NFD detects the presence
of NUMA topology, making it possible to optimize scheduling of applications based on their NUMA-awareness.

• Linux* kernel: Some specific workloads may be highly dependent on the kernel version of the underlying host operating
system. For example, some kernel features may be required to be able to run an application, or they provide measurable
performance benefits. NFD detects the kernel version and advertises it through multiple labels, allowing the deployment of
workloads with different granularity of kernel version dependency.

• PCI: Detecting the presence of compatible PCI hardware devices is beneficial for some workloads. For example, Kubernetes
device plugins need to be deployed only on nodes that have hardware that the device plugin manages. NFD detects PCI
devices, such as Intel® Dynamic Load Balancer (Intel® DLB), allowing optimized scheduling of workloads dependent on
certain PCI devices.

o Intel® Software Guard Extensions (Intel® SGX) helps protect data in use via unique application isolation
technology.

o Intel Dynamic Load Balancer (Intel DLB) is a PCIe accelerator designed for use with DPDK for load-balanced,
prioritized scheduling of core-to-core communication, and provides enhanced performance than software-based
load balancing.

NFD is under active development, and has evolved significantly, gaining new functionality, including the discovery of multiple new
features, as shown in this feature label.

2.1 Technology Description
Node Feature Discovery is designed to run on every node in a Kubernetes cluster, either as a daemon set or a job. The Node Feature
Discovery pod discovers capabilities on each node it runs on, and then advertises those capabilities as node labels. As seen in
Figure 1 below, NFD has run on each node and discovered the capabilities of the nodes (Turbo Boost, AVX, IOMMU, etc.) and then
advertised those as labels, which are stored on the Kubernetes Master node in the ETCD data store. ETCD stores configuration
information for large scale distributed systems; the name originates from the Unix*/etc folder plus d for distributed systems.

https://kubernetes-sigs.github.io/node-feature-discovery/v0.9/get-started/features.html#feature-labels

Technology Guide | Node Feature Discovery - Orchestrating Intelligent Workload Scheduling

 5

Using a Node Selector, an incoming pod can express its requirements for specific capabilities. Figure 1 shows Application A needs to
land on a node with SR-IOV and Turbo Boost capabilities. The Kubernetes scheduler on the master node will use the stored node
labels to match the incoming pod to the most appropriate node. In the figure, this is Node 1. Application B has no special capability
requests; therefore it can be placed on either node. In the figure, it is placed on Node 2.

Figure 1 Node Feature Discovery in Kubernetes

2.2 Feature Labels
NFD uses labels for advertising node-level features. Kubernetes labels are key-value pairs that are attached to Kubernetes objects,
such as pods or nodes for specifying attributes of objects that may be relevant to the end user. They can also be used to organize
objects into specific subsets. Labels are a part of the metadata information that is attached to each node's description. All this
information is stored in etcd in the Kubernetes control plane. Node labels published by NFD encode the following information:

• A namespace
• The source of the feature
• The name of the feature, with optional attribute name or sub-feature separated by a dot
• The value or the state of the feature

An example of a label created by node feature discovery:
node.alpha.kubernetes-incubator.io/nfd-network-sriov.capable = true

This indicates that the namespace is node.alpha.kubernetes-incubator.io, the source is network, feature name is
sriov.capable and the value is true, indicating the presence of SR-IOV capable network interface card.

In addition to the actual node feature labels, NFD advertises its own software version:
node.alpha.kubernetes-incubator.io/node-feature-discovery.version =
v0.3.0

The following table describes the details of the supported feature sources and their feature labels.

Technology Guide | Node Feature Discovery - Orchestrating Intelligent Workload Scheduling

 6

Table 3. Feature Labels

Source Feature Attribute Possible Values Description

cpuid <cpuid feature
name>

n/a true
All CPU features returned by the CPUID
instruction. Examples:

node.alpha.kubernetes-incubator.io/nfd-cpuid-
AVX= true node.alpha.kubernetes-
incubator.io/nfd-cpuid-AVX512F= true
node.alpha.kubernetes-incubator.io/nfd-cpuid-
SHA= true

kernel version full <version string>
Full kernel version. Example:

node.alpha.kubernetes-incubator.io/nfd-kernel-
version.full =4.5.6- 7-g123abcde

 major <version number>
First component of the kernel version.
Example:

node.alpha.kubernetes-incubator.io/nfd-
kernel-version.major= 4

 minor <version number>
Second component of the kernel version.
Example:

node.alpha.kubernetes-incubator.io/nfd-
kernel-version.minor= 5

 revision <version number>
Third component of the kernel version.
Example:

