
 1

Quick Start Guide

Network and Edge Reference System Architectures – 5G
vRAN Security

5G vRAN security software based on 4th Gen Intel® Xeon® Scalable processor platform.

Authors

Abhijit Sinha

Alex Du

John Logan

Introduction
The Reference System Architectures (Reference System1) are forward-looking
Kubernetes*-cluster cloud-native reference platforms aiming to ease the development and
deployment of network and edge solutions.

This guide enables 5G vRAN security software using the Access Profile of the Container
Bare Metal Reference System Architecture (BMRA) on 4th Gen Intel® Xeon® Scalable
processors on a Kubernetes (K8s) cluster.

Some of the key highlights of the implementation are mentioned below:

• Service Management Orchestrator (SMO) and vRAN communication via NETCONF: A
client/server implementation abstracting communication between SMO and either the
Centralized Unit (CU), Distributed Unit (DU), or RAN Intelligent Controller (RIC)
secured by Intel’s Key Management Reference Application (KMRA)

• NETCONF security implementation: RSA/ECDSA (SHA384 length) keys are secured
using KMRA

• Secured container certification: Cosign/sigstore Kubernetes features configuration for
container certification

• Secure UEFI boot: Steps to enable secure boot chain using UEFI Secure Boot
(Appendix A)

Architecture and Setup
Figure 1 shows the architecture diagram of the Access Profile used for vRAN deployment. The profile enables the Intel®
Software Guard Extensions (Intel® SGX), KMRA, and SR-IOV network plugins, and Intel® oneAPI libraries on a real-time OS for
deploying 5G vRAN security use case.

1 In this document, "Reference System" refers to the Network and Edge Reference System Architecture.

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 2

Figure 1: BMRA Access Configuration Profile Architecture for 5G vRAN Security

Hardware BOM
Following is the list of the hardware components that are required for 5G vRAN setup:

Ansible Host Laptop or server running a UNIX base distribution with an internet connection

Controller Node (Optional) Any 3rd or 4th Gen Intel® Xeon® Scalable processor-based server

Worker Node 1x 4th Gen Intel® Xeon® Scalable processor on Intel® Software Development Platform (Intel® SDP)
S2EG4SEQ5Q
OR
1x 4th Gen Intel® Xeon® Scalable processor with Intel® vRAN Boost on Intel SDP S2EG4SEQ5Q

FEC Accelerator (Optional for this use case) Intel® vRAN Accelerator ACC100 Adapter on the target BBU server
Note: The above is not required for 4th Gen Intel® Xeon® Scalable processor with Intel® vRAN Boost

Ethernet
Adapter

Intel® Ethernet Network Adapter E810-CQDA2 or Intel® Ethernet Controller XXV/XL710 on the worker
node

Recommended
BIOS

Low Latency BIOS configuration is recommended with Intel® SGX turned on (refer to Chapter 3.8 of BMRA
User Guide)

Software BOM
Following is the list of the software components for 5G vRAN deployment, including security:

Security OpenSSL, Intel SGX, KMRA, Cosign/Sigstore container certification

Observability Telegraf, Open Telemetry, Prometheus, Jaeger, cAdvisor, Grafana, Kibana

Acceleration/ Data Plane Library DPDK, oneAPI

Connectivity Multus, SR-IOV CNI, NETCONF

https://networkbuilders.intel.com/solutionslibrary/network-and-edge-container-bare-metal-reference-system-architecture-user-guide
https://networkbuilders.intel.com/solutionslibrary/network-and-edge-container-bare-metal-reference-system-architecture-user-guide

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 3

Operators and Device Plugins SR-IOV device plugin, Intel SGX device plugin

Ethernet Drivers i40e, ice, iavf

Container Runtime Containerd

Orchestration K8s v1.27.1, Node Feature Discovery, CPU Manager

OS Ubuntu 22.04 LTS with real-time (kernel: 5.15.0.1036-realtime)*
RHEL 9.2 with real-time (kernel: 5.14.0-284.11.1.rt14.296.el9_2.x86_64)
*When using SGX functionality with Ubuntu realtime kernel, update kernel to version 5.15.0-
1045.50 or later.

For details about the software versions for the Access Edge Configuration Profile, refer to Chapter 4 of the BMRA User Guide
listed in the Reference Documentation section.

Getting Started
Prerequisites

Before starting the deployment, verify the following steps:

• A fresh OS installation is expected on the controller and target nodes to avoid a conflict between the RA deployment
process with the existing software packages. To deploy RA on the existing OS, ensure that there are no prior Docker or
Kubernetes* (K8s) installations on the servers.

• The hostname must be in lowercase, numerals, and hyphen’ - ‘ format only for the target server.

o For example: wrk-8 is acceptable; wrk_8, WRK8, Wrk^8 are not accepted as hostnames.

• The servers in the cluster are Network Time Protocol (NTP) synced, i.e., they must have the same date and time.

• The BIOS on the target server is set as per the recommended settings and Intel® SGX is enabled.

Deployment Setup
Figure 2 shows the deployment model for 5G vRAN security using BMRA. The Ansible host is only used for configuring and
deploying BMRA on a set of target servers and is not a part of the final deployment cluster.

Figure 2: BMRA deployment set-up for 5G vRAN Security

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 4

Note: The software can also be deployed using a single node deployment (SNO) where the controller and worker nodes are in
the same 4th Gen Intel® Xeon® Scalable processor server. This document demonstrates the single-node cluster
implementation.

Installation Flow for RA Deployment
Ansible playbooks are used to deploy the FlexRAN™ software and the necessary software packages using the Access Profile.
Before the playbooks can be run, there are a few steps to prepare the environment and change relevant configuration options.

Figure 3: RA Deployment using Ansible Playbooks

Step 1 – Set Up the System
The following steps assume that both the Ansible host and target server are running Ubuntu as the operating system. For RHEL,
use ‘yum’ or ‘dnf’ as the package manager instead of ‘apt’.

Ansible Host

1. Install necessary packages (some might already be installed):

sudo apt update
sudo apt install -y python3 python3-pip openssh-client git build-essential
pip3 install –upgrade pip

2. Generate an SSH keypair if needed (check /root/.ssh/):
ssh-keygen -t rsa -b 4096 -N „“ -f ~/.ssh/id_rsa

3. Copy the public key to the target server(s):
ssh-copy-id root@<target IP>

4. Verify password-less connectivity to the target server(s):
ssh root@<target IP>

Target Server(s)
The following steps are required for all the target nodes:

1. (Optional) Install Ubuntu 22.04 with Real-Time (RT) kernel. You can follow the steps here as a reference.

2. (Optional) Verify that the kernel is tagged as a real-time kernel:

uname -ri
5.15.0-1036-realtime x86_64

Note: Steps 1 and 2 are optional as we are not deploying the FlexRAN™ software application on the worker node in this
release.

