Technology Guide intel

Kubernetes Operator - Intel® Ethernet

Operator

Authors
Emma Kenny
Abdul Halim
Padraig Connolly
Richard Walsh

1 Introduction

This document describes the Intel® Ethernet Operator, a Kubernetes Operator developed
using the Operator SDK, designed to enable the network resource management of the
advanced Ethernet technology features introduced by the Intel® Ethernet 800 Series
Network Adapters. This operator does not support Intel® Ethernet 700 Series or 500 Series
Network Adapters.

The Intel Ethernet Operator has been verified with the following network adapters:

The Intel Ethernet Operator packages two core components, the Firmware/Dynamic Device
Personalization (FW/DDP) daemon and the Unified Flow Operator (UFO). Each provide a
declarative API, which allows Kubernetes users and administrators to configure and manage
an Intel E810 series adapter to optimize network performance.

The operator provides the Kubernetes user or administrator with the capabilities of updating
device firmware, configuring DDP profiles, and utilizing the Generic Flow API (RTE_FLOW)
provided by the Data Plane Development Kit (DPDK). All this functionality provides the
benefit of workload-specific network optimizations in a cloud-native environment.

This document is part of the Network Transformation Experience Kits.

https://cdrdv2.intel.com/v1/dl/getContent/641676?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/641676?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/641674?explicitVersion=true
https://networkbuilders.intel.com/intel-technologies/experience-kits

Technology Guide | Kubernetes Operator - Intel® Ethernet Operator

Table of Contents
1 Ta¥ oY [UTo3 uTo o TR OO TP P TP 1
1.1 BT 0 10T o] Co T 1Y OSSPSRV 3
1.2 [Rd 10T aTeT=l BT o1 U a'aT =Y o t= d o o O P T TVSTRT 3
2 L 1YY T OOV 3
21 LYol T aTe] loTe VA Tt Yo g1 o) o) o TPV 3
3 COMPONENTS .ttt ss et b e s s eas s st s e e A e E £ e e R e A e e e A b e e e Eae R e A S e e ae A e £ A Eae e A LA e LA e A e e e A e EeE e A e e e ae b e e e e R e s eEseasantnb s aesneean
3.1 Controller Manager ..
3.2 Device Discovery......
3.3 FW/DDP Da@MON eeueeeeeereeeeeeeeeseeseeeeennn
3.4 Cluster FIOW Configuration CONTIOIEN ...t et 5
3.5 Node FIOW CoONfIGUIration CONTIOIIET ...t s s n s 5
3.6 L0 Ty T=Te Il o 1o 1LV oY o TSPV 5
4 (D T=Y o103 g Y=Y o O TP
4.1 Prerequisites
4.2 Known Limitations
4.3 BUildiNG the OPperator fFrOM SOUICE ...ttt sttt s s ss s e s st ea s st ea s st ee s s b en e s sasennnanses 5
4.4 TaTS =1 [TaTe R aT=N oW g T | =TT 5
4.5 Deploying the FIow Configuration FEATUIE ...t 7
4.5.1 Create Trusted VFs using the SR-IOV Network Operator..
4.5.2 Check Node Status.....cornenrineneneeeeresseseseeesesee e
4.5.3 Create a DCF Capable SR-IOV Network........ccoveveunne
A.5.4 BUIIA TNE UF T IMAGE ettt ettt s s s s e £ s £ e s R bRt bbbt
4.5.5 Creating the Flow Config Node Agent DeploymeEnt CR...... e essssestsess st sssssessssssessssesssnsssssssees
5 FUNCTIONAITY USE CASES ...ttt sestsssessss s sess s sss st sss st sas sttt assase s st asssssssassesssassessssssassssnsesnsasssasassntessssnsasasnssesessnssases
5.1 Firmware Update......cccu....
5.2 Dynamic Device Personalization Update...
5.3 FlOW CONTIGUIATION ..ottt s8R AR et s s
5.3.1 Create FIOW CONfIGUratioN RUIES ... sess s ses s s es st e s e s e eemnnees
6 SUMIMIAIY .ttt tsas et e st e s s et seae s e s aeaessEeas e e e s Ene e s s et e s e e e aeE e e e e RS A eE e AeEeE A Eue R e A e EaEae A £ A ErtaeEHE e e A b e e b e A e e A e A e e e aeEeE s EaeReseEse s st nentansnean 13
Figures
Figure 1. Sample Ethernet Operator DeploymMeEnt DIagramm ...t seseress st ase s ss sttt et s st st seas e 4
Figure 2. Use Cases for Firmware, DDP, and FIOW FUNCHIONATITY ...ttt s sttt en 9
Tables
Table 1. JLIC=15 0211 T Uo T Y75 PO 3
Table 2. RETEIENCE DOCUMENTS ..ottt rea et s b a R8s R AR E et b bbb s 3

Document Revision History

Revision
001

Date Description
February 2023 Initial release.

