TECHNOLOGY GUIDE intel

Intel Corporation

Multi-Cloud Services on Kubernetes with
Cloudify Orchestration and F5 Networks Functions

Authors
Yury Kylulin
Petar Torre

Intel Corporation

Shay Naeh
Cloudify

Philip Klatte
F5 Networks

1 Introduction

Communications Service Providers and other vertical customers with strict compute
requirements adopting Cloud Native principles, need orchestration for managing Multi-
Cloud and Edge sites that may range from very small to large size. This technology guide
describes a solution based on Cloudify* policy-driven orchestration for Kubernetes*-
managed containerized network-functions from F5 Networks* using Intel® QuickAssist
Technology (Intel® QAT).

The solution was developed as a public showcase demonstrating scalability, with robust
automation. It is loosely coupled and fully modular, respecting the boundaries of
orchestration, applications, software platform, and hardware platform layers. These
attributes ease the application on-boarding and lifecycle management efforts, while
allowing performance-optimized deployments. Figure 1 shows a high-level view of the
solution, which is described in detail in later sections of this document.

(o192 VAT POLICY DRIVEN FOR MULTI-CLOUD SERVICES (> CLOUDIFY

Applications ﬁ»&ﬁ;@»ﬂg

CA
Blueprint

' Crypto

Bench | INGIIWVIA :
Multiple network interfaces for VNFs -m
= High performance Data Plane (E-W, N-5) ku be rne tes H
= Node Feature Discovery - platform capabilities . :
Software Platform Device Plugin (SR-10V, Intel® QAT, FPGA...) # MULTUS

CPU Core-Pinning and isolation for K8s pods

Huge Page allocation @) DPDK
= Topology Manager - Guarantee NUMA alignment M

Platform Telemetry H’:I:(M o
Installation playbook NA

GitHub

Hardware Platform F il
Intel* Programmable Intel® QuickAssist
Intel® DC SSD Acceleration Card Technology

Figure 1. Solution Layered Stack with Orchestration, Applications, Software
Platform, and Hardware Platform

This technology guide is intended for architects and engineers in Communication Service
Providers and other verticals with strict compute requirements who are interested in best
practices for designing fully automated environments based on Kubernetes-managed
containers.

This document is part of the Network Transformation Experience Kit, which is available at
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-
kits.

https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

Table of Contents

1
1.1
1.2
1.3
2
2.1
2.2
2.3
3
4
4.1
4.2
43
4.4
4.5
4.6
4.6.1
4.6.2
4.7
5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
6
Figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.

Introduction

Motivation

Terminology

Reference Documentation

How Cloudify Orchestration Works

How to Map a Kubernetes Cluster
Non-Kubernetes and Hybrid Environments

Intent-Based Decoupling of Layers

F5 Networks and NGINX

Software and Hardware Platform

© VW NOW DNDADNA

Physical Topology

Software Topology

Hardware Specifications

Software Specifications

Platform BIOS Settings

Building Software Platform

Ansible Host, Control, and Worker Node Software Prerequisites

Deploy Intel Bare Metal Reference Architecture Using Ansible Playbook

Conclusion

Preparing NGINX and Apache Bench Containerized Images

Linux Environment

Intel® QuickAssist Driver and Libraries

OpenSSL
QAT_Engine

QATZip
NGINX with Async Mode Using Intel QuickAssist

Configure NGINX

Build NGINX Container Image

Build Apache Benchmark Load Generator Container Image

Configure Pushgateway, Prometheus, and Grafana Under Docker

Define Kubernetes Pod

Deploy from Cloudify

Result

Additional Documentation

Summary

Solution Layered Stack with Orchestration, Applications, Software Platform, and Hardware Platform
Cloudify Console View

Requirements for Central Cloudify Orchestrated to Distributed Sites
NGINX Pod Placement with Requesting QuickAssist Resource

Cloudify Console with Composer View
Cloudify Console with Deployments View

Intent-Based Placement

Physical Topology

Describe Pod Correctly Assigned

Grafana Graph with Metrics

Terminology

Reference Documents

Hardware Specifications
Software Specifications

Platform BIOS Settings

11
11
12

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

Document Revision History

REVISION DATE DESCRIPTION

001 November 2019 Initial release.

002 February 2021 Enabled CPU allocation and pinning with both Kubernetes CPU manager and CMK CPU Manager for
Kubernetes (CMK).

For QAT resource allocation and life cycle management switched to QAT device plugin in kernel mode.

003 March 2021 Minor clarification on node selector and device resources.

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

1.1 Motivation

Not all Kubernetes nodes are created equally — Workloads such as Virtualized Router (vRouter), Virtualized Firewall (vFW),
Virtualized Deep Packet Inspection (vDPI) in Network Functions Virtualization (NFV), or low-latency trading in Finance require fast
processing of network traffic and special consideration for placement on physical servers where they can benefit from appropriate
hardware acceleration. Workload placement based on platform capabilities is required on certain Kubernetes nodes equipped with
distinctive hardware acceleration capabilities.

Edge environments — Even the biggest cloud environments consist of smaller data centers, some of which can run on small
network edge or on-premises locations. The motivation for such design is usually a mix of bandwidth, latency, and privacy
requirements. From a workload placement perspective, it is essential to orchestrate which workloads are placed on which edges.

1.2 Terminology

Table 1. Terminology

ABBREVIATION DESCRIPTION

AWS* Amazon Web Services*

BMRA Bare Metal Reference Architecture

CSpP Communication Service Provider

DPDK Data Plane Development Kit

ENA Elastic Network Adapter

EPA Enhanced Platform Awareness

K8s* Kubernetes

NFD Node Feature Discovery

NFV Network Functions Virtualization

NUMA Non-Uniform Memory Access

QAT Intel QuickAssist Technology (Intel® QAT)
SR-IOV Single Root Input/Output Virtualization
TOSCA Topology and Orchestration Specification for Cloud Applications
vDPI Virtualized Deep Packet Inspection

VFW Virtualized Firewall

VNF Virtualized Network Functions

VPC Virtual Private Cloud

vRouter Virtualized Router

1.3 Reference Documentation

Table 2. Reference Documents

REFERENCE SOURCE

Cloudify website https://cloudify.co

F5 Networks website https://www.f5.com/

NGINX* website https://nginx.or;

Intel® Network Builders website for https://networkbuilders.intel.com/network-technologies/container-experience-kits

Containers Experience Kits

Container Bare Metal for 2nd Generation https://builders.intel.com/docs/networkbuilders/container-bare-metal-for-2nd-generation-intel-
Intel® Xeon® Scalable Processor Reference xeon-scalable-processor.pdf
Architecture (installation guide)

Node Feature Discovery Application Note https://builders.intel.com/docs/networkbuilders/node-feature-discovery-application-note.pdf
Intel Device Plugins for Kubernetes https://builders.intel.com/docs/networkbuilders/intel-device-plugins-for-kubernetes-
Application Note appnote.pdf

Topology Management — Implementation in https://builders.intel.com/docs/networkbuilders/topology-management-implementation-in-
Kubernetes Technology Guide kubernetes-technology-guide.pdf

https://cloudify.co/
https://www.f5.com/
https://nginx.org/
https://networkbuilders.intel.com/network-technologies/container-experience-kits
https://builders.intel.com/docs/networkbuilders/container-bare-metal-for-2nd-generation-intel-xeon-scalable-processor.pdf
https://builders.intel.com/docs/networkbuilders/container-bare-metal-for-2nd-generation-intel-xeon-scalable-processor.pdf
https://builders.intel.com/docs/networkbuilders/node-feature-discovery-application-note.pdf
https://builders.intel.com/docs/networkbuilders/intel-device-plugins-for-kubernetes-appnote.pdf
https://builders.intel.com/docs/networkbuilders/intel-device-plugins-for-kubernetes-appnote.pdf
https://builders.intel.com/docs/networkbuilders/topology-management-implementation-in-kubernetes-technology-guide.pdf
https://builders.intel.com/docs/networkbuilders/topology-management-implementation-in-kubernetes-technology-guide.pdf

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

REFERENCE SOURCE

CPU Management - CPU Pinning and https://builders.intel.com/docs/networkbuilders/cpu-pin-and-isolation-in-kubernetes-app-
Isolation in Kubernetes Technology Guide note.pdf

Enhanced Platform Awareness in https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-in-kubernetes-
Kubernetes Application Note application-note.pdf

2 How Cloudify Orchestration Works

Cloudify, as a global orchestrator, provisions workloads to run on distributed Kubernetes clusters based on a set of requirements
and available resources that match those requirements. Figure 2 shows the Cloudify console view.