3. Install necessary packages (some might already be installed):

sudo apt install -y python3 openssh-server lshw

4. As part of the configuration in Step 3, information about PCI devices for SR-IOV must be specified. Find the relevant
Network PCI IDs (bus:device.function) using ‘lspci’ and note down the IDs for later when configuring host_vars on the
Ansible host:

lspci | grep Eth

https://ubuntu.com/blog/real-time-ubuntu-released

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 5

18:00.0 Ethernet controller: Intel Corporation Ethernet Controller E810-C for QSFP (rev 01)
18:00.1 Ethernet controller: Intel Corporation Ethernet Controller E810-C for QSFP (rev 01)

5. Verify if the Intel QAT device is visible in the OS on the target server:

QAT Devices
lspci -nnD | grep 494*
0000:76:00.0 Co-processor [0b40]: Intel Corporation Device [8086:4942] (rev 40)
0000:7a:00.0 Co-processor [0b40]: Intel Corporation Device [8086:4942] (rev 40)

6. Verify if Intel SGX is enabled on the target server:

sudo dmesg | grep -i sgx
[4.554704] sgx: EPC section 0x1070180000-0x107f3fefff
[4.555636] sgx: EPC section 0x2070180000-0x207fffffff

7. (Optional) Find the FEC accelerator card’s PCI IDs (domain:bus:device.function) using ‘lspci’ and confirm that the
device ID is ‘0d5c’ and note it down for later when configuring host_vars on the Ansible host:

lspci -D | grep -i acc
0000:31:00.0 Processing accelerators: Intel Corporation Device 0d5c

Step 2 - Download and Install

Ansible Host

1. Download the source code from the GitHub repository for the Reference System server:

git clone https://github.com/intel/container-experience-kits/
cd container-experience-kits
git checkout v23.10

2. Set up Python* virtual environment and install dependencies:

python3 -m venv venv
source venv/bin/activate
pip3 install -r requirements.txt

3. Install Ansible dependencies for the Reference System:

ansible-galaxy install -r collections/requirements.yml

Step 3 – Configure
The Access Edge configuration profile is used for 5G vRAN Security software deployment.

Configuring BMRA for 5G vRAN Software

Ansible Host

1. Generate the configuration files.

export PROFILE=access
make k8s-profile PROFILE=${PROFILE} ARCH=spr

2. Update the inventory.ini file to match the target server’s hostname. The values for <target hostname> and <target
IP> must be updated to match the target systems in the BMRA cluster.

vim inventory.ini

[all]
<target hostname> ansible_host=<target IP> ip=<target IP> ansible_user=root
localhost ansible_connection=local ansible_python_interpreter=/usr/bin/python3

[vm_host]

[kube_control_plane]
<target hostname>

[etcd]
<target hostname>

[kube_node]
<target hostname>

https://github.com/intel/container-experience-kits/

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 6

[oru]
<target hostname>

[k8s_cluster:children]
kube_control_plane
kube_node

[all:vars]
ansible_python_interpreter=/usr/bin/python3

3. Update the host_vars filename with the target machine's hostname.

cp host_vars/node1.yml host_vars/<target hostname>.yml

To utilize features depending on SR-IOV, host_vars must be updated with information about the PCI devices on the
target server. The example below can be used as a reference for the configuration but should be updated to match the
correct PCI IDs of the target server.

4. Update host_vars/<target hostname>.yml with PCI device information specific to the target server.

vim host_vars/<target hostname>.yml
#dataplane_interfaces:[]
dataplane_interfaces:
 - bus_info: "18:00.0"
 pf_driver: "iavf"
 default_vf_driver: "vfio-pci"
 sriov_numvfs: 4

5. Update host_vars/<target hostname>.yml to enable Intel® SGX to the target server.

vim host_vars/<target hostname>.yml
configure_sgx: true # Intel Software Guard Extensions (SGX)

6. Make sure the following parameters are set correctly in group_vars/all.yml.

vim group_vars/all.yml

#kube_proxy_nodeport_addresses_cidr: 127.0.0.0/8 #(comment the line to expose registry
service)

7. Enable the Intel® SGX device plugin in group_vars/all.yml.

vim group_vars/all.yml
sgx_dp_enabled: true

8. Disable the FlexRAN™ POD and FEC operator in group_vars/all.yml for the vRAN security use case as we will not
deploy the FlexRAN™ software container for this use case.

vim group_vars/all.yml
intel_flexran_enabled: false
intel_sriov_fec_operator_enabled: false

9. Enable the Key Management Reference Application (KMRA) and vRAN container and disable ctk_loadkey_demo in
group_vars/all.yml. The KMRA, which is set as false by default, can be enabled by setting the pccs, apphsm, and
ctk_loadkey containers to true. To use KMRA, an API key must be requested from
https://api.portal.trustedservices.intel.com/provisioning-certification (click on “Subscribe”).

vim group_vars/all.yml
kmra:
 sbx: false # Enable pre-PRQ SGX platform
 oran:
 enabled: true # Put KMRA into ORAN mode
 local_build: true # Build oran container by default
 oran_netopeer2_server:
 enabled: true # Enable netopeer2 server
 oran_netopeer2_client:
 enabled: true # Enable netopeer2 client
 pccs:
 enabled: true # Enable PCCS application
 api_key: "ffffffffffffffffffffffffffffffff" # Replace with your PCCS API key
 apphsm:
 enabled: true # Enable AppHSM application
 ctk_loadkey_demo:

https://api.portal.trustedservices.intel.com/provisioning-certification

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 7

 enabled: false # Enable CTK demo application

10. Enable the sigstore policy controller to enforce cosign container image security in the group_vars/all.yml.
vim group_vars/all.yml
sigstore_policy_controller_install: true

11. Prepare the Docker* registry address by updating the target servers IP in the group_vars/all.yml

vim group_vars/all.yml
registry_local_address: "<target IP>:{{ registry_nodeport }}"

12. If the server is behind a proxy, update group_vars/all.yml by updating and uncommenting the lines for http_proxy,
https_proxy, and additional_no_proxy.

vim group_vars/all.yml
Proxy configuration ##
http_proxy: "http://proxy.example.com:port"
https_proxy: "http://proxy.example.com:port"
additional_no_proxy: ".example.com,mirror_ip"

13. (Required) Apply required patches for Kubespray:

ansible-playbook -i inventory.ini playbooks/k8s/patch_kubespray.yml

14. (Optional) It is recommended that you check dependencies of components enabled in group_vars and host_vars
with the package dependency checker:

ansible-playbook -i inventory.ini playbooks/preflight.yml

15. (Optional) Verify that Ansible can connect to the target server, by running the below command and checking the
output generated in the all_system_facts.txt file:

ansible -i inventory.ini -m setup all > all_system_facts.txt

Step 4 – Deploy

Ansible Host

Now the Reference System can be deployed by using the following command:

ansible-playbook -i inventory.ini playbooks/access.yml

(Optional) If the playbook fails or if you want to clean up the environment to run a new deployment, you can
optionally use the provided Cluster Removal Playbook to remove any previously installed Kubernetes and
related plugins.

ansible-playbook -i inventory.ini playbooks/redeploy_cleanup.yml

Step 5 – Validate

Ansible Host
To interact with the Kubernetes CLI (kubectl), start by connecting to the target node in the cluster, which can be
done using the following command:

ssh root@<target ip>

Once connected, the status of the Kubernetes cluster can be checked:
kubectl get nodes -o wide
kubectl get pods -A

Target Server

a) Validate Secure NETCONF communication

1. The below commands can be used to check the pod names in cosign namespace:
kubectl get pods -n my-cosign-namespace

2. You can verify the logs in the kmra-oran-netopeer2-server and kmra-oran-netopeer2-client to validate the secure
NETCONF communication:
kubectl logs -f <kmra-oran-netopeer2-server_POD> -c kmra-oran-netopeer2-server-oran -n
my-cosign-namespace

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 8

kubectl logs -f <kmra-oran-netopeer2-client_POD> -c kmra-oran-netopeer2-client-oran -n
my-cosign-namespace

Note: The user needs to use the specific kmra-oran-netopeer2 server and client POD names based on the deployment.

b) Manually run NETCONF command on Netopeer2 client

1. On the target server, run the below commands to enter the netopeer2-client pod:

kubectl get pod -A | grep netopeer2-client

kubectl exec -it <kmra-oran-netopeer2-client_POD> -c kmra-oran-netopeer2-client-oran -n
my-cosign-namespace bash

2. On a different terminal on the target server, run the following commands to see logs on netopeer2-server:

kubectl get pod -A | grep netopeer2-server

#kubectl logs -f <kmra-oran-netopeer2-server_POD> -c kmra-oran-netopeer2-server-oran -n my-
cosign-namespace