Technology Guide | Kubernetes Operator - Intel® Ethernet Operator

1.1 Terminology

Tablel. Terminology

Abbreviation Description

CRD Custom Resource Definition
CR Custom Resource
DCF Device Configuration Function
DDP Dynamic Device Personalization
DPDK Data Plane Development Kit
FW Firmware
NVM Non-Volatile Memory
SR-IOV Single Root I/O Virtualization
UFO Unified Flow Operator
UFT Unified Flow Tool
VF Virtual Function

12 Reference Documentation

Table2. Reference Documents

Reference Source

Intel® Ethernet Operator documentation

]tIJS'ffg th b Com{'nte {'Dte -eIhetDeI-

Intel® Ethernet Operator Solution Brief

Intel® Ethernet Operator Source Code GitHub Repository

Network and Edge Container Bare Metal Reference System

Architecture User Guide

2 Overview

2.1 Technology Description

The Intel Ethernet Operator includes several Kubernetes Custom Resource Definitions (CRDs) that define the network
interface configuration state of individual nodes.

These definitions serve as templates for the administrator to create Custom Resources (CRs) to configure:

e Network adapter firmware versions
e Network adapter DDP profiles

e Flowrules

The CRs can target individual or multiple nodes in the cluster, and their corresponding network interfaces. The CRs are
Kubernetes APl compatible and can easily be applied to a Kubernetes client.

Once applied, each configuration CR is reconciled by its corresponding controller pod, which is also deployed as part of the
operator. The reconcile loop recognizes the applied configuration, compares it against the current configuration, and then
applies the configuration changes via the necessary tools. For example, when a CR is applied that requests an update of the
firmware for a network adapter on a specified node, the controller will communicate with that node and initiate the update via the
Non-volatile Memory (NVM) utility running on that node. This is explained in detail later in this document.

https://github.com/intel/intel-ethernet-operator/blob/main/docs/intelethernet-operator.md
https://github.com/intel/intel-ethernet-operator/blob/main/docs/intelethernet-operator.md
https://networkbuilders.intel.com/solutionslibrary/intel-ethernet-operator-overview-solution-brief
https://networkbuilders.intel.com/solutionslibrary/intel-ethernet-operator-overview-solution-brief
https://github.com/intel/intel-ethernet-operator/releases/tag/v22.11
https://networkbuilders.intel.com/solutionslibrary/network-and-edge-container-bare-metal-reference-system-architecture-user-guide
https://networkbuilders.intel.com/solutionslibrary/network-and-edge-container-bare-metal-reference-system-architecture-user-guide

Technology Guide | Kubernetes Operator - Intel® Ethernet Operator

3 Components

Intel Ethernet Operator

" \$ APl Server #*
> — REST AP1
i

e S
Pod: controller-manager 1 Pod: flowConfig daemon
i !
Contralier il
Validation webheok el UFT
~ fwcidp-controfier . ([
- RESTAM 3 g : NodeflowConfig L
: 3 = ChusterFlowConfig Controlier ‘ Pod: chediscovery Pod: fwddp-daemon Centrober R i

v W W

Intel EB10 Ethernet

‘. Master-node

'orker-node

Cluster boundary

Node boundary -----

Figurel. Sample Ethernet Operator Deployment Diagram

3.1 Controller Manager

The controller manager pod is the initial pod of the operator. It is responsible for deploying other assets within the operator,
exposing the APIs, handling the CRs, and executing the validation webhook. It contains the logic for accepting and splitting the
FW/DDP CRs into node CRs and reconciling the status of each CR. The validation webhook of the controller manager is
responsible for checking each CR for invalid arguments.

3.2 Device Discovery

The clv-discovery pod is a DaemonSet deployed on each worker node in the cluster. Itis responsible for checking if a supported
hardware device is discovered on the platform and then labeling that worker node accordingly.

