
Kubernetes is the leading open source container orchestration engine. Standard
Kubernetes pods allow for connection to one network interface. But these pods
can host containers supporting service-provisioning applications or virtual
network functions (VNFs) that are typically requiring connectivity to multiple
network interfaces. The following are a few examples of applications that typically
require connectivity to multiple network interfaces:

• Storage/legacy applications: Multiple connections are needed to allow the
service provisioned within the pod to access a legacy application or storage
drive and, at the same time, support pod communications.

• Split data plane/control plane applications: This use case is most applicable to
VNF-based services because the VNF must connect to both the data plane and
the control plane (and possibly require a separate management connection).
This is very important for applications that need an extra high-performance
connection such as IPTV or media streaming.

• Virtual private network (VPN)/router applications: Multiple network interfaces
are essential for VPN and router use cases where security capabilities need to
be extended into the pod. In these cases, the VPN/router links are encrypted,
while others are unencrypted for normal pod communications.

• Multi-tenant networks: If pod resources are shared between multiple tenants,
multiple interfaces are needed to enable dedicated network connections for
each of those customers.

Multiple network interface connections in Kubernetes pods are important when
enabling delivery of cloud and communication service provider services

Multiple Network Interfaces

Data Center Solutions
Kubernetes with Container Bare Metal

Figure 1: Standard Kubernetes pod (left) showing a single network interface shared among
the containers within the pod; and (right) a Kubernetes pod with multiple network interfaces,
the capability enabled with Multus.

Multiple network interfaces are available through the Multus
CNI plugin
Kubernetes natively supports only one network interface and proposals to support
multiple network interfaces are being discussed currently in the community. Today,
however, it's possible to implement multiple network interfaces using Multus, a
Kubernetes CNI plugin that enables the creation of additional pod network interfaces.
Figure 1 shows containers in a pod sharing one interface and then a pod with
multiple network interface with Multus CNI.

feature brief

Figure 2: Network control flow with Multus.

With Multus, other CNI plugins can create
network connections
Multus is a CNI proxy and arbiter of other CNI plugins. Multus
invokes other CNI plugins for network interface creation.
When Multus is used, a master plugin (flannel, Calico, weave)
is identified to manage the primary network interface (eth0)
for the pod and it is returned to Kubernetes.Other CNI minion
plugins (SR-IOV, vHost CNI, etc.) can create additional pod
interfaces (net0, net1, etc.) during their normal instantiation
process.

Figure 2 shows the network control flow with Multus. The
Kubernetes Kubelet is the primary agent that runs on each
node in the Kubernetes cluster. Its main functions are to
register the node with the Kubernetes control plane and
life cycle management of any pods that are subsequently
scheduled to that node.

Kubelet is responsible for establishing the network interfaces
for each pod; it does this by invoking its configured CNI
plugin. When Multus is invoked, it recovers pod annotations
related to Multus, in turn, then it uses these annotations
to recover a Kubernetes custom resource definition (CRD),
which is an object that informs which plugins to invoke and
the configuration needing to be passed to them. The order of
plugin invocation is important as is the identity of the master
plugin.

In the right side of the figure 2, we see the benefit in a virtual
firewall (vFW) use case. By using the SR-IOV CNI plugin in
DPDK mode, the vFW can get full-speed line rate packet
interfaces to the networks on which it is expected to perform
its function. Additionally, there exists the management and
control eth0 interface, which is available for control of the
vFW itself and also possibly other functions, such as logging
whose job may be to scrape the vFW logs and export via
the management network interface to a centralized logging
service.

Conclusion
Support for multiple network interfaces is becoming
more important as Kubernetes platforms are used in
Communication Service Providers and cloud networks. While
a native solution is now being discussed, Multus provides
this multiple interface support today with an easy CNI plugin
that works with all other Kubernetes networking plugins. For
more information on what Intel is doing with containers, go
to https://networkbuilders.intel.com/network-technologies/
intel-container-experience-kits.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2018, Intel Corporation. All rights reserved.
SKU 336563-002 Multiple Network Interfaces Support in Kubernetes - Feature Brief

2

https://networkbuilders.intel.com/network-technologies/ intel-container-experience-kits
https://networkbuilders.intel.com/network-technologies/ intel-container-experience-kits