3. Go back to the netopeer2-client terminal and run the test:

export MODULE=/usr/local/lib/libpkcs11-proxy.so

netopeer2-cli <<EOF
cert add /tmp/ca.pem
connect --tls --host localhost --port 6513 --cert /tmp/oran_cert.pem --key
pkcs11:token=token_client;object=client_key_priv;pin-value=1234
get-config --source running -o /tmp/config.xml
EOF

You can monitor the logs on the netopeer2-server side after the above command is executed.

c) Monitor Netopeer2 client POD traffic using tcpdump

1. On the target server find the netopeer2-server pod IP address:

kubectl describe pod kmra-oran-netopeer2-server -n my-cosign-namespace | grep -i podIP
 cni.projectcalico.org/podIP: 10.244.229.210/32
 cni.projectcalico.org/podIPs: 10.244.229.210/32

netstat -r | grep -i 10.244.229.210
10-244-229-210. 0.0.0.0 255.255.255.255 UH 0 0 0 cali8c4659c7205

2. Run the following command to start monitoring the netopeer2-server pod traffic:

tcpdump -i cali8c4659c7205

Note: Replace the calico interface with the netopeer2-server pod interface

3. Go back to the netopeer2-client terminal and run the test:

export MODULE=/usr/local/lib/libpkcs11-proxy.so

netopeer2-cli <<EOF
cert add /tmp/ca.pem
connect --tls --host localhost --port 6513 --cert /tmp/oran_cert.pem --key
pkcs11:token=token_client;object=client_key_priv;pin-value=1234
get-config --source running -o /tmp/config.xml
EOF

d) Verify the O-RAN key type and length

1. Obtain the key certificate from O-RAN sysrepo configmap:

kubectl get configmap kmra-oran-netopeer2-server-cu-oran-sysrepo-config -n my-cosign-
namespace -o yaml

You will get a key certificate like this:

cat ca.crt

<name>cacerts</name>
 <certificate>
 <name>cacert</name>

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 9

<cert>MIIB+zCCAYCgAwIBAgIUfpr1mbSNp0uckfjSyuOTa3wYW68wCgYIKoZIzj0EAwMwNDEPMA0GA1UECgwGQXBwS
FNNMQ0wCwYDVQQLDARyb290MRIwEAYDVQQDDAlsb2NhbGhvc3QwHhcNMjMxMDEyMTQxODIyWhcNMjMxMTExMTQxODIy
WjA0MQ8wDQYDVQQKDAZBcHBIU00xDTALBgNVBAsMBHJvb3QxEjAQBgNVBAMMCWxvY2FsaG9zdDB2MBAGByqGSM49AgE
GBSuBBAAiA2IABBgvYxsqB1lBM7XVTAt4AR0Xdoc+r4+NXZQX9loz4pvOHMsX2czCbVAlPbD7gRA9C45wv38Z6zQeKG
MyeSrrfOG432MNwJk0hFmV3MOq0uaYQ41TNgQqVKxXTlyDh7rIgKNTMFEwHQYDVR0OBBYEFHO1K4wDqgnPrMPVpbf/f
uQS+5u/MB8GA1UdIwQYMBaAFHO1K4wDqgnPrMPVpbf/fuQS+5u/MA8GA1UdEwEB/wQFMAMBAf8wCgYIKoZIzj0EAwMD
aQAwZgIxAOYE0eCuaj4PTV90XBBRncEwo66TIaT0IdF8JAv+eyuQeTw6w3hhvC9wZLZbe8tdJQIxALNKkTgc9vDqtEw
TMbd+ggRM/De8/6NYG0rijPVjoEAflnUc0TRb/3Cm8rlF28LDuA==</cert>
 </certificate>

2. Add the prefix (BEGIN CERTIFICATE) and suffix (END CERTIFICATE) lines to the certificate into it as shown:

-----BEGIN CERTIFICATE-----
MIIB+zCCAYCgAwIBAgIUfpr1mbSNp0uckfjSyuOTa3wYW68wCgYIKoZIzj0EAwMwNDEPMA0GA1UECgwGQXBwSFNNMQ0
wCwYDVQQLDARyb290MRIwEAYDVQQDDAlsb2NhbGhvc3QwHhcNMjMxMDEyMTQxODIyWhcNMjMxMTExMTQxODIyWjA0MQ
8wDQYDVQQKDAZBcHBIU00xDTALBgNVBAsMBHJvb3QxEjAQBgNVBAMMCWxvY2FsaG9zdDB2MBAGByqGSM49AgEGBSuBB
AAiA2IABBgvYxsqB1lBM7XVTAt4AR0Xdoc+r4+NXZQX9loz4pvOHMsX2czCbVAlPbD7gRA9C45wv38Z6zQeKGMyeSrr
fOG432MNwJk0hFmV3MOq0uaYQ41TNgQqVKxXTlyDh7rIgKNTMFEwHQYDVR0OBBYEFHO1K4wDqgnPrMPVpbf/fuQS+5u
/MB8GA1UdIwQYMBaAFHO1K4wDqgnPrMPVpbf/fuQS+5u/MA8GA1UdEwEB/wQFMAMBAf8wCgYIKoZIzj0EAwMDaQAwZg
IxAOYE0eCuaj4PTV90XBBRncEwo66TIaT0IdF8JAv+eyuQeTw6w3hhvC9wZLZbe8tdJQIxALNKkTgc9vDqtEwTMbd+g
gRM/De8/6NYG0rijPVjoEAflnUc0TRb/3Cm8rlF28LDuA==
-----END CERTIFICATE-----

3. Check the key length type and length by using the command:

openssl x509 -in ca.crt -text -noout

You will find the signature algorithm section in the output, which confirms that the ECDSA keys were used as a signature
algorithm for the key: Signature Algorithm: ecdsa-with-SHA384

Additional feature verification tests can be found here.

https://github.com/intel/container-experience-kits/tree/master/validation/verification-manual/base_container/

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 10

 Enabling UEFI Secure Boot on Ubuntu
 Introduction

This document describes the steps to enable a secure boot chain using Intel® Boot Guard and UEFI Secure Boot on a 4th Gen
Intel® Xeon® ‘Archer City’ evaluation board. The system is running Ubuntu 22.04.03 OS, using Intel reference BIOS from the
Eagle Stream Refresh BKC 2023 WW39 release.

The various steps listed in the doc describe how to modify a system to enable Intel® Boot Guard and UEFI Secure Boot. The
author’s system was configured to boot to Ubuntu 22.03.04 prior to any changes.

These steps require access to the Archer City serial console to view BIOS log messages, and also require the ability to use the
Linux command line. Archer City has a BMC connection which allows access to a serial console. Linux command line is also
accessible via the serial console, or can be accessed via ssh, etc.

 Intel® Boot Guard and UEFI Secure Boot Overview

Intel® Boot Guard and UEFI Secure Boot are 2 security technologies that protect the boot flow on Intel systems.

Intel® Boot Guard is an Intel technology that allows verification of the BIOS’s Initial Boot Block (IBB), the first piece of the BIOS
to execute. The verification of the IBB is performed by an Intel supplied firmware binary called ‘Authenticated Code Module’,
ACM. The ACM executes from the processor cache prior to execution of the IBB. The IBB must then verify the OEM Boot Block
(OBB) the main piece of the BIOS which executes after IBB. The OBB implements UEFI Secure Boot to verify subsequent
images, such as the OS loader. The basic flow is shown below:

UEFI Secure Boot is a technology to verify code launched by UEFI firmware. It uses keys stored in BIOS to verify the digital
signature of any image it loads. This allows it to verify the OS loader/bootloader, Linux kernel, and other UEFI programs.
Typically this verification uses a Microsoft key pre-provisioned in the BIOS. This can cause an issue on Linux systems, where OS
kernel and module images may change many times. This would require re-signing the images using Microsoft keys. Therefore,
on Linux systems, it is typical for the distribution to include an app called ’shim’, which acts as a first-stage bootloader. Shim can
store an OS vendor key which can be used to verify subsequent images (grub, Linux OS kernel, Linux kernel modules). Shim can
also store user-created keys to allow the signing of Linux OS and kernel modules. The flow is shown below:

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 11

In this document, a secure boot flow will be created which enables Boot Guard with a user-defined key and enables UEFI secure
boot with a Microsoft key to verify shim, a Canonical key to verify grub bootloader, Ubuntu Linux kernel, and Canonical signed
kernel modules, and a user-defined key to sign user-created kernel modules.

