
 1

Application note
Intel Corporation

Intel® Speed Select Technology - Base Frequency
(Intel® SST-BF) with Kubernetes*

Authors
Louise Daly

David Hunt

Chris MacNamara

Kuralamudhan Ramakrishnan

1 Overview
Select SKUs of 2nd generation Intel® Xeon® Scalable processor (5218N, 6230N, and
6252N) offer a new capability called Intel® Speed Select Technology - Base Frequency
(Intel® SST-BF). This document describes how to utilize the Intel® SST-BF feature in a
cluster managed by Kubernetes* (K8S*) container orchestration. It includes steps to
configure the frequency (and by association, the power consumption) of CPU cores on
servers, expose feature capabilities, and provision workloads.

It’s important to note that Kubernetes existing methodologies and architecture are
leveraged and extended in support of Intel® SST-BF provisioning, feature exposure, and
workload deployments. For example, a key element is assigning pods to nodes using the
existing nodeselector mechanism.

This document is part of the Network Transformation Experience Kit, which is available
at: https://networkbuilders.intel.com/

Primary use cases include the following:
• Deployment of NFV infrastructure containers to high-frequency or standard-

frequency cores. For example, deploying Open vSwitch* [OVS] or load distribution
functions to higher-frequency cores.

• Deployment of containers to high-frequency or standard-frequency cores. In this
case, it is not necessary to have any knowledge within the workload to select the
high or standard-frequency cores. Hence, the workload does not have to change to
comprehend the specific cores.

• Workloads may be aware of the high-frequency and standard-frequency cores and
may of course decide to latch software to the appropriate cores. Hence, within a
workload, the pinning of virtual CPUs to physical CPUs, or the pinning of a container
to a core. This case involves the deployment of selected cores of a workload or a
container as high- frequency or standard-frequency cores. For example, freeing a
workload bottleneck by selecting a core(s) from within a workload as a high-
frequency core. Or configuring a core running a distribution thread in a container as
a high-frequency core, where the workers are on standard-frequency cores.

https://networkbuilders.intel.com/

Application Note | Intel® SST-BF with Kubernetes*

 2

Table of Contents

Figures
Figure 1. High-level deployment steps ... 4
Figure 2. High-level architecture and flow diagram ... 5
Figure 3. CMK pool assignment and Intel® SST-BF core association ... 6
Figure 4. Container using standard- and high-frequency cores .. 6
Figure 5. CPU Manager for Kubernetes* file system hierarchy .. 8

Tables
Table 1. Terminology ... 3
Table 2. References ... 3

Application Note | Intel® SST-BF with Kubernetes*

 3

1.1 Terminology

Table 1. Terminology

ABBREVIATION DESCRIPTION

CMK CPU Manager for Kubernetes*

DPDK Data Plane Development Kit

Intel® SST-BF Intel® Speed Select Technology – Base Frequency

K8S* Kubernetes*

NFD Node Feature Discovery

NFV Network Functions Virtualization

OVS Open vSwitch*

Pod Group of Kubernetes containers that are deployed together on the same host.

VM Virtual Machine

1.2 References

Table 2. References

REFERENCE SOURCE

Kubernetes – Production-Grade Container Orchestration https://kubernetes.io/

Enhanced Platform Awareness in Kubernetes Application Note https://builders.intel.com/docs/networkbuilders/enhanced-platform-
awareness-in-kubernetes-application-note.pdf

CPU Pinning and Isolation in Kubernetes Application Note https://builders.intel.com/docs/networkbuilders/cpu-pin-and-isolation-in-
kubernetes-app-note.pdf

Node Feature Discovery for Kubernetes (NFD) https://github.com/kubernetes-sigs/node-feature-discovery#overview

CPU Manager for Kubernetes* (CMK) https://github.com/intel/CPU-Manager-for-Kubernetes

DPDK tstpmd Application User Guide https://doc.dpdk.org/guides/testpmd_app_ug/

https://kubernetes.io/
https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-in-kubernetes-application-note.pdf
https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-in-kubernetes-application-note.pdf
https://builders.intel.com/docs/networkbuilders/cpu-pin-and-isolation-in-kubernetes-app-note.pdf
https://builders.intel.com/docs/networkbuilders/cpu-pin-and-isolation-in-kubernetes-app-note.pdf
https://github.com/kubernetes-sigs/node-feature-discovery#overview
https://github.com/intel/CPU-Manager-for-Kubernetes
https://doc.dpdk.org/guides/testpmd_app_ug/

Application Note | Intel® SST-BF with Kubernetes*

 4

2 High-level steps to deployment
Figure 1 shows the high-level steps for deploying the solution.

Figure 1. High-level deployment steps

1. The sysadmin configures the platform using the BIOS and scripts that set up Intel® SST-BF core frequencies. The sysadmin then

deploys Kubernetes and the Kubernetes cluster is configured. See: https://github.com/intel/CommsPowerManagement for
more information.