node.alpha.kubernetes-incubator.io/nfd-
kernel-version.minor= 6

iommu enabled n/a true
An IOMMU is present and enabled in the kernel.
Example:

node.alpha.kubernetes-incubator.io/nfd-
iommu-enabled = true

memory numa n/a true
NUMA topology detected. Example:

node.alpha.kubernetes-incubator.io/nfd-
memory-numa = true

network sriov capable true
SR-IOV capable Network Interface Card(s)
present. Example:

node.alpha.kubernetes-incubator.io/nfd-
network.sriov.capable = true

 configured true
SR-IOV Virtual Functions have been configured.
Example:

node.alpha.kubernetes-incubator.io/nfd-
network.sriov.configured = true

pci <device label> present true
Presence of PCI device is detected. Example:

node.alpha.kubernetes-incubator.io/nfd-pci-
1200_8086.present=true

Technology Guide | Node Feature Discovery - Orchestrating Intelligent Workload Scheduling

 7

Source Feature Attribute Possible Values Description

NOTE: <device label> is composed of raw PCI IDs, separated by underscores. The set of fields is configurable, valid fields being
class, vendor, device, subsystem_vendor and subsystem_device (defaults are class and vendor). Also the set of PCI device classes
that the feature source detects is configurable. By default, device classes 03(h), 0b40(h), and 12(h), i.e. GPUs, co-processors, and
accelerator cards are detected. See Runtime Configuration section for more details about NFD configuration options.

rdt RDTCMT
n/a true

Intel® RDT Cache Monitoring Technology is
supported. Example:

node.alpha.kubernetes-incubator.io/nfd-rdt-
RDTCMT = true

RDTMBM
n/a

true Intel® RDT Memory Bandwidth Monitoring is
supported. Example:

node.alpha.kubernetes-incubator.io/nfd-rdt-
RDTMBM = true

RDTMBA
n/a

true Intel® RDT Memory Bandwidth Allocation is
supported. Example:

node.alpha.kubernetes-incubator.io/nfd-rdt-
RDTMBA = true

RDTMON
n/a

true Intel® RDT monitoring technologies are
supported. Example:

node.alpha.kubernetes-incubator.io/nfd-rdt-
RDTMON = true

RDTL3CA
n/a

true Intel® RDT L3 Cache Allocation Technology is
supported. Example:

node.alpha.kubernetes-incubator.io/nfd-rdt-
RDTL3CA= true

RDTL2CA
n/a

true Intel® RDT L2 Cache Allocation Technology is
supported. Example:

node.alpha.kubernetes-incubator.io/nfd-rdt-
RDTL2CA= true

selinux enabled
n/a

true SELinux enforcing has been turned on in the
Linux kernel. Example:

node.alpha.kubernetes-incubator.io/nfd-
selinux-enabled = true

storage nonrotationaldisk
n/a

true Non-rotational block device(s), like an SSD, is
present. Example:

node.alpha.kubernetes-incubator.io/nfd-
storage-nonrotationaldisk = true

3 Deployment
3.1 Deployment as a DaemonSet
The preferred way to deploy NFD is to run it as a Kubernetes DaemonSet. This ensures that all nodes of the cluster run NFD, and
new nodes get automatically labeled as soon as they become schedulable in the cluster. As a DaemonSet, NFD runs in the
background, re-labeling nodes every 60 seconds (by default) so that any changes in the node capabilities are detected.

Technology Guide | Node Feature Discovery - Orchestrating Intelligent Workload Scheduling

 8

In its GitHub repository, NFD provides template specs that can be used for deployment:

$ kubectl create -f \
https://raw.githubusercontent.com/kubernetes-incubator/node-feature-

discovery/master/rbac.yaml
$ kubectl create -f \
https://raw.githubusercontent.com/kubernetes-incubator/node-feature-

discovery/master/node-feature-discovery-daemonset.yaml.template

This deploys the latest release of NFD, with the default configuration in the default Kubernetes namespace.