To get the worker nodes that contain discovered devices (when the Intel Ethernet Operator is deployed), run:

kubectl get EthernetNodeConfig -A

NAMESPACE NAME UPDATE
intel-ethernet-operator worker-1 InProgress

intel-ethernet-operator worker-2 InProgressTo get more information about the currently loaded FW/DDP packages, run:

kubectl describe EthernetNodeConfig worker-1 -n intel-ethernet-operator

To obtain the list of supported devices found (when the Intel Ethernet Operator is deployed), run:

kubectl describe configmap supported-clv-devices -n intel-ethernet-operator

3.3 FW/DDP Daemon

The FW/DDP daemon pod is a DaemonSet, which is deployed as part of the operator. It is deployed on each worker node that
has the appropriate label present that indicates that a supported Intel® Ethernet 800 Series Network Adapter has been
detected. The pod consists of a reconcile loop, which monitors and acts on the changes in each node’s EthernetNodeConfig.
The logic implemented in this Daemon handles updating the device firmware and DDP profile. This logic is also responsible for
draining the nodes, taking them out of commission and rebooting as required by an update.

Technology Guide | Kubernetes Operator - Intel® Ethernet Operator

34 Cluster Flow Configuration Controller

The Cluster Flow Configuration controller watches for flow rule changes via a cluster wide CRD. This CRD is of kind
ClusterFlowConfig. Based on the pod selector outlined in the CRD, the controller will determine the interface details for the
target set of pods and create a NodeFlowConfig CR object, which contains a complete flow rule specification.

35 Node Flow Configuration Controller

The Node Flow Configuration Controller watches for changes in flow rules via a node specific CRD. This CRD is of kind
NodeFlowConfig and should be named (metadata.name) based upon the node that it is deployed on. Once the operator
detects a change to this CR related to the Intel E810 Series Flow Configuration, it then attempts to create/update/delete rules
via the Unified Flow Tool (UFT) over an internal gRPC API call.

3.6 Unified Flow Tool

When a change to the Flow Configuration is required, the Flow Config Controller will communicate with the UFT container
running a DPDK Device Configuration Function (DCF) application. The DCF VF should be set to VF 0. The UFT application
accepts the configuration as an input. The application then programs the device using a trusted VF created for this device. It is
the responsibility of the user to provide the trusted VFs as an allocatable K8s resource using the Single Root I/O Virtualization
(SR-10V) Network Operator.

4 Deployment
4.1 Prerequisites

e Intel® Ethernet 800 Series Network Adapters (as stated in the Introduction section)

Vanilla Kubernetes Cluster RedHat Openshift Cluster

Bare Metal Reference Architecture v21.08 or later RedHat Openshift Container Platform (RHOCP)
with remote_fp profile Version4.9,4.10,4.11

Kubernetes Version 1.25.3 OQOut of Tree ICE Driver

e Onajumphost where the operator will be deployed:
o Operator SDKv1.25.0
o Golangvl.19
o Containerimage utility: Docker or Podman
o Node Feature Discovery

4.2 Known Limitations

e Thecertified release version 0.1.0 currently only supports Firmware Update functionality. Due to the use of in-tree
driver, the DDP Update and Flow Rule Configuration is not supported.

4.3 Building the Operator from Source

To build the operator, the images must be built from source here https://github.com/intel/intel-ethernet-operator. If you are
using prebuilt images from the Red Hat Catalog, then you can skip this step.

e VERSIONis the version reference to be applied to the bundlei.e: 0.0.1

e |IMAGE_REGISTRY is the address of the reqgistry where the build images should be pushed i.e.: my.private.registry.com

e TLS_VERIFY defines whether the connection to the registry needs TLS verification. The default value is false

e TARGET_PLATFORM specifies the platform, which the operator will be built on. Supported values are OCP and K8S.
The default value is OCP.

Note: If the operator is built on a platform other than OCP, the user must manually install the sriov-network-operator as

described here: https://github.com/k8snetworkplumbingwg/sriov-network-operator

make VERSION=$ (VERSION) IMAGE REGISTRY=$ (IMAGE REGISTRY) TLS VERIFY=S$ (TLS_ VERIFY)
TARGET PLATFORM=$ (TARGET PLATFORM) build all push all catalog-build catalog-push

44 Installing the bundle

Once you have the operator images built, and they are accessible inside the cluster, the operator can be installed by running the
following commands:

Create a namespace for the operator:
kubectl create ns intel-ethernet-operator

https://www.intel.com/content/www/us/en/download/19630/29746/intel-network-adapter-driver-for-e810-series-devices-under-linux.html?
https://catalog.redhat.com/software/operators/detail/62f23e4cca08fe3e0ca92a9c
https://github.com/k8snetworkplumbingwg/sriov-network-operator

Technology Guide | Kubernetes Operator - Intel® Ethernet Operator

Create the following Catalog Source yaml file:

e VERSION: s the version of the image that you would like to use, that is: 0.0.1

e IMAGE_REGISTRY is the address of the registry where the build images are stored ie: my.private.registry.com

apiVersion: operators.coreos.com/vlalphal
kind: CatalogSource
metadata:
name: intel-ethernet-operators
namespace: openshift-marketplace
spec:
sourceType: grpc

image: <IMAGE REGISTRY>/intel-ethernet-operator-catalog:<VERSION>

publisher: Intel
displayName: Intel ethernet operators (Local)