[111 - TigeriNC@login -
< Apolicaticns Places Firefox Snole 4y O

>

Cloudify Console - Mozilla Firefox

 Cloudfy Console 5| ap

<« ¢ @ @ k8s-masterLremote.leb/console/page/dashboard -0 n @

&P Cloudify Spire 5.0 @ idomittarts @ Ko

&) Getstarted with theHello
B honed b4 World Wizard 3 Ll -n-n e
Cloudy Catzlog I =D e
BLUEPRINTS DEPLOYMENTS PLUGINS COMPUTENGDES RUNNING EXECUTIONS

Local Blueprints

Deployments ya Deployment Wizard

1 Upload Blueprint L4 Create Deployment

Site Management
Tenart Management

Admin Operatiors

System Resources Sites Map

Statistics

Lgs ” 9] A
/\‘
. L\ “Ottas. Montreai™” b
Minneapclis _/

P 4 Q
P e

United s New York
States of
America

“Chicago

*Indianepols COIUMbUS Shiladelphia

Leatet | Wkineda

Executions Executions Statuses Graph

[Q Cloudfy Console - Mozila Firefox 1/4

Figure 2. Cloudify Console View

Figure 3 describes a multi-cloud network setting, orchestrated by Cloudify. The diagram shows four Kubernetes-managed locations
across multi-clouds. Each Kubernetes cluster supports a set of platform capabilities addressing different performance and
operation needs. Based on criteria such as location, resource availability, and special resource requirements, Cloudify provisions a
workload to the correct Kubernetes cluster. Yet this is only part of the work- each Kubernetes cluster is composed from multiple
nodes, each having different hardware capabilities. Cloudify works with Intel-led Kubernetes enhancements supporting multiple
capabilities like Data Plane Development Kit (DPDK), Single Root Input/Output Virtualization (SR-IOV), Intel QuickAssist Technology
(Intel QAT) or other hardware accelerators, Non-Uniform Memory Access (NUMA), and CPU Pinning. That way Cloudify can map
workloads to the right Kubernetes nodes by utilizing node labels per Kubernetes node and Node Selectors to match Kubernetes
pods to specific nodes, or by requesting acceleration device resources, while all intelligence about NUMA topology, CPU pinning, or
assignment of specific hardware devices is done within the Kubernetes software platform.

https://builders.intel.com/docs/networkbuilders/cpu-pin-and-isolation-in-kubernetes-app-note.pdf
https://builders.intel.com/docs/networkbuilders/cpu-pin-and-isolation-in-kubernetes-app-note.pdf
https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-in-kubernetes-application-note.pdf
https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-in-kubernetes-application-note.pdf

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

Reguirements: SSLO, CPU intensive, network intensive

L

Cloudify

EPA: QAT X2 EPA: DPDK X1 EPA: SRIOV X1

i Internet . Internet . Internet .
Location A Location B Location C Location D

EPA: DPDK X1
ENA

Public Cloud
Service Provider

Figure 3. Requirements for Central Cloudify Orchestrated to Distributed Sites

2.1 How to Map a Kubernetes Cluster

Figure 4. NGINX Pod Placement with Requesting QuickAssist Resource

In the case of the demonstration discussed in this paper, we provisioned’ (1) NodeJS pod on a generic Kubernetes node and (2)
NGINX pod on a Kubernetes node identified per NFD with ‘load balancing’ capability, which supports CPU encryption acceleration.
All the Kubernetes nodes supporting the ‘load balancing’ capability are grouped under a special group named QAT. In Figure 5, the
QAT group is marked with a light blue background. This allocation is done on an on-premises Kubernetes cluster.

1 See backup for workloads and configurations or visit www.Intel.com/Performancelndex. Results may vary.

http://www.intel.com/PerformanceIndex

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

Oﬁ; C|Oudify Spil’e 5.0 o § default tenant~ @< & admin~

Dashboard Deployments > pods-ab

Cloudify Catalog

Local Blueprints &5 Execute workflow [# Update deployment 1} Delete deployment

Deployments

e Mo Deployment Topology

Tenant Management E
Admin Operations

System Resources o master @ 0 nginx-nonaccelerated @ o
Statistics n gl nx @

Logs > 0_

Figure 5. Cloudify Console with Composer View
2.2 Non-Kubernetes and Hybrid Environments

As previously mentioned, Cloudify can provision workloads on both Kubernetes and non-Kubernetes hybrid environments. As
shown in Figure 6, workloads can be provisioned to Amazon Web Services* (AWS*). A virtual private cloud (VPC) environment is
instantiated on AWS and a VM is created in that VPC. This VM could be a VNF with special requirements for fast/intensive network
traffic processing. AWS's ENA (Elastic Network Adapter) supports the Data Plane Development Kit (DPDK), therefore it would be
required to install the DPDK driver or choose the right AWS AMI for that. By matching the workload requirements (in this case the
VNF requirements), Cloudify places the VNF on the right node in AWS, fulfilling intensive network capabilities.

A mixture of Kubernetes and non-Kubernetes environments can be maintained by the orchestrator. Moreover, these environments
can be located on-premises or on any public cloud.

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

(',:-)/‘ Cloudify Spire 5.0 ol § default tenant~ @ - & admin~

Dashboard Deployments

Cloudify Catalog

Local Blueprints ¥ Create Deployment

Deployments

Site Management

Tenant Management

Deployments
Admin Operations
Q
System Resources
Statistics v ™ Blueprint Site Name Created Creator Node Instances (3) =
1ogs pods-ab pods-ab 10-10-2019 12:11 admin
v @ Blueprint Site Name Created Creator Node Instances (10) =
BIG-IP BIG-IP AWS 28-09-2019 23:11 admin B
11 - TigerVNC@login - X
i Applications Places Firefox Sun00:19 4% O
Cloudify Console - Mozilla Firefox - =X
@ Cloudify Console x |+
<« (A} @ K8s-masterL.remote.lab/console/page/deployments O N @m =

&P Cloudify Spire 5.0 @ {atuitnnts O Lanin-

Dashboard

Cloudify Catalog

Local Blueprints
en
Deployments
Deployments
Site Management Q
Tenant Management
v o Blueprint Site Name Created Creator Node Instances (10) =
A cwnie BIG-IP BIG-IP AWS 29-09-201900:11 admin
System Resources
Statistics
v o Blueprint Site Name Created Creator Node Instances (10) =
Logs 2
aws aws AWS 29-09-2019 00:00 admin
v o Blueprint Site Name Created Creator Node Instances (3) =
pods pods Boston 26-09-2019 15:41 admin
[Q’ Cloudify Console - Mozilla Firefox 1/4

00:19
29/09/2019

AT Q) f ENG

Figure 6. Cloudify Console with Deployments View
2.3 Intent-Based Decoupling of Layers

With the term “intent”, we mean that we specify the ‘what’ and not the ‘how’. The need for ‘CPU intensive’ hardware may differ
based on the environment because each environment may hold different definitions and parameters. If we decouple this from the
tenant user, it makes the process of application placement to the platform simple and transparent. The user specifies the
requirements they need and Cloudify will match those requirements with the right compute nodes per network definitions.

Utilizing Topology and Orchestration Specification for Cloud Applications (TOSCA), we can write an intent-based blueprint that
decouples application need from a Kubernetes cluster implementation. In this scenario, the tenant only needs to specify the
requirement for nodes with certain capabilities and Cloudify will match the right resources and provision the workloads correctly.

Intent-based definitions decouple the workload requirements from the underlying environment without changing anything at the
higher level of the workload definition. Even when changing the environment where the workload runs and moving the workload to
a new environment, Cloudify will look for the right resources and definitions on the new environment and will select them based on
workload requirements.

TOSCA also helps in the ‘matching’ process. TOSCA defines ‘Requirements’ and ‘Capabilities’ primitives, where a user specifies in
the ‘Requirements’ primitive what it needs, e.g., CPU intensive or Network intensive and ‘Capabilities’. TOSCA also holds a list of

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

supported capabilities by a compute node. In Kubernetes ‘Requirements’ are normally defined by node selectors and ‘Capabilities’
by node labels, or by acceleration device resources. Hence, TOSCA definitions cover the more generic use case and are not
restricted to Kubernetes environments, pods, and nodes.

To summarize, TOSCA requirements and capabilities provide the mechanism to define a generic case for workload requirements
and map them to nodes that support the capabilities to fulfill those requirements.