You can verify that NFD is running as expected by running:
$ kubectl get ds/node-feature-discovery

The output is similar to:
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
node-feature-discovery 5 5 5 5 <none> 2m

Also, you can check the labels created by NFD:
$ kubectl label node --list –all

Listing labels for Node./node2:
beta.kubernetes.io/arch=amd64
beta.kubernetes.io/os=linux
kubernetes.io/hostname=node2
node.alpha.kubernetes-incubator.io/nfd-cpuid-AESNI=true
node.alpha.kubernetes-incubator.io/nfd-cpuid-AVX=true
node.alpha.kubernetes-incubator.io/nfd-cpuid-CLMUL=true
node.alpha.kubernetes-incubator.io/nfd-cpuid-CMOV=true
node.alpha.kubernetes-incubator.io/nfd-cpuid-CX16=true
node.alpha.kubernetes-incubator.io/nfd-cpuid-ERMS=true
node.alpha.kubernetes-incubator.io/nfd-cpuid-F16C=true

node.alpha.kubernetes-incubator.io/nfd-cpuid-MMX=true

3.2 Deployment as a Job
An alternative deployment mechanism is to run NFD as a one-shot Kubernetes Job. This may be a useful in a static cluster where no
hardware changes are expected and the number of running pods need to be minimized. The NFD repository contains an example
template and a deployment script that demonstrates this. You need to clone the repository in order to run this:

$ git clone https://github.com/kubernetes-incubator/node-feature- discovery
&& cd node-feature-discovery
$./label-nodes.sh

The script launches as many instances of NFD as there are nodes in the Ready state in the cluster. However, this approach is not
guaranteed to correctly run NFD on every node in all situations. For example, if some node is tainted NoSchedule or fails to start a
job for some other reason, then NFD may not run correctly. For these reasons, we recommend that you use a DaemonSet
deployment.

3.3 Deploying Custom-Built Version
Sometimes it may be desirable to run a self-built version of NFD, for example to try out an unreleased version. You must have
installed Docker* and make to run the build. Follow the steps below:

1. Clone NFD source code:
$ git clone https://github.com/kubernetes-incubator/node-feature-
discovery
$ cd node-feature-discovery

2. Next, run make to build the Docker image: $ make
3. Take a note of the NFD image hash built in the previous step, tag it and push the NFD image to your Docker registry,

available for your Kubernetes cluster:
$ docker tag <image hash> <docker registry>/<image name>
$ docker push <docker registry>/<image name>

4. Edit node-feature-discovery-daemonset.yaml.template and change it to use your custom-built container image:
...
Image: <docker registry>/<image name>

Technology Guide | Node Feature Discovery - Orchestrating Intelligent Workload Scheduling

 9

5. Deploy NFD:
$ kubectl apply -f node-feature-discovery-daemonset.yaml.template

4 Using Labels to Schedule Pods
Deploying NFD in a Kubernetes cluster labels all schedulable nodes according to the underlying platform features. These labels can
be used for placing hard or soft constraints on where specific pods should be run. This section describes the two mechanisms to
achieve this: nodeSelector and nodeAffinity.

4.1 nodeSelector
nodeSelector is a simple and limited mechanism to specify hard requirements on which node a pod should be run. nodeSelector
contains a list of key-value pairs presenting required node labels and their values. A node must fulfill each of the requirements, that
is, it must have each of the indicated label-value pairs in order for the pod to be able to be scheduled there.

The example below shows a pod specification requiring to be run on a node with SR-IOV capability:

apiVersion: v1 kind: Pod
metadata:

name: node-selector-example spec:
nodeSelector:

node.alpha.kubernetes-incubator.io/nfd-network-sriov.capable:"true"
containers:
- name: nginx image:

nginx

4.2 nodeAffinity
nodeAffinity provides a much more expressive way to specify constraints on which nodes a pod should be run. It provides a range
of different operators to use for matching label values (not just “equal to”) and allows the specification of both hard and soft
requirements (i.e., preferences).

The example below presents a pod specification where a pod is required to be run on a host with kernel version greater than 4.14,
with a preference for Intel® Turbo Boost Technology being disabled (demonstrating soft anti-affinity).

apiVersion: v1 kind: Pod metadata:
name: node-affinity-example spec:
affinity: nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution: nodeSelectorTerms:
- matchExpressions:
- key: node.alpha.kubernetes-incubator.io/nfd-kernel-
version.major
operator: Gt values: ["3"]
- key: node.alpha.kubernetes-incubator.io/nfd-kernel-
version.minor

operator: Gt values:
["14"]

preference: matchExpressions:
- key: node.alpha.kubernetes-incubator.io/nfd-pstate-
turbo
operator: NotIn
values: ["true"] containers:
- name: nginx
image: nginx

5 Runtime Configuration
The template deployment specifications provided as part of the NFD source code repository (see Section 3 Deployment) specifies a
default configuration that should be usable as-is for most users. However, NFD provides ways to alter its behavior through
command line options and a configuration file.

Technology Guide | Node Feature Discovery - Orchestrating Intelligent Workload Scheduling

 10

5.1 Command Line Options
NFD has multiple command line options that can be used for tasks such as altering the set of labels to be advertised, for example.
Specify the desired command line options under the Args keyword in the NFD pod specification.