Apply the Catalog Source file:
kubectl apply -f <filename>

Create the following yaml file, which includes Subscription and OperatorGroup:
apiVersion: operators.coreos.com/vl
kind: OperatorGroup
metadata:
name: intel-ethernet-operator
namespace: intel-ethernet-operator
spec:
targetNamespaces:
- intel-ethernet-operator
apiVersion: operators.coreos.com/vlalphal
kind: Subscription
metadata:
name: intel-ethernet-subscription
namespace: intel-ethernet-operator
spec:
channel: alpha
name: intel-ethernet-operator
source: intel-ethernet-operators
sourceNamespace: olm
installPlanApproval: Automatic

Subscribe to and install the operator by applying the yaml file:
kubectl apply -f <filename>

You can check if the operator has deployed successfully, by running:
kubectl get pods -n intel-ethernet-operator

NAME READY
AGE

pod/clv-discovery—-4vk81 1/1
22h

pod/fwddp-daemon-sjzlz 1/1
22h

pod/intel-ethernet-operator-controller-manager-59645597f6-gktpm 1/1
22h

pod/intel-ethernet-operator-controller-manager-59645597f6-jfsn9 1/1
22h

NAME TYPE
EXTERNAL-IP PORT (S) AGE
service/intel-ethernet-operator-controller-manager-service ClusterIP
443/TCP 22h

service/intel-ethernet-operator-webhook-service ClusterIP
443/TCP 22h

NAME DESIRED CURRENT READY UP-TO-DATE
SELECTOR AGE
daemonset.apps/clv-discovery 1 1 1 1

22h

daemonset.apps/fwddp-daemon 1 1 1 1
ethernet.intel.com/intel-ethernet-present= 22h

STATUS RESTARTS
Running 0
Running 0
Running 0
Running 0

CLUSTER-IP

10.104.6.72 <none>

10.98.197.202 <none>

AVAILABLE NODE

1 <none>

Technology Guide | Kubernetes Operator - Intel® Ethernet Operator

NAME READY UP-TO-DATE AVAILABLE
AGE

deployment.apps/intel-ethernet-operator-controller-manager 2/2 2 2

22h

NAME DESIRED CURRENT
READY AGE

replicaset.apps/intel-ethernet-operator-controller-manager-59645597£6 2 2 2

22h

4.5 Deploying the Flow Configuration Feature

The Flow configuration feature can be enabled by deploying the Flowconfig Daemon agent in the Intel Ethernet Operator. This
agent requires that the supported network adapter's VFs are created via the SR-IOV Network Operator and the VF pool, with
admin capability, is available along with the Network Attachment definition.

451 Create Trusted VFs using the SR-IOV Network Operator

Once the SR-IOV Network Operator is running on your cluster, we can examine the SriovNetworkNodeStates to view available
Intel® Ethernet 800 Series Network Adapters. From this, we can find the network adapter information such as PCl address and
interface names, which are used to define the SriovNetworkNodePolicy to create the required VF pools:

apiVersion: sriovnetwork.openshift.io/vl
kind: SriovNetworkNodePolicy
metadata:
name: uft-admin-policy
namespace: intel-ethernet-operator
spec:
deviceType: vfio-pci
nicSelector:
pfNames:
- ensl1f0#0-0
- enslfl#0-0
vendor: "8086"
nodeSelector:
feature.node.kubernetes.io/network-sriov.capable:
numVEfs: 8
priority: 99
resourceName: cvl uft admin

The CR can be applied by running:

kubectl create -f sriov-network-policy.yaml

452 Check Node Status

'true'

Check the node status to confirm that the cvl_uft_admin resource pool registered the DCF capable VFs on the node:

kubectl describe node worker-01 -n intel-ethernet-operator

Allocatable:

bridge.network.kubevirt.io/cni-podman0O: 1k

cpu: 108
ephemeral-storage: 468315972K1
hugepages-1Gi: 0
hugepages-2Mi: 8G1i

memory: 518146752K1i
intel.com/cvl uft admin: 2

pods: 250

453 Create a DCF Capable SR-IOV Network

Next, create the SR-IOV Network Attachment Definition for the DCF VF pool:

cat <<EOF | kubectl apply -f -
apiVersion: sriovnetwork.openshift.io/vl
kind: SriovNetwork

metadata:

name: sriov-cvl-dcf
spec:

trust: 'on'

networkNamespace: intel-ethernet-operator
resourceName: cvl uft admin
EOF

grep

-i allocatable -A 20

Technology Guide | Kubernetes Operator - Intel® Ethernet Operator

454 Build the UFT image

Next, build the UFT image:
export IMAGE REGISTRY=<Your Image registry>
git clone https://github.com/intel/UFT.git
git checkout v22.07
make dcf-image
docker tag dcf-tool:v22.07 SIMAGE REGISTRY/uft:v22.07
docker push $IMAGE REGISTRY/uft:v22.07