Deploy Service

Region

Sslect regions

el X
Q]

Infrastructure @ n vmware I& -
¥

o —B

Piacement poicy [Low Latency
u CPU intensive

Huge Memory

Figure 7. Intent-Based Placement

3 F5 Networks and NGINX

NGINX is a free, open-source, high-performance HTTP server and reverse proxy, as well as an IMAP/POP3 proxy server. NGINX is
known for its high performance, stability, rich feature set, simple configuration, and low resource consumption. To handle requests,
NGINX uses scalable event-driven (asynchronous) architecture with small and predictable amounts of memory under load, which
makes it very scalable. A Netcraft study found NGINX to be the #1 web server with 34% market share (source:

https://news.netcraft.com/archives/2020/09/23/september-2020-web-server-survey.html). F5 Networks acquired NGINX in March

2019, which, with other F5 offerings, enable multi-cloud application services across all environments.

4 Software and Hardware Platform
4.1 Physical Topology

The physical topology? for the testing uses a Kubernetes cluster based on one control node and two worker nodes. One of the
nodes, 'k8s node2’, has integrated QAT inside the server chipset. On a separate host, Ansible* runs in the ‘Ansible VM,’ enabling
Kubernetes cluster installation using Bare Metal Reference Architecture (BMRA) v2.0.

2 See backup for workloads and configurations or visit www.Intel.com/Performancelndex. Results may vary.

https://news.netcraft.com/archives/2020/09/23/september-2020-web-server-survey.html
http://www.intel.com/PerformanceIndex

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

Ansible* VM Management Switch (1Gbps)

Ansible Jinjia*
A
Dataplane Switch (25Gbps
Intel BMRA

e

ens78
NIC — Overlay - S NIC I— NIC
QA

H
I

ens785f0 5f0 ens785f0 ens785f0
— NIC — — Overlay -
QAT QAT
Device Device
Plugin CNIvD.3.1 Plugin CNIvD.3.1

SR-1OV SR-10V
Device Device
Plugin Plug-In
DPDK v17.05 DPDK v17.05

Kubernetes* v1.13.5 Kubernetes* v1.13.5
Docker* v18.6.2 Docker* v18.6.2

CentOS* 7.6 bu 810, Kernel v3.10.0-1062 CentOS* 7.6 build 1810, Kernel v3.10.0-1062

Intel® Xeon® Gold 6248 @2.5 GHz, 20C/40T

Intel® Xeon® Gold 6248 @2.5 GHz, 20C/40T

Overlay

K8s masterl

Kubernetes* v1.13.5

Docker* v18.6.2

CentOS* 7.6 build 1810, Kernel v3.10.

Intel® Xeon® E5-2697Av4 @2.6 GHz, 16C/32T

Figure 8. Physical Topology?
4.2 Software Topology

For the Kubernetes cluster and plugins setup, we used the Container Bare Metal Reference Architecture Ansible Playbook (available
as part of Container Bare Metal for 2nd Generation Intel® Xeon® Scalable Processor). In addition, the Cloudify Manager was installed
to work with the cluster through RESTful APIs.

In this setup, we used the following Kubernetes open source software capabilities to demonstrate the role of intelligent workload
placement depending on the requirements: Node Feature Discovery, SR-IOV Network Device Plugin, and Intel Device Plugins for
Kubernetes (Intel QuickAssist Device Plugin).

4.3 Hardware Specifications

This section lists the hardware components and systems that were utilized in this test setup. 2nd Generation Intel® Xeon® Scalable
processors feature a scalable, open architecture designed for the convergence of key workloads such as applications and services,
control plane processing, high-performance packet processing, and signal processing.

3 See backup for workloads and configurations or visit www.Intel.com/Performancelndex. Results may vary.

10

https://builders.intel.com/docs/networkbuilders/container-bare-metal-for-2nd-generation-intel-xeon-scalable-processor.pdf
http://www.intel.com/PerformanceIndex

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

Table 3. Hardware Specifications*

ITEM DESCRIPTION NOTES
Platform Intel® Xeon® Processor Scalable Family Intel® Xeon® processor-based dual-processor server
board
2 x 25 GbE LAN ports
Processors 4x Intel® Xeon® Gold 6248 Processor 20 cores, 40 threads, 2.5 GHz, 150 W, 27.5 MB L3 total
cache per processor, 3 UPI Links, DDR4-2933, 6 memory
channels
2x Intel® Xeon® E5-2697v4 Processor 16 cores, 32 threads, 2.6 GHz, 145 W, 40 MB L3 total
cache per processor, 2 QPI Links, DDR4-2400, 4 memory
channels
Memory 192GB (12 x 16GB 2666MHz DDR RDIMM) or 192GB to 384GB
minimum all 6
memory channels populated (1 DPC) to achieve
384 GB
Networking 2 x NICs - Required 2 x Dual Port 25GbE Intel® Ethernet Network Adapter

Each NIC NUMA aligned

XXV710 SFP28+

2 x Intel® Ethernet Server Adapter X520-DA2 SFP

2 x Dual Port 10GbE Intel® Ethernet Converged Network
Adapter X722

Local Storage

Intel SSD DC S3500

Intel® Intel® C620 Series Chipset Integrated on Integrated w/NUMA connectivity to each CPU or
QuickAssist baseboard minimum 16
Technology Intel® C627/C628 Chipset Peripheral Component Interconnect express* (PCle*) lane
Connectivity to one CPU
BIOS Intel Corporation SE5C620.86 Intel® Hyper-Threading Technology (Intel® HT
B.02.01.0008 Technology) enabled
Release Date: 11/19/2018 Intel® Virtualization Technology (Intel® VT-x) enabled
Intel® Virtualization Technology for Directed 1/O (Intel®
VT-d) enabled
Switches Huawei* S5700-52X-LI-AC Management 1 GbE Switch

Huawei* CE8860-4C-EIl with CE88-D2452CQ
module

Dataplane 25 GbE Switch

4.4 Software Specifications

Table 4. Software Specifications

SOFTWARE FUNCTION

SOFTWARE COMPONENT

LOCATION

Host OS CentOS* 7.8 build 2003 https://www.centos.org/
Kernel version: 3.10.0-
1127.19.1.el7.x86_64

Ansible Ansible v2.7.1 https://www.ansible.com/

BMRA 2.0 Ansible Playbook

Master Playbook v1.0

https://github.com/intel/container-experience-kits

Python*

Python 2.7

https://www.python.org/

4 See backup for workloads and configurations or visit www.Intel.com/Performancelndex. Results may vary.

https://www.centos.org/
https://www.ansible.com/
https://github.com/intel/container-experience-kits
https://www.python.org/
http://www.intel.com/PerformanceIndex

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

SOFTWARE FUNCTION

SOFTWARE COMPONENT

LOCATION

Kubespray*

Kubespray: v2.8.0-31-g3c44ffc

https://github.com/kubernetes-sigs/kubespray

Docker*

Docker* 18.06.1-ce, build e68fc7a

https://www.docker.com/

Container orchestration
engine

Kubernetes v1.13.0

https://github.com/kubernetes/kubernetes

CPU Manager for

CPU Manager for Kubernetes v1.3.0

https://github.com/intel/CPU-Manager-for-Kubernetes

Kubernetes

Node Feature Discovery NFD v0.3.0 https://github.com/kubernetes-sigs/node-feature-
discovery

Data Plane Development Kit ~ DPDK 17.05.0 http://dpdk.org/git/dpdk

Open vSwitch with DPDK

OVS-DPDK 2.11.90

http://docs.openvswitch.org/en/latest/intro/install/dpd
k/

Vector Packet Processing

VPP 19.01

https://docs.fd.io/vpp/19.01/index.html

Multus CNI Multus CNI v4.0 https://github.com/intel/multus-cni
SR-IOV CNI SR-IOV CNIv1.0 https://github.com/intel/SR-I0V-network-device-plugin
Userspace CNI Userspace CNI v1.0 https://github.com/intel/userspace-cni-network-plugin

Intel Ethernet Drivers

https://sourceforge.net/projects/e1000/files/ixgbe%20

stable/5.2.1
https://sourceforge.net/projects/e1000/files/ixgbevf%

20stable/4.2.1
https://sourceforge.net/projects/e1000/files/i40e%20s

table/2.0.30
https://sourceforge.net/projects/e1000/files/i40evf%?2

Ostable/2.0.30

4.5 Platform BIOS Settings®

Table 5. Platform BIOS Settings

MENU PATHTO BIOS SETTINGS FOR SETTINGS FOR MAX REQUIRED
(ADVANCED) BIOS SETTING DETERMINISTIC PERFORMANCE WITH OR

SETTING PERFORMANCE TURBO MODE ENABLED RECOMMENDED
Power CPU P State EIST PSD HW_ALL SW_ALL Recommended
Configuration Control Function
Boot Performance Max. Max. Required
Mode Performance Performance
Energy Efficient Turbo Disable Disable Recommended
Turbo Mode Disable Enable Recommended
Intel® SpeedStep® Disable Enable Recommended

