
For workloads and configurations, visit www.Intel.com/PerformanceIndex. Results may vary. 1

USER GUIDE
Intel Corporation

Intel® Software Guard Extensions (Intel® SGX) - Key
Management Reference Application (KMRA) on 3rd
and 4th Gen Intel® Xeon® Scalable Processors

Authors
Veronika Karpenko

Radoslaw Jablonski

David Lu

Jon Strang

Kapil Sood

Seosamh O'Riordain

Darragh Coen

Kamil Lorek

Abhijit Sinha

Chenxi Wang

1 Introduction
Key Management Reference Application (KMRA) is a proof-of-concept software
created to demonstrate the integration of Intel® Software Guard Extensions (Intel®
SGX) asymmetric key capability with a hardware security model (HSM) on a
centralized key server. The goal of this document is to outline the steps to set up an
NGINX* workload to access the private key in an Intel® SGX enclave on 3rd and 4th
Gen Intel® Xeon® Scalable processors, using the Public-Key Cryptography Standard
(PKCS) #11 interface and OpenSSL.

Intel® SGX provides a more secure environment for application owners to run their
applications’ sensitive code and data inside an Intel SGX enclave, enhancing the
protection of their enclave code and data from privileged software and applications.

The Crypto API Toolkit for Intel® Software Guard Extensions (Crypto API Toolkit for
Intel® SGX) is an SDK for using the cryptographic capabilities within an Intel SGX. It
aims to enhance the security of ISVs’ and OEMs’ data protection applications by
exposing enhanced and optimized interfaces that run the cryptographic operations
more securely within Intel SGX.

RSA keypairs can be generated into tokens where each token is stored in an Intel SGX
enclave. The private key object can only be used to perform cryptographic operations
with the correct credentials, without leaving the Intel SGX enclave. This provides more
security for the private key and prevents it from being exposed and compromised.

Quote generation and verification libraries from Intel® Software Guard Extensions
Data Center Attestation Primitives (Intel® SGX DCAP) are used to attest an Intel SGX
platform. The KMRA client generates an Intel SGX quote using the Crypto API Toolkit
for Intel SGX. The KMRA server verifies the quote before wrapping and extracting the
encrypted keys from the HSM for use inside the compute server’s Intel SGX enclave.

This document details the setup of each component, such as Intel SGX, NGINX,
Crypto API Toolkit for Intel SGX, PKCS#11 engine, and OpenSSL. Each section
contains the necessary commands and instructions to configure and install the
component using Ansible scripts. Reference documents and links to source code are
provided for more information outside the scope of this document.

KMRA can be deployed in multiple ways by ansible scripts, Docker containers, and
VMware vSphere. To install the KMRA application with the ansible scripts, follow the
instructions provided in Section 7. To deploy KMRA containers using Dockerfiles,
follow the instructions provided in Section 5.7. To deploy KMRA on virtual machine
using VMware vSphere, ensure that ESXi 7.0 or 8.0 is used and follow the instructions
provided in Section 9.

This document is targeted at development engineers, validation teams, benchmarking
teams, and application engineers who are interested in configuring NGINX on a
platform to use Intel SGX enclaves to help secure the private key.

KMRA is not meant to be used in a production environment.

This document is part of the Network & Edge Platform Experience Kits.

http://www.intel.com/PerformanceIndex
https://networkbuilders.intel.com/intel-technologies/experience-kits

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 2

Table of Contents
1 Introduction ... 1

1.1 Terminology .. 4
1.2 Reference Documentation ... 4

2 Solution Overview ... 5
2.1 NGINX Key Management Architecture Flow with Intel® SGX ... 5

 Step 1 - SGX Enclave Launch with DCAP Attestation .. 6
 Step 2 - Customer Key Delivery into Enclave .. 6
 Step 3 - NGINX Application Uses the Key Protected Inside the Enclave ... 6

2.2 KMRA Software Design ... 6
2.3 KMRA Software Bill of Materials ... 7
2.4 KMRA Releases .. 8

3 Step by Step Installation Overview.. 9
4 Prerequisites ... 9

4.1 Software ... 9
4.2 Hardware ... 9

 SGX BIOS Option on a 3rd and 4th Gen Intel® Xeon® Scalable Processor .. 9
4.3 Ansible .. 10
4.4 Configuration of sudo .. 10

5 Platform Registration and Attestation ... 10
5.1 Provisioning Certification Service .. 10
5.2 Intel® SGX Multi-Package Registration Software Installation ... 10
5.3 Intel Provisioning Certificate Caching Service (PCCS) Installation ... 11

5.3.1 (Recommended) Install PCCS using ansible-playbooks: .. 11
5.3.2 (Optional) Install PCCS manually: .. 12

5.4 Create group and add user to group for SGX components ... 12
5.5 KMRA deployment using containers ... 13
5.6 Prerequisites .. 13
5.7 Deployment via Dockerfiles .. 14
5.8 PCCS Container .. 14
5.9 AppHSM Container ... 15
5.10 Ctk_loadkey Container ... 16
5.11 NGINX Container .. 17
5.12 Common Issues ... 17