For more detailed information on Boot Guard and UEFI Secure Boot, see the linked document below:

https://networkbuilders.intel.com/solutionslibrary/secure-the-network-infrastructure-secure-boot-
methodologies?wapkw=boot%20guard

 Enabling Boot Guard

This section describes the steps to enable Intel® Boot Guard Profile 5 to secure the loading of the Initial Boot Block of the BIOS.

A.3.1 Software and Tools Required

To configure Intel® Boot Guard on an 4th Gen Intel® Xeon® system, the user requires the following software packages from
Intel:

• 4th Gen Intel® Xeon® Best Known Configuration (BKC) package

Intel regularly releases BKC packages for each processor. The BKC contains all the firmware required to build an IFWI for
the processor, along with links to required tools, OS drivers and support packages, etc.

For this app note, Eagle Stream Platform Sapphire Rapids Edge Enhanced (EE) LCC Mainline Server BKC#19 was used.
Release Notes for this BKC can be found at the following link:

https://www.intel.com/content/www/us/en/secure/content-details/788146/eagle-stream-platform-sapphire-rapids-
edge-enhanced-ee-lcc-mainline-server-bkc-19-release-
notes.html?wapkw=spr%20ee%20%20bkc%20%2319&DocID=788146

The BKC consists of an updated package and associated report for the Archer City reference platform. The BKC package
includes UEFI Firmware, SPS Firmware, and onboard device drivers. BKC testing is designed to verify the interoperability
of the various firmware and driver components, which have already undergone extensive individual validation.

For this app note, a prebuilt IFWI will be used as a starting point. The following link downloads a binaries.zip file which
contains prebuilt IFWIs for the Archer City hardware platform.

https://cdrdv2.intel.com/v1/dl/getContent/789801/789154?filename=binaries.zip

• BpmGen2

BpmGen2 is a tool used to create and insert the Boot Policy Manifest and Key Manifest files required for Intel® Boot
Guard. BpmGen2 can be downloaded from the Intel website at the following link:

https://www.intel.com/content/www/us/en/secure/content-details/573188/intel-boot-policy-manifest-generator-

https://networkbuilders.intel.com/solutionslibrary/secure-the-network-infrastructure-secure-boot-methodologies?wapkw=boot%20guard
https://networkbuilders.intel.com/solutionslibrary/secure-the-network-infrastructure-secure-boot-methodologies?wapkw=boot%20guard
https://www.intel.com/content/www/us/en/secure/content-details/788146/eagle-stream-platform-sapphire-rapids-edge-enhanced-ee-lcc-mainline-server-bkc-19-release-notes.html?wapkw=spr%20ee%20%20bkc%20%2319&DocID=788146
https://www.intel.com/content/www/us/en/secure/content-details/788146/eagle-stream-platform-sapphire-rapids-edge-enhanced-ee-lcc-mainline-server-bkc-19-release-notes.html?wapkw=spr%20ee%20%20bkc%20%2319&DocID=788146
https://www.intel.com/content/www/us/en/secure/content-details/788146/eagle-stream-platform-sapphire-rapids-edge-enhanced-ee-lcc-mainline-server-bkc-19-release-notes.html?wapkw=spr%20ee%20%20bkc%20%2319&DocID=788146
https://cdrdv2.intel.com/v1/dl/getContent/789801/789154?filename=binaries.zip
https://www.intel.com/content/www/us/en/secure/content-details/573188/intel-boot-policy-manifest-generator-version-2-7-toolkit.html?wapkw=bpmgen2

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 12

version-2-7-toolkit.html?wapkw=bpmgen2

(Note: The above link requires access permissions on the Intel website)

At the time of writing, the latest version was bpmgen2release2023-09-20.zip

• FITm

Modular FIT (FITm) is a tool used to create IFWIs. It is supplied in the Intel Server Platform Services package. For this
app note, version 06.01.04.003.0 of Intel SPS was used. This package can be downloaded from:

https://cdrdv2.intel.com/v1/dl/getContent/789173/789172?filename=SPS_E5_06.01.04.003.0.zip

A.3.2 Setup Software

Download the BKC, BpmGen2, and SPS files given in the links in the previous section. On the author’s system, these were
all saved to folder c:\share\secureboot.

The rest of this document will use c:\share\secureboot as the root directory for all steps. Please adjust any path info to
match your system if you use a different setup.

Unzip the binaries.zip, bpmgen2, and SPS packages in c:\share\secureboot

The above tools/packages are all used in a Windows 11 environment.

A.3.3 Create key pairs for OEM and BPM

Intel® Boot Guard requires two 3K RSA public/private key pairs to sign the OEM KM and BPM. These can be created
using standard tools such as OpenSSL, or the BpmGen2 tool includes a support function to create the required keys. The
steps using the BpmGen2GUI tool are shown below.

Double-click BpmGen2GUI.exe in bpmgen2release2023-09-20 folder to start BpmGen2GUI. On the first launch, the
tool will ask for a working directory to be set. Set it to c:\share\secureboot.

Figure 4. BpmGen2GUI Working Directory

Click on the ‘Tools’ menu at the top of the BpmGen2 main window. Select option ‘Generate Signing Key -> RSA’. In the
signing key window, set the Key Size to 3072, the Private Key Filename to ‘OEM_3K_priv.pem’, and the Public Key
Filename to ‘OEM_3K_pub.pem’ as shown below. Click OK. The tool will ask if you wish to store the keys in the working
directory. Select ‘Yes’

https://www.intel.com/content/www/us/en/secure/content-details/573188/intel-boot-policy-manifest-generator-version-2-7-toolkit.html?wapkw=bpmgen2
https://cdrdv2.intel.com/v1/dl/getContent/789173/789172?filename=SPS_E5_06.01.04.003.0.zip

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 13

Figure 5. OEM KM Key Settings

Repeat the above step to create a 2nd keypair with filenames BPM_3K_priv.pem and BPM_3K_pub.pem

A.3.4 Create Key Manifest using BPMGen2

The OEM Key Manifest contains a hash of the BPM public key. The OEM KM is signed using the OEM private key. The OEM
KM signature is authenticated during system boot using the OEM public key, which is part of the signature structure in the KM.
A hash of the OEM public key is stored in the IFWI, and then in on-chip fuses after the device has been EOM’d. During system
boot, firmware reads the OEM KM, calculates the hash of the OEM public key in the OEM KM, and then compares this hash to
the value in the IFWI or in fuses. If they both match, the OEM public key is deemed to be correct, and it is used to check the
OEM KM signature. If the signature is authenticated, then the OEM KM is good, and the hash of the BPM key within the OEM
KM is deemed good.

To create an OEM KM compatible with the IFIW being used, open the BpmGen2GUI application and select the option ‘Create
Key Manifest’. Configure the GUI as shown below:

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 14

Figure 6. BpmGen2GUI OEM KM Settings

Select File -> Save, save file with name ‘KM_example.kmDef’

Click ‘Generate KM’. Save output file with name ‘KM_example.bin’

A.3.5 Create a BPM Definition File using BPMGen2

A Boot Policy Manifest contains various boot related settings used by the ACM and BIOS during system boot. This includes
hash values of the IBB and OBB sections of the BIOS. The BPM is signed with the BPM private key and is authenticated during
system boot using the BPM public key. A hash of the BPM public key is stored in the OEM Key Manifest.