455 Creating the Flow Config Node Agent Deployment CR
Note: The Admin VF pool prefix in DCFVfPoolName should match how it is shown in the node description from section 4.5.2:

cat <<EOF | kubectl apply -f -
apiVersion: flowconfig.intel.com/vl
kind: FlowConfigNodeAgentDeployment
metadata:
labels:
control-plane: flowconfig-daemon
name: flowconfig-daemon-deployment
namespace: intel-ethernet-operator
spec:
DCFVfPoolName: intel.com/cvl uft admin
NADAnnotation: sriov-cvl-dcf
EOF

To verify that the Flow Config Daemon is up and running on the nodes, run the following command:

kubectl get pods -n intel-ethernet-operator

NAME READY STATUS RESTARTS AGE
clv-discovery-kwjkb 1/1 Running 0 44h
clv-discovery-tpgzb 1/1 Running 0 44h
flowconfig-daemon-worker-01 2/2 Running 0 44h
fwddp-daemon-m8d4w 1/1 Running 0 44h
intel-ethernet-operator-controller-manager-79c4d5bf6d-bjlr5 1/1 Running 0 44h
intel-ethernet-operator-controller-manager-79c4d5bf6ed-txj5g 1/1 Running 0 44h

kubectl logs -n intel-ethernet-operator flowconfig-daemon-worker-01 -c uft
Generating server conf.yaml file...
Done!
server
1d 1ib : "/usr/local/lib64"
ports info

- pci : "0000:18:01.0"
mode : dcf
do eal init
[{'pci': '0000:18:01.0', 'mode': 'dcf'}]
[{'pci': '0000:18:01.0', 'mode': 'dcf'}]
the dcf cmd line is: a.out -c 0x30 -n 4 -a 0000:18:01.0,cap=dcf -d /usr/local/lib64 --file-
prefix=dcf --

EAL: Detected 96 lcore(s)

EAL: Detected 2 NUMA nodes

EAL: Detected shared linkage of DPDK

EAL: Multi-process socket /var/run/dpdk/dcf/mp socket

EAL: Selected IOVA mode 'VA'

EAL: No available 1048576 kB hugepages reported

EAL: VFIO support initialized

EAL: Using IOMMU type 1 (Type 1)

EAL: Probe PCI driver: net iavf (8086:1889) device: 0000:18:01.0 (socket 0)
EAL: Releasing PCI mapped resource for 0000:18:01.0

EAL: Calling pci unmap resource for 0000:18:01.0 at 0x2101000000

EAL: Calling pci unmap resource for 0000:18:01.0 at 0x2101020000

EAL: Using IOMMU type 1 (Type 1)

EAL: Probe PCI driver: net ice dcf (8086:1889) device: 0000:18:01.0 (socket 0)
ice load pkg type(): Active package is: 1.3.30.0, ICE COMMS Package (double VLAN mode)
TELEMETRY: No legacy callbacks, legacy socket not created

grpc server start

now in server cycle

Technology Guide | Kubernetes Operator - Intel® Ethernet Operator

5 Functionality Use Cases
© O O]
ClusterFlowConfig EthConfig EthernetNodeConfig
JMser Configuration. e e User Configuration
Control Plane Control Plane

© ClusterFlow il [+] Ethernet intel
o Controller © Controller

Control Plane Control Plane

Worker Node Worker Node

Firmware ark
DDP Update
Daemon

intel
Node Flow Daemen

Update NVM
Firmware

Flow Offload Update DDP

Intel® Ethemat 500
Series Network Adapters

Figure 2. Use Cases for Firmware, DDP, and Flow Functionality

5.1 Firmware Update

When the operator detects a change to a CR related to the update of the Intel® Ethernet 800 Series Network Adapters firmware,
it will try to perform an update. The useris expected to provide the firmware for the Intel Ethernet Network Adapter E810 device
in the form of a tar.gz file. The user is also responsible to verify that the firmware version is compatible with the device. The user
can place the firmware on an accessible local HT TP server and provide the URL in the CR. If the file is provided correctly, and the
firmware is to be updated, the Ethernet Configuration Daemon will update the Intel Ethernet Network Adapter E810 device
using the NVM utility provided.