(Pstates)
Technology

5 See backup for workloads and configurations or visit www.Intel.com/Performancelndex. Results may vary.

https://github.com/kubernetes-sigs/kubespray
https://www.docker.com/
https://github.com/kubernetes/kubernetes
https://github.com/intel/CPU-Manager-for-Kubernetes
https://github.com/kubernetes-sigs/node-feature-discovery
https://github.com/kubernetes-sigs/node-feature-discovery
http://dpdk.org/git/dpdk
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
https://docs.fd.io/vpp/19.01/index.html
https://github.com/intel/multus-cni
https://github.com/intel/SR-IOV-network-device-plugin
https://github.com/intel/userspace-cni-network-plugin
https://sourceforge.net/projects/e1000/files/ixgbe%20stable/5.2.1
https://sourceforge.net/projects/e1000/files/ixgbe%20stable/5.2.1
https://sourceforge.net/projects/e1000/files/ixgbevf%20stable/4.2.1
https://sourceforge.net/projects/e1000/files/ixgbevf%20stable/4.2.1
https://sourceforge.net/projects/e1000/files/i40e%20stable/2.0.30
https://sourceforge.net/projects/e1000/files/i40e%20stable/2.0.30
https://sourceforge.net/projects/e1000/files/i40evf%20stable/2.0.30
https://sourceforge.net/projects/e1000/files/i40evf%20stable/2.0.30
http://www.intel.com/PerformanceIndex

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

MENU PATHTO BIOS SETTINGS FOR SETTINGS FOR MAX REQUIRED
(ADVANCED) BIOS SETTING DETERMINISTIC PERFORMANCE WITH OR
SETTING PERFORMANCE TURBO MODE ENABLED RECOMMENDED
Hardware PM Hardware P- Disable Disable Recommended
State Control States
CPU C State Autonomous Disable Enable Recommended
Control Core C-State
CPU C6 Report Disable Disable Recommended
Enhanced Halt State Disable Enable Recommended
(C1E)
Energy Perf Bias Power BIOS Controls BIOS Controls Recommended
Performance EPB EPB
Tuning
ENERGY_PERF_BIAS _C Perf Perf Recommended
FG Mode
Package C State Package C C0/C1 State C6 Recommended
Control State
Intel® Ultra Path Intel® UPI LINK LOP Disable Disable Recommended
Interconnect General ENABLE
(Intel® UPI) Configuration
Configuration
LINK L1 ENABLE Disable Disable Recommended
SNC Disable Disable Recommended
Memory Configuration Enforce POR Disable Disable Recommended
IMC Interleaving 2-Way 2-Way Recommended
Interleave Interleave
Volatile Memory Mode 2 LM mode 2 LM mode Required
Force 1-Ch Way in FM Disabled Disabled Required
Platform Miscellaneous Serial Debug Minimum Minimum Recommended
Configuration Configuration =~ Message Level
PCl Express* PCle* ASPM Per Port Per Port Recommended
Configuration Support
Uncore Uncore Disable Disable Required
Frequency
Scaling
Note: To gather performance data® required for conformance, use either column with deterministic performance or turbo mode

enabled in this table. Some solutions may not provide the BIOS options that are documented in this table. For Intel® Select
Solution, the BIOS should be set to the “Max Performance” profile with Virtualization.

% See backup for workloads and configurations or visit www.Intel.com/Performancelndex. Results may vary.

http://www.intel.com/PerformanceIndex

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions
4.6 Building Software Platform

4.6.1 Ansible Host, Control, and Worker Node Software Prerequisites
1. As root enter the following commands in Ansible Host:
yum install -y epel-release
wget https://releases.ansible.com/ansible/rpm/release/epel-7-x86 64/ansible-2.7.12-
.el7.ans.noarch.rpm
yum install -y ./ansible-2.7.12-1.el7.ans.noarch.rpm
easy install pip
pip2 install jinja2 —-upgrade
yum install -y python36 python2-jmespath
2. Enable password-less login between all nodes in the cluster.
Step 1: Create authentication SSH-keygen keys on Ansible Host:
ssh-keygen
Step 2: Upload generated public keys to all the nodes from Ansible Host:
ssh-copy-id root@node-ip-address

H o o S

4.6.2 Deploy Intel Bare Metal Reference Architecture Using Ansible Playbook
1. Get Ansible playbook:
git clone https://github.com/intel/container-experience-kits.git
cd container-experience-kits/playbooks
2. Copy example inventory file to the playbook home location:
cp examples/inventory.ini
3. Edit the inventory.ini to reflect the requirement. Here is the sample file.
[all]
controll ansible host=192.168.0.235 ip=192.168.0.235 ansible user=root
nodel ansible host=192.168.0.236 ip=192.168.0.236 ansible user=root
node2 ansible host=192.168.0.237 ip=192.168.0.237 ansible user=root

[kube-control]
controll

[etcd]
controll

[kube-node]
nodel
node?2

[k8s-cluster:children]
kube-control
kube-node

[calico-rr]

4. Copy group_vars and host_vars directories to the playbook home location:
cp -r examples/group vars examples/host vars

5. Update group_vars to match the desired configuration.
vim group vars/all.yml

BMRA control playbook variables

Node Feature Discovery

nfd enabled: true

nfd build image locally: true
nfd namespace: kube-system
nfd sleep interval: 30s

Intel CPU Manager for Kubernetes

cmk enabled: true

cmk namespace: kube-system

cmk use_all hosts: false # 'true' will deploy CMK on the control nodes too

#cmk hosts list: nodel,node2 # allows to control where CMK nodes will run, leave this option
commented out to deploy on all K8s nodes

cmk shared num cores: 12 # number of CPU cores to be assigned to the "shared" pool on each of
the nodes

cmk_exclusive num cores: 20 # number of CPU cores to be assigned to the "exclusive" pool on
each of the nodes

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

cmk shared mode: spread # choose between: packed, spread, default: packed
cmk _exclusive mode: spread # choose between: packed, spread, default: packed

Intel SRIOV Network Device Plugin

sriov_net dp enabled: true

sriov_net dp namespace: kube-system

whether to build and store image locally or use one from public external registry
sriov_net dp build image locally: true

Intel Device Plugins for Kubernetes
gat dp enabled: true

gat dp namespace: kube-system

gpu _dp_enabled: false

gpu_dp namespace: kube-system

Forces installation of the Multus CNI from the official Github repo on top of the Kubespray
built-in one
force external multus installation: true

Proxy configuration
proxy env:

http proxy: ""

https proxy: ""

no proxy: ""

Kubespray variables

default network plugins and kube-proxy configuration
kube network plugin multus: true
multus version: v3.2

4.7 Conclusion

The Container Bare Metal for 2nd Generation Intel® Xeon® Scalable Processor Reference Architecture document provides guidelines
for setting a Kubernetes performant platform for dataplane and other performance-sensitive workloads, independent of vendor
implementations. Based on the platform set, various tests can be done even before such platforms are productized. Companies that
plan to develop their own Kubernetes-based platform can refer to this document for additional details.

5 Preparing NGINX and Apache Bench Containerized Images

This section shows how to prepare and use containerized Docker images in the following steps:

e Prepare Linux environment.

¢ On the host OS, install prerequisites for getting NGINX to use Intel QuickAssist, then build containerized image using a custom
Dockerfile.

¢ Build containerized image for Apache Bench from custom Dockerfile.

e Start procedure with Pushgateway, Prometheus*, and Grafana* using prebuilt images.

e Create Kubernetes pod yaml files.

e Create Cloudify deployments.

e List of related documents.

5.1 Linux Environment

This procedure assumes running CentOS* 7.8 with development packages preinstalled and booted with the following kernel
parameters: isolcpus=4-19,44-59,24-39,64-79 rcu nocbs=4-19,44-59,24-39,64-79 nohz full=4-19,44-59,24-
39,64-79 intel iommu=on pci=realloc pci=assign-busses default hugepagesz=2M hugepagesz=2M
hugepages=4096. The CPU list has to be adjusted according to the CPU model used. i ommu=pt must not be used.

To run QAT services from within an unprivileged Docker container, system’s maximum locked memory size must exceed 64 KB. One
way to change this setting is to modify the /etc/system/system/docker. service fileand add Limi tMEMLOCK=infinity and

restart docker.service.
systemctl daemon-reload
systemctl restart docker.service

If you run Ubuntu* or another distribution, use equivalent commands like with apt-get or other package manager.