Creating a BPM is a two-step process. First, a BPM definition file is created using BpmGen2GUI. Later the actual BPM binary
file is created using a bpmgen2 command line tool. The CLI tool is also used to insert the BPM and OEM KM binaries into the
BIOS region of the IFWI.

An example BPM Definition file – BPM_example.bpDef – is listed in Appendix B of this document. It contains the settings
required for the IFWI being used in this example. Copy contents of Appendix B into a file called ‘BPM_example.bpDef’. This
file can be opened by BPMGen2 GUI.

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 15

Figure 7. BpmGen2GUI BPM Screen 1

Note: the example file assumes the user has used the same working directory and key pair names as the author. If you are
using different directory or different filenames, please modify the public and private key names/paths on the ‘BPM Screen 3’
tab in BPMGen2GUI.

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 16

Figure 8. BpmGen2GUI BPM Screen 3

A.3.6 Insert KM and BPM Using the bpmgen2 Command Line Tool

In this section, a prebuilt IFWI will be modified by injecting the OEM Key Manifest and BPM files, using bpmgen2.

The following IFWI will be used as a starting point:

C:\share\secureboot\binaries\production\
EGSDCRB.SYS.OR.64.2023.37.2.02.1938.1_EMR_EBG_SPS_IPClean_External_Production.bin

Note: the user should check that the above IFWI boots on their system before making any modifications.

Open a command window and move to the BpmGen2 directory.

Figure 9. Windows Command Prompt

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 17

Execute the following command to create a BPM binary, then insert the BPM binary and the KM_example.bin into the IFWI.
The modified IFWI is stored in file IFWI_example_KM_BPM.bin.

c:\share\secureboot>bpmgen2release2023-09-20\BpmGen2.exe GEN
binaries\production\EGSDCRB.SYS.OR.64.2023.37.2.02.1938.1_EMR_EBG_SPS_IPClean_External_Production.bin
BPM_Example.bpDef -U IFWI_example_KM_BPM.bin -KM KM_example.bin

Figure 10. bpmgen2.exe GEN Output

Execute the following command to dump information on the KM and BPM that have been inserted:

c:\share\secureboot>bpmgen2release2023-09-20\BpmGen2.exe INFO IFWI_example_KM_BPM.bin

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 18

Figure 11. bpmgen2.exe INFO Output

Note the value for ‘KM Public Key hash Digest (Modulus + Exponent). You will have to enter this value into the FITm tool in the
next step.

A.3.7 Enable Intel® Boot Guard In IFWI Using FITm

In this step, Intel® Boot Guard will be enabled in the IFWI. FITm will be used to decompose the IFWI created in the previous step,
Intel® Boot Guard settings will be changed to enabled Intel® Boot Guard profile 5, then the IFWI will be rebuilt.

Start the FITm tool by double-clicking:

C:\share\secureboot\SPS_E5_06.01.04.003.0\SPS_Tools_4.2.97.709\ModularFit_exe_gui_SPS_E5_06.01.04.003.0\FITm.e
xe

This will open the FITm GUI, as shown below:

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 19

Figure 12. FITm Home View

Click on the ‘Open’ option at the top of the FITm window. Open the following file:

C:\share\secureboot\IFWI_example_KM_BPM.bin

FITm will now import and decompose the above IFWI.

Note: During decomposition, FITm may display some warning about errors in the ME region and some other regions. These can
be ignored. If the tool reports ‘Full decomposition completed successfully’ at the end of the run, it has succeeded.

After decomposition, the screen should update to show which regions within the IFWI have been found, as shown below.

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 20

Figure 13. FITm After Decomposition

Click on the ‘Platform Security’ tab on the left-hand side of the FITm window. Select the ‘OEM data’ option. Change the screen
options to match below.

Figure 14. FITm Platform Security -> OEM Data

Note: The OEM Key Hash value will be different on each user’s system because the OEM key is different on each system. Use
the value of ‘KM Public Key Hash Digest (Modulus + Exponent) you noted in the previous step. When entering the value, it must
have no white space between the byte values. For example, on the author's system the value displayed by bpmgen2 INFO
command was:

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 21

FYI: KM Public Key Hash Digest (Modulus+Exponent)#

 f1 ca a5 0b a2 a7 b9 4f 6d 98 9e 87 4d 35 b3 b5

 8a a5 bc 1c 3c 4f f3 10 68 5a 74 f9 85 cb 77 c9

 79 da d6 3c 82 67 5c 2d 6a 4d 2f c1 93 bf 51 f0

This was reformatted to:

f1caa50ba2a7b94f6d989e874d35b3b58aa5bc1c3c4ff310685a74f985cb77c979dad63c82675c2d6a4d2fc193bf51f0

Next, select option ‘Boot Guard’ Change settings to match below:

Figure 15. Boot Guard Settings

Click on the ‘Home View’ option on lefthand side of the main window. In the ‘Build output file’ box, set the filename to
‘c:\share\secureboot\IFWI_example_KM_BPM_BTG5.bin’

Figure 16. FITm Build Output File Setting

Click the ‘Save’ option at the top of main window, then set the filename to IFWI_example_fitm.xml. This will create a FITm
configuration file with all the settings made in earlier steps. This configuration can load with the ‘Open’ option if you need to.

Now click ‘Build’ to create an updated IFWI with Intel® Boot Guard Profile 5 enabled.

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 22

A.3.8 Test New IFWI on the System

Burn IFWI_Example_BPM_KM BTG5.bin to serial flash on the target system, then boot the system. On the author’s system, a
Dediprog flash programmer was used to update the serial flash device on an Archer City evaluation board.

Boot the system with the new IFWI. If BPM and KM creation/insertion and Intel® Boot Guard enabling were successful, the
system should boot to BIOS, and depending on the setup before updating IFWI, it may boot to OS.

To confirm that Intel® Boot Guard is active, Intel provides a s/w tool ‘spsInfo’ which can dump various boot and security-related
settings, including the Intel® Boot Guard configuration.

spsInfo can be found in the following folder.

C:\share\secureboot\SPS_E5_06.01.04.003.0\SPS_Tools_4.2.97.709

There are Windows, Linux, and EFI versions of spsInfo. To run the app, place it in a location where it can be seen by the BIOS or
OS, then execute the app.

For example, to run the EFI version in the BIOS, place the spsInfo.efi app in the system’s FAT32 boot partition, or mount on a
USB stick, enter the BIOS shell, and execute the app. The output should look like below:

Figure 17. spsInfo Output

Note in above that Boot Guard profile 5 is enabled and the OEM public key hash matches the value set in FITm in the previous
step.

To perform the same test in Linux, copy the Linux version of spsInfo (called ‘spsInfoLinux64’) into your Linux filesystem, then
execute with the command ‘sudo ./spsInfoLinux64’.

 Enabling UEFI Secure Boot

This section describes the steps to enable UEFI Secure Boot to secure the loading of the shim pre-bootloader, the grub2
bootloader used by Ubuntu, the Ubuntu kernel, and kernel modules.

The following tools/packages are required on the target system for the creation of keys/certificates and signing support:

• OpenSSL

• mokutil package

• sbsigntool package

Most Ubuntu systems have OpenSSL installed. If it is not present on your system, use the following command to install:

• sudo apt install openssl

Instructions for installing mokutil and sbsigntool are given in later sections of this document.

A.4.1 Check Shim Pre-bootloader Installed

A typical Ubuntu 22.04 install should have shim pre-installed. Shim is a small pre-bootloader that is called by the BIOS before
the grub2 bootloader. Shim is signed by Microsoft certificate which is stored in db in BIOS.