2. Kubernetes starts enabling feature exposure using Node Feature Discovery (NFD), and workload provisioning using CPU
Manager for Kubernetes (CMK). On completion, the Kubernetes cluster is ready for workload deployments.

3. The Kubernetes scheduler uses the pod specification to deploy to Intel® SST-BF high- or standard-frequency cores. On
completion, containers run on high-frequency or standard-frequency cores.

3 Key elements
The following elements are key to the proposed solution:
1. A new script that enables the exposure and provisioning of the Intel® SST-BF feature on selected Intel® Xeon® processors.

See: https://github.com/intel/CommsPowerManagement/
2. Node feature discovery capability using NFD. See: https://github.com/kubernetes-sigs/node-feature-discovery
3. CPU Manager for Kubernetes* (CMK) to provide core affinity for NFV-style workloads.

See: https://github.com/intel/CPU-Manager-for-Kubernetes

4 Architecture
4.1 Prerequisites
Prerequisites in this context are used to apply a level of platform configuration before deploying Kubernetes.
• Intel® SST-BF is supported on select SKUs of 2nd generation Intel® Xeon® Scalable processor (5218N, 6230N, and 6252N).
• Configure Intel® SST-BF via a Python* script that has several options. See: https://github.com/intel/CommsPowerManagement/
• If CPU isolation is necessary at the system level, a node must be pre-configured using isolcpus, where Intel® SST-BF cores are

a subset of the cores specified using the isolcpus command.
• A basic Kubernetes cluster that can deploy pods is up and running. The cluster contains a master node (host) with several

agents (daemons). See https://kubernetes.io/docs/concepts/overview/components/

More information on the components and Kubernetes installation can be found at:
https://networkbuilders.intel.com/network-technologies/container-experience-kits

Server

Server

Sysadmin

Kubernetes

Kubernetes Server

Configure platform,
deploy Kubernetes*

Start Kubernetes, deploy NFD
and CMK to allow feature

exposure & workload
provisioning

Scheduler uses pod
specification to deploy to

Intel® SST-BF cores

1

2

3

https://github.com/intel/CommsPowerManagement
https://github.com/intel/CommsPowerManagement/
https://github.com/kubernetes-sigs/node-feature-discovery
https://github.com/intel/CPU-Manager-for-Kubernetes
https://github.com/intel/CommsPowerManagement/
https://kubernetes.io/docs/concepts/overview/components/
https://networkbuilders.intel.com/network-technologies/container-experience-kits

Application Note | Intel® SST-BF with Kubernetes*

 5

Figure 2 shows the sequence of steps in a typical deployment.

Figure 2. High-level architecture and flow diagram

4.2 Deployment
Refer to the corresponding step numbers in

Figure 2.
1. At Kubernetes start, deploy an NFD daemonset on the cluster. This configures each node in the cluster to run an NFD pod.
2. NFD discovers if the node is Intel® SST-BF capable and sets a label to “true”, for example:

feature.node.kubernetes.io/cpu-power.sst_bf.enabled
3. NFD advertises this to Kubernetes using a node label (which is true if Intel® SST-BF is possible or false otherwise).
4. Deploy the CMK cluster-init pod on the Kubernetes cluster. This pod creates additional pods on any nodes in the cluster

that must have the CMK configured. The cluster-init pod is a YAML configuration file created by the sysadmin to deploy on
the cluster.

5. CMK performs platform discovery as follows:
a. The CMK communicates with the Kubernetes api-server master node and checks for the presence of the Intel® SST-BF

capable label on each node in the cluster.
b. On detection of the Intel® SST-BF label, CMK interacts with sysfs to identify the cores operating as Intel® SST-BF cores.
The CMK also checks for CPU isolation:
a. If isolcpus is configured, the CMK reads these CPU IDs and uses them to create the exclusive and shared pools.
b. If not, the CMK creates exclusive and shared pools based on the lowest CPU IDs.