Available command line options are listed in the following table.

Table 4. Command Line Options

Option Description

--sources=<sources> Comma-separated list of enabled feature sources. Can be used to limit detected features
to a limited set of features. By default, all sources are enabled.

--label-whitelist=<pattern> Regular expression to filter published label names. Empty by default, that is, no whitelist
filter is enabled, and all labels are published.

--oneshot Label once and exit after that. This is used in the one-shot Job configuration.

--sleep-interval=<time> Interval of re-labeling. Specified using numbers and units ("s", "m", "h"), for example:
"1m30s". Non-positive value implies no re-labeling (that is, infinite sleep). Does not have
any effect if --oneshot is specified. Default interval is 60s.

--no-publish Do not publish any labels. Useful for testing.

--config=<path> NFD configuration file to read. Can be used to specify a custom location for the
configuration file.

--options=<config> Specify configuration options from command line, specified in the same format as in the
configuration file (i.e. json or yaml). These options will override settings read from the
configuration file. Useful for quickly testing configuration options and specifying a single
configuration option.

5.2 Configuration File
Some aspects of NFD can be configured through an optional configuration file, which is located by default in
/etc/kubernetes/node-feature-discovery/node- feature-discovery.conf. A custom location can be specified
using the --config command line option. The configuration file must be available inside the NFD pod, and thus, Volumes and
VolumeMounts are needed to make it available for NFD. The preferred method is to use a ConfigMap.

The following steps provide an example of creating and deploying a configuration map, using the example configuration from the
NFD source code repository as a template.

1. Use the example configuration as a base for your customized configuration. $ cp node-feature-
discovery.conf.example node-feature- discovery.conf

$ vim node-feature-discovery.conf # edit the configuration

2. Create a Kubernetes ConfigMap object from your configuration file.

$ kubectl create configmap node-feature-discovery-config --from-

file=node-feature-discovery.conf

3. Configure Volumes and VolumeMounts in the NFD pod spec: Note: Only the relevant code snippets are shown below.

... containers:
- volumeMounts:

- name: node-feature-discovery-config
mountPath: "/etc/kubernetes/node-feature-discovery/" ...

volumes:
- name: node-feature-discovery-config configMap:

name: node-feature-discovery-config ...

4. NFD will read your custom configuration file.

Technology Guide | Node Feature Discovery - Orchestrating Intelligent Workload Scheduling

 11

You could also use other types of volumes, of course. For example, hostPath could be used for local node-specific configurations.

The example configuration in the NFD source code repository is used as a configuration in the NFD container image. Thus, by
directly editing the example configuration, you can alter the default configuration in custom-built images.

Configuration options can also be specified via the --options command line flag, in which case no mounts need to be used. This
is mostly recommended for quickly testing configuration options and possibly specifying single options without the need to use
ConfigMap. For example, a snippet from NFD DaemonSet specification:

... containers:

- args:

- '--options={"sources": { "pci": { "deviceClassWhitelist": ["12"] } } }'

- '--sleep-interval=60s' ...

Currently, the only available configuration options are related to the PCI feature source.

6 Summary
Together with other technologies, including device plugins, NFD facilitates workload optimization through resource-aware
scheduling. In particular, NFD can benefit workloads that utilize modern vector data processing instructions, require SR-IOV
networking, and have specific kernel requirements.

This document describes the usage and benefits of Node Feature Discovery in a Kubernetes deployment, including:

• Deployment of NFD
• Description of platform features discovered by NFD
• Using NFD labels for optimizing workload placement
• Runtime configuration of NFD

For more information on what Intel is doing with containers, see https://networkbuilders.intel.com/intel-technologies/container-
experience-kits.

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies may require enabled hardware, software, or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

The products described may contain design defects or errors known as errata, which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may
be claimed as the property of others.

 0222/DN/WIPRO/PDF 606833-003US

https://networkbuilders.intel.com/intel-technologies/container-experience-kits
https://networkbuilders.intel.com/intel-technologies/container-experience-kits
http://www.intel.com/PerformanceIndex

	1 Introduction
	1.1 Terminology
	1.2 Reference Documentation

	2 Overview
	2.1 Technology Description
	2.2 Feature Labels

	3 Deployment
	3.1 Deployment as a DaemonSet
	3.2 Deployment as a Job
	3.3 Deploying Custom-Built Version

	4 Using Labels to Schedule Pods
	4.1 nodeSelector
	4.2 nodeAffinity

	5 Runtime Configuration
	5.1 Command Line Options
	5.2 Configuration File

	6 Summary