There are various ways to check if shim is installed, two examples are given below:

To check if shim is installed from the Linux command line, use the command ‘efibootmgr -v’ to display the system’s boot entries.
On the author's system, the list of boot options is shown below:

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 23

Figure 18. Examine Boot Options Using efibootmgr

Boot entry Boot0004 is the option to boot Ubuntu OS, and it is using shimx64.efi pre-bootloader

To check if shim is installed from BIOS, open a BIOS shell, then execute the command:

• bcfg boot dump

Figure 19. Examine Boot Options Using bcfg

Again, boot option Boot0004 is shown with the shim pre-bootloader present. If shim is not installed, please refer to Ubuntu
documentation to install/setup.

A.4.2 Create/Download Secure Boot keys/Certificates For BIOS

UEFI Secure Boot requires provisioning of the following keys/certificates within the BIOS:

• Platform key (PK): This is a key created/supplied by the platform owner. It establishes a trust relationship between the
platform owner and the platform firmware. It is used to enroll a Key Exchange Key (KEK)

• Key Exchange Key (KEK): This is key establishes a trust relationship between the operating system and platform
firmware. The KEK is used to sign updates to the db and dbx databases.

• DB (Signature database): This is a list of public keys and hashes that can be used to validate UEFI boot binaries (shim,
bootloader, OS kernel, etc)

When using standard prebuilt Ubuntu kernels, the PK, KEK, and DB should be populated as follows:

• PK

o The platform owner must create this key. Typically, is an RSA 2K keypair. The public key is stored in the BIOS.
The openssl commands to generate a PK and convert it into the required format are:

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 24

 openssl req -new -x509 -newkey rsa:2048 -keyout PK.key -nodes -days 3650 -subj
“/CN=YourOrgName/” -out PK.crt

 openssl x509 -in PK.crt -out PK.cer -outform DER

• KEK

o Microsoft KEK CA. This can be downloaded from:

 http://www.microsoft.com/pkiops/certs/MicCorKEKCA2011_2011-06-24.crt

• DB (signature database) – contains Microsoft UEFI CA, used to authenticate shim

This can be downloaded from:

 http://www.microsoft.com/pkiops/certs/MicCorUEFCA2011_2011-06-27.crt

Create the PK using the commands given above. Download the certificates listed for KEK and DB. Store
MicCorKEKCA2011_2011-06-24.crt, MicCorUEFCA2011_2011-06-27.crt, and PK.cer in a location that will be visible to
the BIOS, for example on a USB stick or a directory in the system boot partition.

For example, on the author’s system, they were placed in boot partition at /boot/ef/EFI/Certs.

Figure 20. PK, KEK and DB Certificates/Keys

A.4.3 Enrolling KEK, DB, and PK In BIOS To Enable UEFI Secure Boot

To enroll the keys/certificates from the previous section, boot the system to the BIOS setup screen. Navigate to EDKII Menu ->
Secure Boot Configuration

http://www.microsoft.com/pkiops/certs/MicCorKEKCA2011_2011-06-24.crt
http://www.microsoft.com/pkiops/certs/MicCorUEFCA2011_2011-06-27.crt

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 25

Figure 21. Secure Boot Configuration Screen

Set ‘Secure Boot Mode’ to ‘Custom Mode’ This will Add a new option ‘Custom Secure Boot Options’ to the screen.

Figure 22. Secure Boot Custom Mode

Select ‘Custom Secure Boot Options’. This will open a screen listing PK, KEK, DB, DBX and DBT options.

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 26

Figure 23. Custom Secure Boot Options

Select KEK Options -> Enroll KEK->Enroll KEK using File. This will list volumes on the system which can be opened to locate
files. On the author’s system, there is 1 Sata hard drive.

Figure 24. Secure Boot File Explorer

Open the volume where the certificate files were stored earlier.

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 27

Figure 25. Secure Boot FIle Selection

On the author’s system, select the MicCorKEKCA2011_2011-06-24.crt certificate. This will select the certificate and BIOS will
use the public key in the certificate for KEK.

Figure 26. Enroll KEK

Select ‘Commit Changes and Exit’. This will complete enrollment of the KEK, then drop back to the Custom Secure Boot
Options Screen

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 28

Repeat the above steps for DB Options, enrolling MicCorUEFCA2011_2011-06-27.crt

Then repeat the above steps for PK Options, enrolling PK.cer.

Note: PK must be the last certificate to be enrolled. Do not attempt to enroll PK before KEK or DB

After PK has been enrolled, use the Esc key to drop back to the Secure Boot Configuration screen. This will now show that
Secure Boot is enabled, and Secure Boot will be attempted on the next system boot:

Figure 27. Secure Boot Enabled

Use the Esc key to return to top-level BIOS screen, then select ‘Continue’.

Figure 28.BIOS Top Level Screen

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 29

The BIOS will detect changes have been made and will trigger a reset and reboot.

Figure 29. BIOS Reboot

Press enter and allow the system to reboot to the Linux prompt.

Figure 30. Linux prompt

A.4.4 Check UEFI Secure Boot Is Enabled

Boot the system to the Linux prompt. To check if Secure Boot was enabled using the system boot, execute the following
command:

• sudo dmesg | grep “secureboot”

This should find secure boot indications in the dmesg log:

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 30

Figure 31. Secure Boot Enabled Messages

Searching in the dmesg log will show more info on secure boot. Use the command ‘sudo dmesg | more’ to examine the dmesg
log:

Figure 32. dmesg Log

A.4.5 Install mokutil Linux utility

At this point, UEFI Secure Boot is enabled and will authenticate shim, grub bootloader, Linux OS kernel and OS kernel models
during boot. The kernel and kernel modules must be signed by Canonical and will be authenticated by the Canonical Ltd Secure
Boot Signing key, which is embedded in shim. In the following sections, the user will add their own key into shim which can be
used to sign user created/supplied kernel modules.

The keys stored in shim database are known as ‘Machine Owner Keys’ (MOK). mokutil is a tool that allows the user to import or
delete MOKs.

Use the following command to install mokutil package on the target system:

• sudo apt install mokutil

Command ‘mokutil -h’ will display help info:

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 31

Figure 33 mokutil Help Info

Use the following command to display the MOKs currently enrolled in shim:

• mokutil --list-enrolled

This will display the Canonical certificate:

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 32

Figure 34. Canonical Certificate

In the next section, the user will create an additional MOK and enroll into shim.

A.4.6 Create MOK Key and Enroll in Shim

In this section, the user will create a certificate containing a public MOK using OpenSSL. This MOK will be used to sign a user-
created kernel module.

First, create a config file containing the info shown below. Save this file with the name ‘testMOK.cnf’

HOME = .
RANDFILE = $ENV::HOME/.rnd

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 33

[req]
distinguished_name = req_distinguished_name
x509_extensions = v3
string_mask = utf8only
prompt = no

[req_distinguished_name]
countryName = <Your country code>
stateOrProvinceName = <Your Province>
0.organizationName = <Your Org name >
commonName = Secure Boot Signing
emailAddress = <You email address>

[v3]
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always,issuer
basicConstraints = critical,CA:FALSE
extendedKeyUsage = codeSigning, 1.3.6.1.4.1.311.10.3.6, 1.3.6.1.4.1.2312.16.1.2
nsComment = "OpenSSL Generated Certificate"

Change the entries with <YOUR*> to the user’s details.

Use the following command to create a certificate containing the MOK certificate containing the public key , and a file
containing the private key:

openssl req -config ./testMOK.cnf \
 -new -x509 -newkey rsa:2048 \
 -nodes -days 3650 -outform DER \
 -keyout MOK.priv \
 -out MOK.der

Figure 35 Openssl MOK Certificate Creation

To display the contents of the MOK certificate, use command:

• openssl x509 -in MOK.der -noout -text

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 34

Figure 36. User Created MOK Certificate

Convert the private key to PEM format with the command:

• openssl x509 -inform DER -in MOK.der -outform PEM -out MOK.pem

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 35

 Figure 37. MOK Certificate and Key Files

To enroll the certificate in shim using mokutil, use the following command:

• sudo mokutil --import MOK.der

This command will ask the user to input a password, and will then reboot the system. The password will be required after the
next system reboot to authorize adding the MOK certificate to shim.