6. The CMK creates the core pools based on the information gathered in step 5. The categories of pools created are:
− Exclusive (isolated cores)
− Shared (isolated cores)
− Infrastructure (shared cores)
Intel® SST-BF aligns with CMK pool categories as follows:
− Exclusive pool = High-frequency cores (Linux* scheduler isolated cores)
− Shared pool = Standard-frequency cores (Linux scheduler isolated cores)
− Infrastructure pool = Standard-frequency cores (no isolation by Linux scheduler)

HW and SW
Capabilities

Exclusive
(CPUSET)

Shared
(CPUSET)

Infra
(CPUSET)

CMK Pools

NFD
Pod CMK Pod(s)

Intel® SST-BF
Configuration

Script

High Tier Low Tier

High-Tier
Pod

Kubernetes Node

Kubernetes Master

Node Label: feature.node.kubernetes.io/ cpu_power-sst_bf.enabled: True
Extended Resource: cmk.intel.com/exclusive-cores: <int>

Kubernetes Scheduler
apiVersion: v1
kind: Pod
metadata:
 name: High-Tier-Pod
 annotations:
 cmk.intel.com/mutate: "true"
spec:
 restartPolicy: Never
 containers:
 - name: cmk-isolate-exclusive
 image: cmk:v1.3.1
 command:
 - "/bin/bash"
 - "-c"
 args:
 - "/opt/bin/cmk isolate –conf-dir=/etc/cmk –-pool=exclusive <cmd>"
 resources:
 requests:
 cmk.intel.com/exclusive-cores: '1'
 limits:
 cmk.intel.com/exclusive-cores: '1'
 nodeSelector:
 feature.node.kubernetes.io/cpu-power.sst_bf.enabled: true

Kubernetes* Pod Specification 8

1 4

5a

5b 2 6

7
3

9

10

Application Note | Intel® SST-BF with Kubernetes*

 6

Figure 3 shows the CMK pools and how they can apply in a Kubernetes implementation.
Note: CMK uses a file system hierarchy for tracking pools, their assigned CPUs, pool exclusivity, and the processes currently

allocated to CPUs. See Section 4.6 for details.

Figure 3. CMK pool assignment and Intel® SST-BF core association

7. The CMK advertises the number of cores in the exclusive pool using extended resources. For example:

Extended Resource: cmk.intel.com/exclusive-cores: '1'
8. The Kubernetes pod specification (a user-created YAML file) contains the following:

− The extended resource request for 1 to N cores (if desired).
− The CMK command line arguments including desired pool.
− The node selector for an Intel® SST-BF capable node.

9. The user does a kubectl create of the pod. The Kubernetes scheduler detects the pod, looks at the extended resource request
and node selector, and schedules the pod on the most appropriate node in the cluster.

10. The CMK on the host platform pins the incoming pod to the requested pool and the requested number of cores. The high-tier
cores and the infrastructure cores are advertised to the container using environment variables.

4.3 Configuring a container to use standard- and high-frequency cores
Optionally, a workload may be aware of the cores and may want to pin its own threads to standard- and high-frequency cores as
shown in Figure 4. The workload can achieve this using a query with the environment variables that CMK provides.

Figure 4. Container using standard- and high-frequency cores

The following bash script is an example.

#!/bin/bash
CORES=`printenv CMK_CPUS_ASSIGNED`
INFRACORES=`printenv CMK_CPUS_INFRA`
PSR=`ps -ax -o pid,psr,comm | grep $$ | awk '{ print $2 }'`

0 1 2 3 ……………..

Container Container Container

Container Container

Shared
Pool

Infra
Pool

Exclusive
Pool

Standard Frequency

High Frequency

Kubernetes*
Pools

Cores

0 1 2 3 ……………..

Container Container

Shared
Pool

Infra
Pool

Exclusive
Pool

Standard Frequency

High Frequency

Kubernetes*
Pools

Cores

Container
Using Standard and High Frequency Cores

Application Note | Intel® SST-BF with Kubernetes*

 7

if [-z "$CORES"]
then
 echo "CPU cores not isolated by CMK! Used core: $PSR"
else
 echo "CPU cores isolated: $CORES. Used core: $PSR"
fi
echo "Infrastructure cores: $INFRACORES"
COMMAND=${@//'$CORES'/$CORES}
$COMMAND

The output from the example bash script is the following.