Do the compilations and integration on node with installed QuickAssist Technology, as root, and have working directory here
described as WORK_DIR, like /root/w.

https://builders.intel.com/docs/networkbuilders/container-bare-metal-for-2nd-generation-intel-xeon-scalable-processor.pdf

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

In bash use the following environment variables, or at the end of /etc/bashrc or ~/.bashrc add:
export OPENSSL INSTALL DIR=/usr/local/ssl
export OPENSSL ENGINES=SOPENSSL INSTALL DIR/lib/engines-1.1
if [$LD LIBRARY PATH]; then
export LD LIBRARY PATH="$SLD_ LIBRARY PATH”:$OPENSSL INSTALL DIR/1lib:/usr/local/lib64
else
export LD LIBRARY PATH=SOPENSSL INSTALL DIR/lib:/usr/local/lib64
fi
export NGINX INSTALL DIR=/usr/local/nginx
export WORK DIR=/root/w
export PUSHGWIP=<YOUR IPV4 ADDR WHERE RUN GRAFANA PROMETHEUS PUSHGATEWAY>

Restart bash if using .bashrc or similar files.

For start do:
mkdir SWORK_DIR
yum update

5.2 Intel® QuickAssist Driver and Libraries

Check if your node already has Intel QuickAssist Technology (Intel QAT) enabled and configured with Virtual Functions with:
lsmod | grep -e gat —-e usdm
lspci | grep QuickAssist

If there, note the version of Intel QuickAssist found, for example C62x.

Additional libraries that are required are for gat and usdm, which are used later to build QAT_Engine. If that is already available,
then continue with the installation step for OpenSSL*.

Compile and install Intel QuickAssist Driver and libraries with:
cd $WORK DIR
mkdir QATdriver && cd QATdriver
wget https://0l.org/sites/default/files/downloads//gatl.7.1.4.11.0-00001.tar.gz
tar xfz gatl.7.1.4.11.0-00001.tar.gz
yum install -y libudev-devel
./configure --enable-icp-sriov=host
make install && make samples-install

These commands create files /etc/c6xx _dev[01].conf and /etc/c6xxvE dev*.conf configuration files for QuickAssist.

To test the installation, use:
lspci | grep QuickAssist
lsmod | grep -e gat -e usdm | sort

Last line gives authenc, intel gat,gat c62x,gat c62xvf,uio,and usdm drv
5.3 OpenSSL

Compile and install OpenSSL with:
cd $WORK DIR
git clone https://github.com/openssl/openssl.git && cd openssl
git checkout OpenSSL 1 1 1g

./config ——prefix=$OPENSSL71NSTALL7DIR -Wl, -rpath, $OPENSSL71NSTALL7DIR/ 1lib
make && make install

5.4 QAT_Engine

Compile and install Intel QuickAssist Engine (which will be used later with NGINX) with:
cd $WORK DIR
git clone https://github.com/0lorg/QAT Engine.git && cd QAT Engine
git checkout v0.6.1
./autogen.sh
./configure --with-gat dir=$WORK DIR/QATdriver --with-openssl dir=$WORK DIR/openssl --with-
openssl install dir=$OPENSSL INSTALL DIR --enable-upstream-driver --enable-usdm --disable-
gat lenstra protection
export PERLSLIB=SPERL5LIB:$WORK DIR/openssl
make && make install

Inthe gat/config/c6xx/multi process optimized/c6xx devO0.conf file, update the value of NumProcesses to 2:
sed -i "s/NumProcesses = 16/NumProcesses = 2/"
gat/config/céxx/multi process optimized/c6xx dev0.conf

https://github.com/openssl/openssl.git

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

In the same configuration file, modify the [SHIM] section name to reflect information about the QAT device NUMA node. The new
name should be in the format [SHIM_NUMAX], where x is the NUMA node id. This section name is exported as an environment
variable name in the NGINX testing pod by the QAT device plugin and is used as the hint to the CMK to allocate cores from the same
NUMA node. In our setup, the QAT device is attached to the NUMA node 0, so the section name should be modified to

[SHIM_NUMAO].
sed -i "s/\[SHIM\]/\[SHIM NUMAO\]/" gat/config/céxx/multi process optimized/céxx dev0.conf

Then copy that as configuration for QAT Virtual Functions and restart services:
for i in {0..31}; do
cp -f gat/config/c6xx/multi process optimized/c6xx devO.conf /etc/cé6bxxvf devs$i.conf
done
service gat service shutdown
service gat service start
service gat service vfs start

To check the engine was installed:
1s $OPENSSL INSTALL DIR/lib/engines-1.1

The output of which should list gat . so.

Then checking:
SOPENSSL_ INSTALL DIR/bin/openssl engine -t gat

Returns the output Reference Implementation of QAT crypto engine. and [available].

5.5 QATZip

Compile and install QATZip (which can be used later with NGINX) with:
cd $WORK DIR
git clone https://github.com/intel/QATzip.git && cd QATzip
git checkout v1.0.1
yum install -y zlib-devel
./configure ——with—ICPiROOTZ$WORK7DIR/QATdriver
make clean
make all
make install

5.6 NGINX with Async Mode Using Intel QuickAssist

Compile and install NGINX with Async Mode using QuickAssist with:
cd SWORK DIR
git clone https://github.com/intel/asynch mode nginx.git && cd asynch mode nginx
git checkout v0.4.3
yum install -y pcre-devel
export QZ ROOT="${WORK DIR}/QATzip"
./configure --prefix=$NGINX INSTALL DIR --without-http rewrite module --with-http ssl module --

add-dynamic-module=modules/nginx gatzip module --add-dynamic-module=modules/nginx gat module/ -
-with-cc-opt="-DNGX SECURE MEM -ISOPENSSL INSTALL DIR/include -I$QZ ROOT/include -Wno-
error=deprecated-declarations" --with-ld-opt="-W1l, -rpath=SOPENSSL INSTALL DIR/1lib -

L$OPENSSL71NSTALL7DIR/lib —L$QZ7ROOT/src -lgatzip -1z"
make && make install

5.7 Configure NGINX

Copy the QAT NGINX configuration file:
cp SWORK DIR/asynch mode nginx/conf/nginx.QAT-sample.conf
SNGINX INSTALL DIR/conf/nginx QAT.conf

Create key and certificate with the following command (replace country, state, city, company name, org name, FQDN accordingly):
openssl req -x509 -nodes -days 365 -newkey rsa:2048 \
-keyout SNGINX INSTALL DIR/conf/cert.key \
-out $NGINX INSTALL DIR/conf/cert.pem \
-subj "/C=US/ST=California/L=Santa Clara/O=Intel Corporation/CN=www.intel.com"

In SNGINX INSTALL DIR/conf/nginx.conf enable HTTPS server lines near the end of the file:
HITPS server

#
server {
listen 448 s sl
server name localhost;
ssl protocols TLSv1.2;
ssl certificate cert.pem;

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

ssl certificate key cert.key;
ssl session cache shared:SSL:1m;
ssl session timeout 5m;
ssl ciphers HIGH:!aNULL: !MD5;
ssl prefer server ciphers on;
location / {
root html;
index index.html index.htm;
1
1

Clean NGINX configuration files from worker_processes option. It is set according to the number of allocated cores for the
container:

sed -i "/worker processes/d" SNGINX INSTALL DIR/conf/nginx QAT.conf

sed -i "/worker processes/d" $SNGINX INSTALL DIR/conf/nginx.conf

Confirm whether the syntax of the NGINX configuration files is OK with:
SNGINX INSTALL DIR/sbin/nginx -c SNGINX INSTALL DIR/conf/nginx QAT.conf -t
SNGINX INSTALL DIR/sbin/nginx -t

Create binary file (192 KB) with random values with:
dd if=/dev/urandom of=$NGINX INSTALL DIR/html/test.bin bs=1k count=192

5.8 Build NGINX Container Image

CPU pinning and isolation are desired for many cases and workload types including but not limited to latency sensitive CommSP
workloads. To solve this problem, a CPU manager can be used. Looking at native Kubernetes CPU Manager and Intel CPU Manager
for Kubernetes (CMK), there are different pros and cons for each CPU manager type.

At the time of writing, one of the limitations of the native Kubernetes CPU Manager is that CPU resources are measured in CPU

units. One CPU is equivalent to one hyper-thread on bare metal deployments. For example, there could be a situation that two CPUs
requested for the container can be two hyper-threads from the same physical core or from different physical cores but with some
other workloads running on the second hyper-thread. Also, native Kubernetes CPU Manager does not consider the isolcpus kernel
parameter, which is highly desired for the latency sensitive applications like those based on Data Plane Development Kit (DPDK).
This could be solved by disabling hyper-threading in the server BIOS, but this is usually not recommended.

CPU Manager for Kubernetes allocates CPU resources as fully “isolated” cores by isolating all hyper-thread siblings. It works with
isolcpus parameters for the best isolation from the system processes but can also work without them.