Please enter a password and remember it for use later.

Figure 38. mokutil Password

Now reboot the system with the command ‘sudo reboot’

On reboot, the shim will display the MokManager screen:

Figure 39 MOKManager

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 36

Press any key to enter MokManager. Select option ‘Enroll MOK’

Figure 40. Enroll MOK

Selection option ‘View key 0’ to inspect the certificate. On the author’s system, the settings are as shown below:

Figure 41. MOK Info

Hit <return>, then select ‘Continue’ option. Answer ‘Yes’ to Enroll the key(s) question:

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 37

Figure 42. MOK Enrollment

Enter password that was set prior to the reboot:

Figure 43. MOK Password Request

Select ‘Reboot’ to restart system.

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 38

Figure 44. MOK Reboot

Allow the system to reboot to the Linux command line. Use the following command to check if the certificate was enrolled.

• mokutil --list-enrolled

The user created certificate should now be present in addition to the Canonical certificate.

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 39

Figure 45. Updated MOK List

A.4.7 Creating An Unsigned Kernel Module

In this section, the user will create a simple ‘Hello World’ kernel module. It will not be signed and will fail to load into the kernel. In
the next section, it will be signed using the user-created MOK and will successfully load.

To build a kernel module, install the kernel header files and basic build tools on your system using the following command:

• sudo apt install linux-headers-`uname -r` build-essential

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 40

Create a new directory for the kernel module development and enter the folder:

• mkdir test_module

• cd test_module

Create a file called ‘hello_world_mod.c’ containing the following example code:

/* Simple hello world module for secure boot signing test */

#include <linux/module.h>
#include <linux/kernel.h>

MODULE_LICENSE("GPL");
MODULE_AUTHOR("<your name>");
MODULE_DESCRIPTION("Hello World module");

static int __init hello_world_mod_init(void)
{
 printk(KERN_ALERT "Hello World! Loading kernel module \n");
 return 0;
}

static void __exit hello_world_mod_exit(void)
{
 printk(KERN_ALERT "Goodbye, removing module from kernel \n");
}

module_init(hello_world_mod_init);
module_exit(hello_world_mod_exit);

Create a file called ‘Makefile’ containing the following example code:

obj-m += hello_world_mod.o

all:
 make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules
clean:
 make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

Execute the following command to build the kernel module:

• make

Figure 46. Hello World Module Build

This will create a kernel module ‘hello_world_mod.ko’ This is a very simple module that will print a message to the kernel log
when it is inserted or removed from the kernel.

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 41

Attempt to insert the module into the kernel with the following command:

• sudo insmod hello_world_mod.ko

The above command will fail with a message shown below:

Figure 47. Failed Module Insertion

This error is expected. Secure Boot is enabled, and the module is not signed. Examine the end of the kernel log using command:

• sudo dmesg | tail

It should indicate that an unsecure module load was attempted:

Figure 48. Failed Module Load dmesg Info

A.4.8 Sign Kernel Module With MOK

In this section, the Hello World module created in the previous section will be signed and loaded into the Linux kernel.

To check if the kernel module has been signed, use the following command:

• modinfo ./hello_world_mod.ko

Note that no signature info is shown in the output.

Figure 49. Hello World Modinfo

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 42

Also, check the end of the module binary using xxd tool with command:

• xxd hello_world_mod.ko

Note that there is no signature info at the end of the binary.

Figure 50. Hello World xxd Info

To sign the module with the user-created MOK, a tool called ‘kmodsign’ is required. This is part of the sbsigntool package, which
includes other signing tools for the kernel, etc.

To install the sbsigntool package, use the command:

• sudo apt install sbsigntool

To sign the kernel module, use the command

• kmodsign sha512 MOK.priv MOK.der hello_world_mod.ko hello_world_mod_signed.ko

(Note: you need to enter paths to your MOK.priv and MOK.der files if they are not in the same directory as the kernel module)

Figure 51. kmodsign Command

The above will produce a signed version of the kernel module. Check this version for signing info using the command:

• modinfo ./hello_world_mod_signed.ko

Note that signature info is now shown:

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 43

Figure 52. Hello World Signature

Check the end of the hello_world_mod_signed.ko binary for signature info with the command:

xxd ./hello_world_mod_signed.ko

Note that signature info has been appended:

Figure 53. Signed Hello World xxd Info

Insert the signed kernel module into the Linux kernel with the command:

• sudo insmod ./hello_world_mod_signed.ko

Check the end of the kernel log with the command:

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 44

• sudo dmesg | tail

 It should now show successful insertion:

Figure 54. Signed Hello World dmesg Info

Remove the kernel module from the kernel with command:

• sudo rmmod hello_world_mod

Recheck the end of the kernel log. It should show the exit message.

Figure 55. Hello World Module Removal

 BPM Example Definition File
FILEHEADER
FileID: _BPMDEF_
FileVersion: 1
ToolVersion: 7
ToolDate: 20191203
FileDate: 20200113
//
BPM_DEF
PlatformRules: Server
BpmStrutVersion: 0x22
BpmRevision: 0
BpmRevocation: 0
AcmRevocation: 0
NEMPages: 0x40
IbbSetCount: 2
CurrentIbbSet: 0
//
IBB_SET

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 45

IbbSetType: 0:ColdBoot
IbbSetInclude: TRUE
PBETValue: 0xF
MCHBAR: 0x00000000FED10000
VTD_BAR: 0x00000000FED90000
DmaProtBase0: 0x0
DmaProtLimit0: 0x0
DmaProtBase1: 0x0
DmaProtLimit1: 0x0
IbbFlags: 0x3
// Bit0 : Enable DMA Protection;
// Bit1 : Issue TPM Start-up from Locality 3;
// Bit2 : Extend Authority Measurements into the Authority PCR;
// Bit3 : On error: Leave TPM Hierarchies enabled. Cap all PCRs;
// Bit4 : Top Swap Supported;
// Bit5 : Force (MK)TME;
// Bit6 : Enforce SPIRAL specification between BIOS/CSE
// Bit7 : SRTM Attenstation Control
// Bit8 : Force Communication NEM Buffer
DmaProtAutoCalc: FALSE
IbbHashAlgID: 0x0C
IbbEntry: 0xFFFFFFF0
PostIbbHashAlgID: 0x10
PostIBBHashSource: Calculate
PostIbbHashFile:
IbbSegSource: FIT
IbbSegFile:
IbbGuid: 4a4ca1c6-871c-45bb-8801-6910a7aa5807
ObbHashAlgID: 0x0C
ObbFullFvHash: TRUE
ObbHashSource: List
ObbHashFile:
ObbGuid: 27a72e80-3118-4c0c-8673-aa5b4efa9613: FVMAIN_COMPACT
ObbGuid: 013b9639-d6d5-410f-b7a9-f9173c56ecda: PI_SMM_COMPACT
ObbGuid: b4705b4b-0be6-4bdb-a83a-51cad2345cea: FvPostMemory
ObbGuid: 1638673d-efe6-400b-951f-abac2cb31c60: FSP-S
ObbGuid: 5a515240-d1f1-4c58-9590-27b1f0e86827: OEM_FV
//
IBB_SET
IbbSetType: 1:S3Resume
IbbSetInclude: TRUE
PBETValue: 0xF
MCHBAR: 0x00000000FED10000
VTD_BAR: 0x00000000FED90000
DmaProtBase0: 0x0
DmaProtLimit0: 0x0
DmaProtBase1: 0x0
DmaProtLimit1: 0x0
IbbFlags: 0x3
// Bit0 : Enable DMA Protection;
// Bit1 : Issue TPM Start-up from Locality 3;
// Bit2 : Extend Authority Measurements into the Authority PCR;
// Bit3 : On error: Leave TPM Hierarchies enabled. Cap all PCRs;
// Bit4 : Top Swap Supported;
// Bit5 : Force (MK)TME;
// Bit6 : Enforce SPIRAL specification between BIOS/CSE
// Bit7 : SRTM Attenstation Control
// Bit8 : Force Communication NEM Buffer