To update the NVM firmware of the Intel Ethernet Network Adapter E810 devices, the user can create a CR containing the
information about which card should be updated. The physical functions of the devices will be updated in logical pairs. The user
needs to provide the FW URL and checksum (SHA-1) in the CR.
apiVersion: ethernet.intel.com/vl
kind: EthernetClusterConfig
metadata:
name: config
namespace: <namespace>

spec:
nodeSelectors:
kubernetes.io/hostname: <hostname>
deviceSelector:
pciAddress: "<pci-address>"
deviceConfig:

fwURL: "<URL to firmware>"
fwChecksum: "<file checksum SHA-1 hash>"

5.2 Dynamic Device Personalization Update

Once the operator detects a change to the CR, related to the update of the Intel® Ethernet 800 Series Network Adapters DDP
profile, it will attempt to perform a DDP update. The DDP profile for the Intel Ethernet Network Adapter E810 devices is
expected to be provided by the user. The user is also responsible for verifying that the DDP version is compatible with the
device. The user can place the DDP package on an accessible local HT TP server and provide a URL foritin the CR. If the file is

Technology Guide | Kubernetes Operator - Intel® Ethernet Operator

provided correctly, and the DDP is to be updated, the Ethernet Configuration Daemon will update the DDP profile of the Intel
Ethernet Network Adapter E810 device by placing it in the correct filesystem on the host.

To update the DDP profile, the user can create a CR containing the information about which device should be updated. All the
physical functions of that network adapter will be updated.

apiVersion: ethernet.intel.com/v1l
kind: EthernetClusterConfig
metadata:

name: config

namespace: <namespace>

spec:
nodeSelectors:
kubernetes.io/hostname: <hostname>
deviceSelector:
pciAddress: "<pci-address>"
deviceConfig:

ddpURL: "<URL to DDP>"
ddpChecksum: "<file checksum SHA-1 hash>"

53 Flow Configuration

The Flow Configuration pod is a node agent deployed with a CRD FlowConfigNodeAgentDeployment provided by the Ethernet
operator once it is up and running. The required DCF VF pools and their network attachment definitions are created using SR-
IOV Network Operator APIs. The FlowConfigNodeAgent is deployed on each worker node that exposes DCF VF pool as
extended node resource. The pod consists of a reconcile loop, which monitors the changes in each nodes CR and acts on those
changes. The logic implemented in this Daemon takes care of updating the devices traffic flow configuration. It consists of three
components: Cluster Flow Configuration Controller, Node Flow Configuration Controller, and the Unified Flow Tool.

Once the Flow config feature is enabled by deploying flow config daemons as described in section 4.5, the flow configuration
rules for the cluster can be created using following steps.

5.3.1 Create Flow Configuration Rules
With trusted VFs and application VFs ready to be configured, there are two options to create flow rules:

The first option is to use a cluster wide ClusterFlowConfig CR, which will target nodes using a pod selector:

cat <<EOF | kubectl apply -f -
apiVersion: flowconfig.intel.com/vl
kind: ClusterFlowConfig
metadata:

name: pppoes-sample

namespace: intel-ethernet-operator

spec:
rules:
- pattern:
- type: RTE FLOW ITEM TYPE ETH
- type: RTE FLOW ITEM TYPE IPV4
spec:
hdr:
src addr: 10.56.217.9
mask:
hdr:
src_addr: 255.255.255.255
- type: RTE FLOW ITEM TYPE END
action:
- type: to-pod-interface
conf:
podInterface: netl
attr:
ingress: 1
priority: O
podSelector:
matchLabels:
app: vagf
role: controlplane
EOF

10

Technology Guide | Kubernetes Operator - Intel® Ethernet Operator

The second option is to use a node specific flow rule configuration by creating a NodeFlowConfig CR using the same name as
the target node but with an empty specification

cat <<EOF | kubectl apply -f -
apiVersion: flowconfig.intel.com/vl
kind: NodeFlowConfig
metadata:

name: worker-01
spec:
EOF

For the node flow configuration, you can check status of the CR as follows:

kubectl describe nodeflowconfig worker-01

Name: worker-01
Namespace: intel-ethernet-operator
Labels: <none>
Annotations: <none>
API Version: flowconfig.intel.com/v1
Kind: NodeFlowConfig
Metadata:
Status:
Port Info:

Port Id: 0

Port Mode: dcf

Port Pci: 0000:18:01.0
Events: <none>

Also, specifically for the second option using the node flow configuration, refer to the DCF port information above. This
information can be used to identify which port on a node the Flow Rules should be applied to. To update the node flow
configuration, use the following command:

cat <<EOF | kubectl apply -f -
apiVersion: flowconfig.intel.com/vl
kind: NodeFlowConfig
metadata:
name: worker-01
namespace: intel-ethernet-operator
spec:
rules:
- pattern:
- type: RTE FLOW ITEM TYPE ETH
- type: RTE FLOW ITEM TYPE IPV4
spec:
hdr:
src_addr: 10.56.217.9
mask:
hdr:
src_addr: 255.255.255.255
- type: RTE FLOW ITEM TYPE END
action:
- type: RTE FLOW ACTION TYPE DROP
- type: RTE FLOW ACTION TYPE END
portId: O
attr:
ingress: 1
EOF

Validate that flow rules are applied by the controller by inspecting the UFT logs:

kubectl logs flowconfig-daemon-worker uft
Generating server conf.yaml file...
Done!
server

1d 1ib : "/usr/local/lib64"
ports info

- pci : "0000:18:01.0"

mode : dcf

do eal init
[{'pci': '0000:18:01.0', 'mode': 'dcf'}]

Technology Guide | Kubernetes Operator - Intel® Ethernet Operator

[{'pci': '0000:18:01.0', 'mode': 'dcf'}]
the dcf cmd line is: a.out -c 0x30 -n 4 -a 0000:18:01.0,cap=dcf -d /usr/local/lib64 --file-
prefix=dcf --

EAL: Detected 96 lcore(s)

EAL: Detected 2 NUMA nodes

EAL: Detected shared linkage of DPDK

EAL: Multi-process socket /var/run/dpdk/dcf/mp socket

EAL: Selected IOVA mode 'VA'

EAL: No available 1048576 kB hugepages reported

EAL: VFIO support initialized

EAL: Using IOMMU type 1 (Type 1)

EAL: Probe PCI driver: net iavf (8086:1889) device: 0000:18:01.0 (socket 0)

EAL: Releasing PCI mapped resource for 0000:18:01.0

EAL: Calling pci unmap resource for 0000:18:01.0 at 0x2101000000

EAL: Calling pci unmap resource for 0000:18:01.0 at 0x2101020000

EAL: Using IOMMU type 1 (Type 1)

EAL: Probe PCI driver: net ice dcf (8086:1889) device: 0000:18:01.0 (socket 0)

ice load pkg type(): Active package is: 1.3.30.0, ICE COMMS Package (double VLAN mode)
TELEMETRY: No legacy callbacks, legacy socket not created

grpc server start

now in server cycle

flow.rte flow attr

flow.rte flow item

flow.rte flow item

flow.rte flow item ipv4

flow.rte ipv4 hdr

flow.rte flow item ipv4

flow.rte ipv4 hdr

flow.rte flow item

flow.rte flow action

flow.rte flow action

rte flow attr(group=0, priority=0, ingress=1, egress=0, transfer=0, reserved=0)

[rte flow item(type =9, spec=None, last=None, mask=None), rte flow item(type =11,
spec=rte flow item ipv4 (hdr=rte ipv4 hdr (version ihl=0, type of service=0, total length=0,
packet id=0, fragment offset=0, time to live=0, next proto id=0, hdr checksum=0,
src_addr=171497737, dst addr=0)), last=None,

mask=rte flow item ipv4 (hdr=rte ipv4 hdr (version ihl=0, type of service=0, total length=0,
packet id=0, fragment offset=0, time to live=0, next proto id=0, hdr checksum=0,
src_addr=4294967295, dst addr=0))), rte flow item(type =0, spec=None, last=None, mask=None)]
[rte flow action(type =7, conf=None), rte flow action(type =0, conf=None)]

rte flow attr(group=0, priority=0, ingress=1, egress=0, transfer=0, reserved=0)

1
Finish ipv4: {'hdr': {'version ihl': 0, 'type of service': 0, 'total length': 0, 'packet id':
0, 'fragment offset': 0, 'time to live': 0, 'next proto id': 0, 'hdr checksum': 0, 'src addr':

165230602, 'dst addr': 0}}

Finish ipv4: {'hdr': {'version ihl': 0, 'type of service': 0, 'total length': 0, 'packet id':
0, 'fragment offset': 0, 'time to live': 0, 'next proto id': 0, 'hdr checksum': 0, 'src addr':
4294967295, 'dst addr': 0}}

rte flow action(type =7, conf=None)

rte flow action(type =0, conf=None)

Validate ok...