One more thing to consider for latency-sensitive and high-throughput workloads is device locality and the right placement on
typical high-volume dual-socket systems where resources such as different kinds of accelerators can be connected to different
sockets. To achieve this, the Topology Manager was introduced in Kubernetes. It works using a Hint Providers interface to send and
receive topology information from different components. Currently the only supported components are Device Manager and native
Kubernetes CPU Manager.

In CMK, NUMA alignment should be done “manually” and one of the ways to automate the process is shown in the start script for
the demonginx container images. At the beginning of the script, the hint from QAT Device Plugin is used to identify the NUMA of the
assigned device. The hint comes in the form of the QAT section name exported as an environment variable in a predefined format
containing the NUMAX string. See Section 5.4 for more details. Then the NUMA ID is used as an input option for the CMK isolate
phase (--socket-id) to request cores from the same NUMA node with allocated QAT device.

The following NGINX and Apache Bench images (demonginx, demoab) are universal from the CPU manager perspective. They can
be used with CPU Manager for Kubernetes (CMK) or native Kubernetes CPU Manager. During the container start, the CPU manager
type is identified automatically and appropriate settings are used to start NGINX.

Enter the following commands on the node that can access the Docker image repository over localhost:5000/imagename:
cd $WORK DIR
mkdir scripts && cd scripts
mkdir demonginx && cd demonginx

cat > build << EOF
#!/bin/bash

tar cfz demo.tar.gz \
\$NGINX INSTALL DIR \
\$OPENSSL INSTALL DIR \
/usr/lib64/libgatzip.so \
/usr/local/lib64/libgatzip.so \
/usr/local/lib64/libgatzip.so.1l \

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

/usr/local/lib64/libgatzip.so0.1.0.1 \
/usr/local/lib/libgat s.so \
/usr/local/lib/libusdm drv_s.so \
/usr/local/bin/adf ctl

docker build -t demonginx
EOF

cat > start << EOF
#!/bin/bash

LOG_FILE="/app/log"

NGINX

NGINX="\$NGINX_ INSTALL DIR/sbin/nginx"

NGINX USER="nobody"

NGINX_PARAM WP="auto"

NGINX PARAM WCA="auto"

NGINX CONF="\S$NGINX INSTALL DIR/conf/nginx.conf"
NGINX CONF QAT="\$NGINX INSTALL DIR/conf/nginx QAT.conf"
OAT

QAT DEV_PROCESSES="/dev/gat dev processes"

QAT ADF CTL="/dev/gat adf ctl"

QAT FOUND="/app/gat found"

QAT GROUP_NAME="gat"

CMK

CMK_BIN="/opt/bin/cmk"

CMK CONF DIR="/etc/cmk"

CMK POOL DEFAULT="exclusive"

CPU manager

SYSFS CPUSET="/sys/fs/cgroup/cpuset/cpuset.cpus"

log() { [! -z "\$1"] && echo "\$1" >> \SLOG FILE; }
sig handler () { log "Signal handler..."; touch /app/s; }

log forced options ()

{

[! -z "\SUSE_QAT"] && log "QAT mode is forced to \SUSE QAT"

[! -z "\SWORKER PROCESSES"] && log "Number of NGINX worker processes is forced to
\$WORKER_PROCESSES"

[! -z "\SWORKER CPU AFFINITY"] && log "NGINX worker cpu affinity is forced to
\SWORKER CPU AFFINITY"

[! -z "\$USE CMK"] && log "CMK usage is forced to \SUSE CMK"

[! -z "\$SCMK_POOL"] && log "CMK pool is forced to \$SCMK_ POOL"

[! -z "\$CMK SOCKET ID"] && log "CMK socket id is forced to \$CMK SOCKET ID"

}

gqat detect ()
{

["\SUSE_QAT" == "false"] && return
log "Looking around for QAT..."
if [! -e "\$QAT_DEV_PROCESSES" 1 11 [! -e "\$QAT_ADF_CTL"]; then log "No QAT detected.";

return; fi
log "Found QAT files in /dev..."
touch \$QAT_ FOUND
QAT _GID=\ stat -c "%g" \S$SQAT DEV_PROCESSES\’
groupadd -g \$QAT GID \$QAT GROUP_ NAME
usermod -aG \$QAT GROUP NAME \SNGINX USER
log "Created \SQAT GROUP NAME group with gid \$QAT GID and added \SNGINX USER in this group"
[! -z "\$CMK_SOCKET ID"] && return
if [[\$QAT SECTION NAME =~ NUMA[0-9]+$]]; then
CMK SOCKET ID=\${QAT SECTION NAME##*NUMA }
log "NUMA pattern is found in the QAT SECTION NAME (\$QAT_SECTION_NAME). Request
cores from NUMA\SCMK_SOCKET_ID."
fi
}

cmk detect ()

{
["\SUSE_CMK" == "false"] && return

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

log "Looking around for CMK..."

if [-e "\$CMK BIN"]; then
CMK_VERSION=\ "\$CMK BIN --version\"
if [\$? -eq 0]; then log "Found CMK (\$CMK VERSION)..."; CMK FOUND="true"; else log
"Failed to query the CMK version. Please check the CMK installation/configuration."; fi
else

log "No CMK binary found. Seems CMK is not installed."
fi
}

cmk nginx start stagel ()
{
[-z "\SCMK POOL"] && CMK POOL=\$CMK POOL DEFAULT
if [-z "\$CMK SOCKET ID"]; then
log "Requesting cores from \$CMK POOL pool and default socket id."
\$CMK BIN isolate --conf-dir=\$CMK CONF DIR --pool=\$CMK POOL /app/start --
cmk nginx start stage2

else
log "Requesting cores from \$CMK POOL pool and socket \$CMK SOCKET ID."
\SCMK_BIN isolate --conf-dir=\$CMK CONF DIR --pool=\$CMK POOL --socket-
id=\$CMK SOCKET ID /app/start -- cmk nginx start stage2
fi

}

cmk nginx start stage2 ()
{
[-z \SCMK CPUS ASSIGNED] && log "List of assigned CPUs is not found (CMK CPUS ASSIGNED) !"
&& return
if [\'lscpu | grep "Thread(s) per core" | awk '{print \$4}'\" -eq 2]; then
log "HT is on"
HTS=\"cat /sys/devices/system/cpu/cpu*/topology/thread siblings list | sort | uniqg |
awk -F',"' '"{ print \$2 }'\"
CMK_CPUS ASSIGNED NOHTS=\'echo \$CMK CPUS _ASSIGNED | awk -v v1="\SHTS"

"{split (\$0,cpus,","); split(vl,hts,"™ "); for (i in hts) {for (j in cpus) {if (hts[il==cpus[]])
{delete cpus[j]; break}}}} END {for (i in cpus) {printf "%s%s",s,cpus[i]; s=","}}"'\"

fi

NGINX PARAM WP=\'echo \$CMK CPUS ASSIGNED NOHTS | awk -F',' '{print NF}'\"

CPU_AFFINITY=\ echo \$SCMK CPUS ASSIGNED NOHTS | awk '{split(\$0,a,","); asort(a);
l=a[length(a)]; for (i=0;i<=1;i++) m[i]=0; for (i in a) ml[a[i]]=1 } END {for (i=1;i>=0;i--)

printf m[i]}"\"

log "CPUs assigned by CMK: \SCMK CPUS ASSIGNED. Using CPUs: \SCMK CPUS ASSIGNED NOHTS.
Number of workers: \SNGINX PARAM WP. Workers CPU affinity string: \$CPU AFFINITY"

NGINX PARAM WCA="auto \$CPU AFFINITY"

nginx start

wait for stop

}

Cpu_manager nginx start ()
{

CPU_MANAGER CPUS ASSIGNED=\'cat \$SYSFS CPUSET\"

NGINX PARAM WP=\'echo \$CPU MANAGER CPUS ASSIGNED | awk '{split(\$0,a,","); for (i in a)
{split(alil,b,"-"); ct++; if (b[2]!="") for (j=b[l]+1;j<=b[2];j++) c++}} END {print c}'\"

log "CPUs assigned by CPU manager: \$CPU MANAGER CPUS ASSIGNED. Number of workers:
\SNGINX PARAM WP. No need for workers CPU affinity string."

NGINX PARAM WCA="auto"

nginx start

wait for stop

}

nginx start ()
{

if [-z "\SWORKER PROCESSES"]; then NGINX PARAMS="worker processes \S$SNGINX PARAM WP;"; else
NGINX PARAMS="worker processes \$SWORKER PROCESSES;"; fi

if [-z "\$WORKER_CPU_AFFINITY"]1; then NGINX_PARAMS:"\$NGINX_PARAMS worker cpu affinity
\SNGINX PARAM WCA;"; else NGINX PARAMS="\SNGINX PARAMS worker cpu affinity
\SWORKER_CPU AFFINITY;"; fi

NGINX PARAMS="\SNGINX PARAMS user \SNGINX USER;"

log "Using the following NGINX parameters: \"\SNGINX PARAMS\""

if [-e "\SQAT FOUND"]; then

20

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

log "Starting NGINX with QAT..."