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 46

DmaProtAutoCalc: FALSE
IbbHashAlgID: 0x0C
IbbEntry: 0xFFFFFFF0
PostIbbHashAlgID: 0x10
PostIBBHashSource: Calculate
PostIbbHashFile:
IbbSegSource: FIT
IbbSegFile:
IbbGuid: 4a4ca1c6-871c-45bb-8801-6910a7aa5807
ObbHashAlgID: 0x0C
ObbFullFvHash: TRUE
ObbHashSource: List
ObbHashFile:
ObbGuid: 27a72e80-3118-4c0c-8673-aa5b4efa9613: FVMAIN_COMPACT
ObbGuid: 013b9639-d6d5-410f-b7a9-f9173c56ecda: PI_SMM_COMPACT
//
TXT_ELEMENT
TxtInclude: TRUE
MinSvn: 0x0
TxtFlags: 0x0
// [4:0] = TXT execution profile
// 00000b – Use Default based on HW
// 00001b - Server Profile
// 00010b - Client Profile
// [6:5] = “Memory scrubbing” policy
// 00b - Trust Verified BIOS
// 01b - Trust Any BIOS
// 10b - Trust No BIOS
// [8:7] = Backup Policy
// 00b - Default
// 01b - Power Down
// 10b - Unbreakable Shutdown
// 11b - PFR Recovery
// [31] = Reset AUX control (1=AUX Reset leaf will delete AUX Index)
//MemoryDepletion Power Down
StrideSize: 0x0
AcpiBase: 0x400
PwrmBase: 0xFE000000
PdUseDefault: TRUE
PdMinutes: 5
PdSeconds: 0
PttCmosOffset0: 0x7E
PttCmosOffset1: 0x7F
//TXTE Segments
TxtSegSource: IBB
TxtSegGuid: 4a4ca1c6-871c-45bb-8801-6910a7aa5807
TxtSegHashAlgID: 0x10
//
PLATFORM_CONFIG_ELEMENT
PcdInclude: TRUE
PdReqLocation: TPM
// Power down request location for CMOS
CmosIndexRegister: 0x70
CmosDataRegister: 0x71
CmosIndexOffset: 125
CmosBitFieldWidth: 3
CmosBitFieldPosition: 0
//

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 47

TPM1.2_LOCATION
TpmIndexHandle: 0x50000004
TpmByteOffset: 7
TpmBitFieldWidth: 3
TpmBitFieldPosition: 0
//
TPM2.0_LOCATION
TpmIndexHandle: 0x1C10104
TpmByteOffset: 7
TpmBitFieldWidth: 3
TpmBitFieldPosition: 0
//
PTT_LOCATION
TpmIndexHandle: 0x1C10104
TpmByteOffset: 7
TpmBitFieldWidth: 3
TpmBitFieldPosition: 0
//
COMMUNICATION_NEM_BUFFER
CnbsInclude: False
CnbsBase: 0xFF000000
CnbsSize: 0x1000
//
PLATFORM_MANUFACTURERS_ELEMENT
PmdeInclude: FALSE
PmdeFile:
//
PLATFORM_FIRMWARE_RESILIENCY_ELEMENT
PfrsInclude: TRUE
PfrsControlFlags: 0x00000000
PfrsCpldSmbusAddr: 0xE0
PfrsPchActiveOffset: 0x2FF0000
PfrsPchRecoveryOffset: 0x1BF0000
PfrsPchStagingOffset: 0x7F0000
PfrsBmcActiveOffset: 0x80000
PfrsBmcRecoveryOffset: 0x2A00000
PfrsBmcStagingOffset: 0x4A00000
//
BPM_SIGNATURE
BpmSigSource: Internal
BpmSigHashAlgID: 0x0C
BpmSigKeyType: 0x01
BpmSigScheme: 0x16
BpmKeySizeBits: 3072
BpmSigPubKey: BPM_3K_pub.pem
BpmSigPrivKey: BPM_3K_priv.pem
BpmSigBatch: X-Sign.bat SHA384 Rsa3072
BpmSigData: Data2Sign.bin
BpmSigDataType: BPM
BpmSigXSig: X-Sig.bin
//
#EOF

Network and Edge Reference System Architectures - 5G vRAN Security Quick Start Guide

 48

Reference Documentation
The Network and Edge Container Bare Metal Reference System Architecture User Guide provides information and a full set of
installation instructions for a BMRA.

The Network and Edge Reference System Architectures Portfolio User Manual provides additional information for the
Reference System including a complete list of reference documents.

The Intel FlexRAN™ Docker hub provides additional information on running the FlexRAN™ software in a POD.

Other collaterals, including technical guides and solution briefs that explain in detail the technologies enabled in the Reference
Systems are available in the following locations: Network & Edge Platform Experience Kits.

Document Revision History

REVISION DATE DESCRIPTION

001 July 2023 Initial release.

002 October 2023 Updated BMRA version to 23.10. Added UEFI Secure Boot process and support for ECDSA keys with
SHA384 for 5G RAN security with NETCONF server-client authentication with Intel SGX.

No product or component can be absolutely secure.

Intel technologies may require enabled hardware, software, or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

 1023/DN/WIT/PDF 784333-002US

https://networkbuilders.intel.com/solutionslibrary/network-and-edge-container-bare-metal-reference-system-architecture-user-guide
https://networkbuilders.intel.com/solutionslibrary/network-and-edge-reference-system-architectures-portfolio-user-manual
https://hub.docker.com/r/intel/flexran_vdu
https://networkbuilders.intel.com/intel-technologies/experience-kits

	Introduction
	Architecture and Setup
	Hardware BOM
	Software BOM
	Getting Started
	Prerequisites
	Deployment Setup
	Installation Flow for RA Deployment

	Step 1 – Set Up the System
	Ansible Host
	Target Server(s)

	Step 2 - Download and Install
	Ansible Host

	Step 3 – Configure
	Configuring BMRA for 5G vRAN Software
	Ansible Host

	Step 4 – Deploy
	Ansible Host

	Step 5 – Validate
	Ansible Host
	Target Server

	Appendix A Enabling UEFI Secure Boot on Ubuntu
	A.1 Introduction
	A.2 Intel® Boot Guard and UEFI Secure Boot Overview
	A.3 Enabling Boot Guard
	A.3.1 Software and Tools Required
	A.3.2 Setup Software
	A.3.3 Create key pairs for OEM and BPM
	A.3.4 Create Key Manifest using BPMGen2
	A.3.5 Create a BPM Definition File using BPMGen2
	A.3.6 Insert KM and BPM Using the bpmgen2 Command Line Tool
	A.3.7 Enable Intel® Boot Guard In IFWI Using FITm
	A.3.8 Test New IFWI on the System
	A.4 Enabling UEFI Secure Boot
	A.4.1 Check Shim Pre-bootloader Installed
	A.4.2 Create/Download Secure Boot keys/Certificates For BIOS
	A.4.3 Enrolling KEK, DB, and PK In BIOS To Enable UEFI Secure Boot
	A.4.4 Check UEFI Secure Boot Is Enabled
	A.4.5 Install mokutil Linux utility
	A.4.6 Create MOK Key and Enroll in Shim
	A.4.7 Creating An Unsigned Kernel Module
	A.4.8 Sign Kernel Module With MOK

	Appendix B BPM Example Definition File
	Reference Documentation
	Document Revision History