CPU cores isolated: 0,44. Used core: 0
Infrastructure cores:
5,49,6,50,7,51,8,52,9,53,10,54,11,55,12,56,13,57,14,58,15,59,16,60,17,61,18,62,19,63,20,64,21,65,22
,66,23,67,24,68,25,69,26,70,27,71,28,72,29,73,30,74,31,75,32,76,33,77,34,78,35,79,36,80,37,81,38,82
,39,83,40,84,41,85,42,86,43,87

The CMK provides configurable user-supplied options for the CPU pinning policy for a workload. The options are:
• --affinity: The CMK handles the CPU pinning of the workload to the allocated requested cores, in this context, high-tier

Intel® SST-BF cores.
• --no-affinity: The CMK allocates desired cores to the workload, however, it does not do the actual pinning. The workload

has access to the assigned cores (high-tier Intel® SST-BF) and infrastructure (standard tier) cores and takes care of the required
workload pinning.

The following are example commands showing the use of the options in a Kubernetes pod specification.

/opt/bin/cmk isolate --conf-dir=/etc/cmk
--pool=exclusive --affinity <cmd>

/opt/bin/cmk isolate --conf-dir=/etc/cmk
--pool=exclusive --no-affinity <cmd>

If a workload requires two-tier pinning, meaning the threads must be pinned to high-frequency and standard cores, then the
environment variables and the --no-affinity option are necessary. For example, DPDK applications can instruct (in the launch
command) that the starting threads run on specific CPU cores, meaning workload changes are not necessary.

If the entire workload must be pinned to a high-frequency core, then it is not necessary to use environment variables and the
default affinity option is used.

4.4 Incorporating a DPDK command in a pod specification
The following is an example of a Data Plane Development Kit (DPDK) command in a Kubernetes pod specification.
/opt/bin/cmk isolate --conf-dir=/etc/cmk --pool=exclusive --no-affinity /etc/cmk/use_cores.sh
'testpmd -l \$CORES -m 512 -w 0000:0c:00.1 -- -i'

Note: The $CORES variable in this command comes from the bash script provided earlier.

4.5 Kubernetes scheduler result for insufficient resources
If there are no nodes in the cluster that have enough resources available for the incoming pod requests, the Kubernetes scheduler
provides a result like the following.

NAME READY STATUS RESTARTS AGE
cmk-isolate-pod-2 0/3 Pending 0 3s

Warning FailedScheduling 1m (x2 over 1m) default-scheduler 0/1 nodes are available: 1
Insufficient cmk.intel.com/exclusive-cores.

4.6 Tracking of pools, CPU exclusivity, and processes
Figure 5 shows the file system hierarchy that CPU Manager for Kubernetes* uses to track pools, their assigned CPUs, pool
exclusivity, and the processes currently allocated to CPUs.

Application Note | Intel® SST-BF with Kubernetes*

 8

etc
 |
 + - cmk
 |
 + - lock
 |
 + - pools
 |
 + - shared
 | |
 | + - 0 # Socket ID
 | | |
 | | + - 0,1 # logical core IDs
 | | |
 | | + - tasks # contains PIDs
 | |
 | + - exclusive # Determine exclusivity
 |
 + - exclusive
 | |
 | + - 0
 | | |
 | | + - 2,3
 | | | |
 | | | + - tasks
 | | |
 | | + - 4,5
 | | |
 | | + - tasks
 | |
 | + - exclusive
 |
 + - infra
 |
 + - 0
 | |
 | + - -6
 | |
 | + - tasks
 |
 + - exclusive

Figure 5. CPU Manager for Kubernetes* file system hierarchy

5 Summary
Select SKUs of 2nd generation Intel® Xeon® Scalable processor (5218N, 6230N, and 6252N) offer a new capability called Intel® Speed
Select Technology – Base Frequency (Intel® SST-BF). This document described how to utilize the Intel® SST-BF feature in a cluster
managed by Kubernetes* (K8S*) container orchestration.

Application Note | Intel® SST-BF with Kubernetes*

 9

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-
infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact
your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized
errata are available on request. No product or component can be absolutely secure.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting
www.intel.com/design/literature.htm.

Intel, the Intel logo, and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

© 2019 Intel Corporation 0719/DN/PTI/PDF 340620-001US

http://www.intel.com/design/literature.htm

	1 Overview
	1.1 Terminology
	1.2 References

	2 High-level steps to deployment
	3 Key elements
	4 Architecture
	4.1 Prerequisites
	4.2 Deployment
	4.3 Configuring a container to use standard- and high-frequency cores
	4.4 Incorporating a DPDK command in a pod specification
	4.5 Kubernetes scheduler result for insufficient resources
	4.6 Tracking of pools, CPU exclusivity, and processes

	5 Summary