flow.rte flow attr

flow.rte flow item

flow.rte flow item

flow.rte flow item ipv4

flow.rte ipv4 hdr

flow.rte flow item ipv4

flow.rte ipv4 hdr

flow.rte flow item

flow.rte flow action

flow.rte flow action

rte flow attr(group=0, priority=0, ingress=1, egress=0, transfer=0, reserved=0)

[rte flow item(type =9, spec=None, last=None, mask=None), rte flow item(type =11,

spec=rte flow item ipv4 (hdr=rte ipv4 hdr (version ihl=0, type of service=0, total length=0,
packet id=0, fragment offset=0, time to live=0, next proto id=0, hdr checksum=0,
src_addr=171497737, dst addr=0)), last=None,

mask=rte flow item ipv4 (hdr=rte ipv4 hdr (version ihl=0, type of service=0, total length=0,
packet id=0, fragment offset=0, time to live=0, next proto id=0, hdr checksum=0,

Technology Guide | Kubernetes Operator - Intel® Ethernet Operator

src_addr=4294967295, dst addr=0))), rte flow item(type =0, spec=None, last=None, mask=None)]
[rte flow action(type =7, conf=None), rte flow action(type =0, conf=None)]

rte flow attr(group=0, priority=0, ingress=1, egress=0, transfer=0, reserved=0)

rte flow attr(group=0, priority=0, ingress=1, egress=0, transfer=0, reserved=0)

1

Finish ipv4: {'hdr': {'version ihl': 0, 'type of service': 0, 'total length': 0, 'packet id':
0, 'fragment offset': 0, 'time to live': 0, 'next proto id': 0, 'hdr checksum': 0, 'src_ addr':
165230602, 'dst addr': 0}}

Finish ipv4: {'hdr': {'version ihl': 0, 'type of service': 0, 'total length': 0, 'packet id':
0, 'fragment offset': 0, 'time to live': 0, 'next proto id': 0, 'hdr checksum': 0, 'src addr':
4294967295, 'dst addr': 0}}

rte flow action(type =7, conf=None)

rte flow action(type =0, conf=None)

free attr

free item ipv4

free item ipv4

free list item

free list action

Flow rule #0 created on port 0

6 Summary

Prior to the Intel Ethernet Operator, there was no method of cluster-wide management of Intel Ethernet Network Adapter E810
Series devices. This meant, that if an administrator wished to change the configuration of a single network adapter (such as a
firmware update) on a specific node in a Kubernetes cluster, they would have to apply the changes directly to the kernel of that
node. This may not be much of anissue on a small or single-node cluster, but for a large multi-node cluster, this is not a feasible
approach. For example, configuring a single node as shown in the example in section 5.3.1, the resulting configuration may not be
easily visible from a cluster level, and easily forgotten, which will cause difficulty when debugging issues at that perspective. The
issue is compounded when the administrator is required to apply the same configuration to multiple nodes at once, or even
cluster-wide, as the above method is difficult to automate and to scale.

The Intel Ethernet Operator addresses the above problems, by allowing the administrator to target specific or multiple Intel®
Ethernet 800 Series Network Adapters installed on any (or multiple) nodes in the cluster and reconfigure them from within the
context of the Kubernetes Cloud Native environment.

The Intel Ethernet Operator is a functional tool to manage the update of Intel® Ethernet 800 Series Network Adapters FW and
DDP profile as well as for programming the VF Flow configuration autonomously in a cloud native environment based on the
user input. It is easy to use by providing simple steps to apply Custom Resources to configure various aspects of the device.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies may require enabled hardware, software or service activation.
Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

0223/DN/WIT/PDF 766597-001US

http://www.intel.com/PerformanceIndex

	1 Introduction
	1.1 Terminology
	1.2 Reference Documentation

	2 Overview
	2.1 Technology Description

	3 Components
	3.1 Controller Manager
	3.2 Device Discovery
	3.3 FW/DDP Daemon
	3.4 Cluster Flow Configuration Controller
	3.5 Node Flow Configuration Controller
	3.6 Unified Flow Tool

	4 Deployment
	4.1 Prerequisites
	4.2 Known Limitations
	4.3 Building the Operator from Source
	4.4 Installing the bundle
	4.5 Deploying the Flow Configuration Feature
	4.5.1 Create Trusted VFs using the SR-IOV Network Operator
	4.5.2 Check Node Status
	4.5.3 Create a DCF Capable SR-IOV Network
	4.5.4 Build the UFT image
	4.5.5 Creating the Flow Config Node Agent Deployment CR

	5 Functionality Use Cases
	5.1 Firmware Update
	5.2 Dynamic Device Personalization Update
	5.3 Flow Configuration
	5.3.1 Create Flow Configuration Rules

	6 Summary