\SNGINX -g "\$NGINX7PARAMS" =@ \$NGINX7CONF7QAT

sleep 5

if ["\S$(is_nginx started)" == "false"]; then
log "NGINX failed to start... Let's try without QAT..."
\SNGINX -s stop && sleep 1
\SNGINX -g "\SNGINX PARAMS" -c \SNGINX CONF

fi
else
log "Starting NGINX without OQAT..."
\SNGINX -g "\SNGINX PARAMS" -c \SNGINX CONF
fi
sleep 5
if ["\$(is_nginx_started)" == "true"]; then log "NGINX successfully started!"; else log

"NGINX failed to start!"; fi
}

is nginx started() { if [\'ps -ef | grep nginx | grep -c "worker process"\' -gt 0];

"true"; else echo "false"; fi; }

start ()

{
log forced options
cmk detect
gat detect

if ["\$CMK FOUND" == "true"]; then cmk nginx start stagel; else cpu manager nginx start;

fi
}

wait for stop()

{
log "Waiting for stop command..."
trap sig handler SIGINT SIGKILL SIGTERM
while [! -f /app/s]; do sleep 1; done
log "Stopping NGINX..."
\SNGINX -s stop

}

\$1
EOF

cat > stop << EOF
#!/bin/bash

touch /app/s

EOF

chmod 755 build start stop

cat > Dockerfile << EOF

FROM centos:centos?

COPY start stop /app/

RUN yum install -y pciutils

ADD demo.tar.gz /

ENV OPENSSL_INSTALL_DIR:$OPENSSL_INSTALL_DIR
ENV NGINX INSTALL DIR=$NGINX INSTALL DIR
#ENV ICP_ROOT /usr/local/gat

ENV LD LIBRARY PATH /usr/lib:/usr/1lib64:/usr/local/lib:/usr/local/lib64
CMD ["/bin/bash", "/app/start", "start"]
EXPOSE 80 443

EOF

Build the Docker image with the following commands:
./build
docker tag demonginx:latest localhost:5000/demonginx:latest
docker push localhost:5000/demonginx:latest

5.9 Build Apache Benchmark Load Generator Container Image

Enter the following commands:
cd SWORK DIR/scripts
mkdir demoab && cd demoab

then echo

2]

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

cat > start << EOF
#!/bin/bash

LOG_FILE="/app/log"

CMK

CMK BIN="/opt/bin/cmk"

CMK CONF DIR="/etc/cmk"

CMK POOL DEFAULT="exclusive"

log() { [! -z "\$1"] && echo "\$1" >> \$LOG FILE; }
sig _handler () { log "Signal handler..."; touch /app/s; }
cmk detect ()
{
["\SUSE CMK" == "false"] && return
log "Looking around for CMK..."
if [-e "\$SCMK BIN"]; then
CMK_VERSION=\ "\$CMK BIN --version\"
if [\$? -eq 0]; then log "Found CMK (\$CMK VERSION)..."; CMK FOUND="true"; else log
"Failed to query the CMK version. Please check the CMK installation/configuration."; fi
else
log "No CMK binary found. Seems CMK is not installed."
fi
}
ab_start ()

{
trap sig handler SIGINT SIGKILL SIGTERM

if [-z \SABID]; then ID=\'date +%N\'; else ID=\S$SABID; fi
log "AB instance ID ab\$ID"
while [! -f /app/s 1; do

tr=\$(ab -n \SABN -c \SABC https://\SABTARGETURL | awk '\S$l=="Transfer" &&
\$2=="rate:" {print \$3}'")
log "TransferRate \Str"

echo TransferRate \$tr | curl --data-binary @-
http://\SPUSHGWIP:9091/metrics/job/ab/instance/ab\S$ID
done
}
start ()
{
cmk detect
if ["\$CMK_FOUND" == "true"]; then
[-z "\$CMK POOL"] && CMK POOL=\$CMK POOL DEFAULT
\$CMK_BIN isolate --conf-dir=\$CMK CONF DIR --pool=\$CMK POOL /app/start -- ab start
else
ab_start
fi
}
\$1
EOF

cat > stop << EOF
#!/bin/bash

touch /app/s

EOF

cat > Dockerfile << EOF

FROM centos:centos?

RUN yum install -y httpd-tools curl
COPY start stop /app/

CMD ["/bin/bash", "/app/start", "start"]
EOF

cat > build << EOF
#!/bin/bash

docker build -t demoab
EOF

22

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

Build the Docker image with:
./build
docker tag demoab:latest localhost:5000/demoab:latest
docker push localhost:5000/demoab:latest

5.10 Configure Pushgateway, Prometheus, and Grafana Under Docker

On your (control) node where the IP address is PUSHGWIP, perform the following one-time setup procedure:
cd $WORK DIR
mkdir scripts && cd scripts
cat > run once << EOF
#!/bin/bash
docker run --name grafana -d --network host -e "GF SECURITY ADMIN PASSWORD=password"
grafana/grafana
EOF
cat > start all << EOF
#!/bin/bash
docker run --name pushgateway -d --network host prom/pushgateway
docker run --name prometheus -d --network host -v
SWORK DIR/scripts/prometheus.yml:/etc/prometheus/prometheus.yml prom/prometheus
docker start grafana
EOF
cat > stop_all << EOF
#!/bin/bash
docker stop grafana
docker kill prometheus pushgateway
docker rm prometheus pushgateway

EOF
cat > prometheus.yml << EOF
global:

scrape interval: 2s

evaluation interval: 15s
scrape configs:
- job name: 'pushgateway'
static configs:
- targets: ['SPUSHGWIP:9091']
EOF
chmod 755 run once start all stop all
./run_once

After the first-time setup is completed, you only need to use the command:
./start_all

Verify if Grafana, Prometheus, and Pushgateway are running with the command:
docker ps | grep -e grafana -e prometheus -e pushgateway

Later, when restarting pods with ab containers, old metrics can be cleaned with the commend:
./stop_all && ./start all

5.11 Define Kubernetes Pod
To load each NGINX, we use three instances of ab, as four containers coming together in one pod.

For the built-in CPU manager, use the following template:
cat demo.yaml << EOF
kind: Pod
apiVersion: vl
metadata:
generateName: demo-
spec:
containers:
- name: demonginx
image: localhost:5000/demonginx:latest
imagePullPolicy: IfNotPresent
command: ["/app/start", "start"]
env:
securityContext:
capabilities:
add: ["IPC LOCK"]
resources:
requests:

23

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

memory: "1Gi"

cpu: non

gat.intel.com/cyl dcO: '1'
limits:

memory: "1Gi"

cpu: non

gat.intel.com/cyl dcO: '1'
- name: demoabl
image: localhost:5000/demoab:latest
imagePullPolicy: IfNotPresent

command: ["/app/start", "start"]
env:
- name: ABN
value: "1200"
- name: ABC
value: "12"
- name: ABID
value: "idl"
- name: ABTARGETURL
value: "localhost/test.bin"

- name: PUSHGWIP
value: "192.168.0.235"
resources:
requests:
memory: "500Mi"
cpu: "1"
limits:
memory: "500Mi"
cpu: nwin
- name: demoab2
image: localhost:5000/demoab:latest
imagePullPolicy: IfNotPresent

command: ["/app/start", "start"]
env:
- name: ABN
value: "1200"
- name: ABC
value: "12"
- name: ABID
value: "id2"
- name: ABTARGETURL
value: "localhost/test.bin"

- name: PUSHGWIP
value: "192.168.0.235"
resources:
requests:
memory: "500Mi"
cpu 2 A\l 1 A\l
limits:
memory: "500Mi"
cpu: "1"
- name: demoab3
image: localhost:5000/demoab:latest
imagePullPolicy: IfNotPresent

command: ["/app/start", "start"]
env:
- name: ABN
value: "1200"
- name: ABC
value: "12"
- name: ABID
value: "id3"
- name: ABTARGETURL
value: "localhost/test.bin"

- name: PUSHGWIP
value: "192.168.0.235"
resources:
requests:
memory: "500Mi"

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

cpu: '1'
limits:
memory: "500Mi"
cpu: '1'
restartPolicy: Never

EOF

For CMK, use the following template:
cat demo-cmk.yaml << EOF
kind: Pod
apiVersion: vl
metadata:
generateName: demo-cmk
spec:
containers:
- name: demonginx
image: localhost:5000/demonginx:latest
imagePullPolicy: IfNotPresent
command: ["/app/start", "start"]
securityContext:
capabilities:
add: ["IPC LOCK"]
resources:
requests:
memory: "1Gi"
cmk.intel.com/exclusive-cores: '2'
gat.intel.com/cyl dcO: '1'
limits:
memory: "1Gi"
cmk.intel.com/exclusive-cores: '2'
gat.intel.com/cyl dcO: '1'
- name: demoabl
image: localhost:5000/demoab:latest
imagePullPolicy: IfNotPresent

command: ["/app/start", "start"]
env:
- name: ABN
value: "1200"
- name: ABC
value: "12"
- name: ABID
value: "idl"
- name: ABTARGETURL
value: "localhost/test.bin"

- name: PUSHGWIP
value: "192.168.0.235"

resources:
requests:
memory: "500Mi"
cmk.intel.com/exclusive-cores: "1"
limits:
memory: "500Mi"
cmk.intel.com/exclusive-cores: "1"

- name: demoab2
image: localhost:5000/demoab:latest
imagePullPolicy: IfNotPresent

command: ["/app/start", "start"]
env:
- name: ABN
value: "1200"
- name: ABC
value: "12"
- name: ABID
value: "id2"
- name: ABTARGETURL
value: "localhost/test.bin"

- name: PUSHGWIP
value: "192.168.0.235"
resources:

25

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

requests:
memory: "500Mi"
cmk.intel.com/exclusive-cores: '1'
limits:
memory: "500Mi"
cmk.intel.com/exclusive-cores: '1'

- name: demoab3
image: localhost:5000/demoab:latest
imagePullPolicy: IfNotPresent

command: ["/app/start", "start"]
env:
- name: ABN
value: "1200"
- name: ABC
value: "12"
- name: ABID
value: "id3"
- name: ABTARGETURL
value: "localhost/test.bin"

- name: PUSHGWIP
value: "192.168.0.235"

resources:
requests:
memory: "500Mi"
cmk.intel.com/exclusive-cores: '1'
limits:
memory: "500Mi"
cmk.intel.com/exclusive-cores: '1'

restartPolicy: Never

The goal of this example is to show how controlled placement and predictable performance can be achieved on a server with Intel®
Hyper-Threading Technology (Intel® HT Technology) enabled and by using a QAT device as an accelerator. For that we used CPU
Manager for Kubernetes, which uses isolcpus and respects the difference between physical and hyper-threaded cores. In our
example, requesting physical core does not schedule anything on hyper-threaded cores. The application in the scheduled pod
needs to take care on which cores it runs. The NGINX startup script selects those cores, which is equivalent to how DPDK
applications would do that. We did not use Kubernetes CPU Manager because it does not differentiate between physical and hyper-
threaded cores. For the management of the accelerator devices we used the QAT Device Plugin.

In the example code, line "gat.intel.com/cyl dcO: 1"controls consumption of QAT, where the QAT Device Plugin maps QAT
into the pod by also giving access rights as it is going through the kernel drivers. Line “cmk.intel.com/exclusive-cores:
12" gets cores exclusively allocated to the container.

Using a browser, go to the Grafana page http://$PUSHGWIP:3000, login with admin/password, and change the password.
Add data source Prometheus with URL http://$PUSHGWIP: 9090 at desired Scrape interval, save, and test.

Create a dashboard using Add Query Prometheus with Metric Transfer Rate and desired refresh rate.

5.12 Deploy from Cloudify

Cloudify deployment for NGINX with preference to QAT (Figure 6) returns a result similar to Figure 9.

26

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

[root@masterl ~]# kubectl describe pod nginx

ame: ngLNX

amespace: default

Priority: 2]

PriorityClassName: <none=

H nodel/192.168.0.23¢
Etart Time: Wed, 09 Oct 2019 10:27:12 +03880
env=nginx
Annotations: k8s.vl.cni.cnct.1o/networks-status:
[{

"name®: "cniB8",
"interface®: "etho",
”ipS” . [

]F h . . . -

"mac": "Q@a:58:0a:f4:81:aa",
"default™: true,

”dl"IS”: {}

1]

Running

Container ID: docker://1c606f2501f2deed9f7dfe2b54d0ccB846dc028262ff1186c27645918a31c3c5T
Image: nginx
Image ID: docker-pullable://nginx@sha256:aededof2a861747f43a01cfl018cfoefezbddozafds7d2zbll
Port: <none>
Host Port: <none>
State: Running
Started: Wed, 09 Oct 2819 10:27:22 +03880
Ready: True
Restart Count: O
Environment: <none>
Mounts:
/var/run/secrets/kubernetes.1o/serviceaccount from default-token-mljge (ro)
onditions:
Type Status
Initialized True
Ready True
ContainersReady True
PodScheduled True
olumes :
default-token-mljgc:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-mljgc
Optional: false
oS Class: BestEffort
ode-Selectors: load-balancer=true
olerations: node.kubernetes.io/not-ready:NoExecute for 380s
node.kubernetes.1io/unreachable:NoExecute for 300s

Reason Age From Message

Scheduled 4m32s default-scheduler Successfully assigned default/nginx to nodel
Normal Pulling 4m26s kubelet, nodel pulling image "nginx"

Figure 9. Describe Pod Correctly Assigned
5.13 Result

After the environment is set correctly, the result can be observed as graphs similar to Figure 10.

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

1 [T g B #% § Olstiomintes> Q & 55+

Panel Title

132 1314 1316 138 1320 1322 1324 1326 1328 1330 1332 1334 1336 1338 13:40

Figure 10. Grafana Graph with Metrics
5.14 Additional Documentation
Links to additional documentation:

SOURCE

https://01.org/packet-processing/intel%C2%AE-quickassist-technology-drivers-and-patches

https://github.com/openssl/openssl

https://github.com/intel/QAT_Engine

https://github.com/intel/QATzip

https://github.com/intel/asynch_mode_nginx

https://nginx.org/

https://www.nginx.com/resources/wiki/start/

https://httpd.apache.org/docs/2.4/programs/ab.html

https://01.org/sites/default/files/downloads/intelr-quickassist-technology/337020-001gatwcontaineranddocker.pdf

6 Summary

This technology guide demonstrates how different types of latency-sensitive workloads can be intelligently placed on the correct
node in a mostly fully automated way while consuming available accelerations such as QAT accelerators. All of the components
used are open-sourced, ready to be used by the customer. You can use Container Bare Metal Reference Architecture Ansible
playbooks as a good starting point to become familiar with different types of available options and Kubernetes plugins.

28

https://01.org/packet-processing/intel%C2%AE-quickassist-technology-drivers-and-patches
https://github.com/openssl/openssl
https://github.com/intel/QAT_Engine
https://github.com/intel/QATzip
https://github.com/intel/asynch_mode_nginx
https://nginx.org/
https://www.nginx.com/resources/wiki/start/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://01.org/sites/default/files/downloads/intelr-quickassist-technology/337020-001qatwcontaineranddocker.pdf

Technology Guide | Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions

intel

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex.

Intel technologies may require enabled hardware, software or service activation.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.
Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. *Other names and brands may
be claimed as the property of others.

0321/DN/WIPRO/PDF 616619-003US

29

http://www.intel.com/PerformanceIndex

	1 Introduction
	1.1 Motivation
	1.2 Terminology
	1.3 Reference Documentation

	2 How Cloudify Orchestration Works
	2.1 How to Map a Kubernetes Cluster
	2.2 Non-Kubernetes and Hybrid Environments
	2.3 Intent-Based Decoupling of Layers

	3 F5 Networks and NGINX
	4 Software and Hardware Platform
	4.1 Physical Topology
	4.2 Software Topology
	4.3 Hardware Specifications
	4.4 Software Specifications
	4.5 Platform BIOS Settings
	4.6 Building Software Platform
	4.6.1 Ansible Host, Control, and Worker Node Software Prerequisites
	4.6.2 Deploy Intel Bare Metal Reference Architecture Using Ansible Playbook

	4.7 Conclusion

	5 Preparing NGINX and Apache Bench Containerized Images
	5.1 Linux Environment
	5.2 Intel® QuickAssist Driver and Libraries
	5.3 OpenSSL
	5.4 QAT_Engine
	5.5 QATZip
	5.6 NGINX with Async Mode Using Intel QuickAssist
	5.7 Configure NGINX
	5.8 Build NGINX Container Image
	5.9 Build Apache Benchmark Load Generator Container Image
	5.10 Configure Pushgateway, Prometheus, and Grafana Under Docker
	5.11 Define Kubernetes Pod
	5.12 Deploy from Cloudify
	5.13 Result
	5.14 Additional Documentation

	6 Summary