 Failure in task '[create_empty_token_in_hsm: Create token ...]' ... 17
 Failure in task [install_ctk_loadkey: Copy ca cert and ctk_loadkey keys ...] ... 17
 Enclave not authorized to run in task [provision_ctk_with_key_from_apphsm ...].. 18
 SSL peer certificate error in task [provision_ctk_with_key_from_apphsm..] ... 18

6 Installation of SGX Components Using Ansible ... 18
6.1 Overview .. 18
6.2 Intel SGX Ingredients .. 19

 Intel SGX DCAP Kernel Driver ... 19
 Intel SGX Runtime Libraries – SGX PSW (Platform Software)... 19
 Intel SGX SDK .. 19
 Intel® SGX DCAP Libraries ... 19
 Intel® SGX SSL .. 19
 Crypto API Toolkit for Intel® SGX .. 19
 Other Components .. 19

6.3 Installed Intel SGX Component Versions .. 19
6.4 Using Ansible Scripts for Intel SGX Ingredient Installation .. 19

7 KMRA Setup and Installation Using Ansible Scripts ... 21
7.1 Overview .. 21
7.2 Installed Components ... 21
7.3 Using Ansible Scripts for KMRA Setup .. 21
7.4 Provisioning Wrapped Keys to Crypto-Api-Toolkit .. 22

8 Removal of Components Installed by Ansible Scripts .. 22
8.1 Overview ... 22
8.2 Uninstalled Components .. 22
8.3 Using Ansible Scripts for KMRA Cleanup .. 22

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 3

9 VMware vSphere Deployment .. 23
10 Summary .. 23
Appendix A REST API Endpoints .. 23

Figures
Figure 1. NGINX Key Management with Intel SGX Enclave Architecture .. 6
Figure 2. KMRA NGINX/Intel SGX Key Management Software Design ..7
Figure 3. KMRA SW Design and Deployment Using Docker Images .. 13
Figure 4. Sample Output of Ansible Playbook Command .. 20
Figure 5. Sample Output of Ansible Playbook Command Installing Intel SGX DCAP Driver and SGX PSW ... 20
Figure 6. Sample Output of Ansible Playbook Command Installing crypto-api-toolkit ... 21
Figure 7. Sample Output of Successful Installation ... 21

Tables
Table 1. Terminology .. 4
Table 2. Reference Documents ... 4
Table 3. KMRA Software Bill of Materials ...7
Table 4. Intel® SGX and DCAP Versions for KMRA ... 9
Table 5. Installation Steps ... 9
Table 6. Versions of Installed Intel SGX Components ... 19
Table 7. Versions of Components Installed by KMRA ... 21

Document Revision History

REVISION DATE DESCRIPTION

001 February 2021 Initial release.

002 April 2021 Revised the document for public release to Intel® Network Builders.

003 July 2021 Added support for Red Hat Enterprise Linux (RHEL), Intel SGX 2.13.3, Intel SGX DCAP 1.10.3, SGX
upstream kernel, containers, and other improvements. Added sections for Intel Provisioning Certificate
Caching Service (PCCS) installation and for KMRA Docker container deployment.

004 August 2021 Added new steps to deploy the Dockerfiles and run the KMRA Ansible scripts. Added new information
for installing and deploying the PCCS and Ctk_loadkey containers. Also added a Common Issues
section for the containers. Updated Linux drivers, NGINX, and component versions.

005 March 2022 Upgraded to SGX 2.15.1 and DCAP 1.12.1; Docker container improvements.

006 July 2022 Updates in deployment via Dockerfiles and Platform Registration and Attestation. Added new NGINX
Key Management with Intel SGX Enclave Architecture diagram. Added VM deployment and testing
section and Appendix. Upgraded to Intel SGX 2.16 and DCAP 1.13.

007 March 2023 Updates include: Ubuntu 22.04 host support, Upgrade to SGX 2.18.1 and DCAP 1.15, CTK restart bug fix

008 October 2023 Upgrade to SGX 2.21 and DCAP 1.18, upgrade to OpenSSL 3 and ECDSA key support for O-RAN
integration.

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 4

1.1 Terminology

Table 1. Terminology

ABBREVIATION DESCRIPTION

Ansible Ansible is a radically simple IT automation engine that automates cloud provisioning, configuration management,
application deployment, intra-service orchestration.

Ansible-playbook Playbooks are the files where Ansible code is written.

BIOS Basic Input/Output System is a set of computer instructions in firmware that controls input and output operations.

CA Certificate authority

CDN Content Delivery Network is a system of distributed servers (network). It delivers pages and other web content to
a user, based on the geographic location of the user, the origin of the webpage, and the content delivery server.

DCAP Data Center Attestation Primitives. Intel® Software Guard Extensions Data Center Attestation Primitives (Intel®
SGX DCAP) provides SGX attestation support targeted for data centers, cloud services providers, and
enterprises.

ECDSA Elliptic curve digital signature algorithm

FLC Flexible launch control

GID Group ID

GPL General public license

HSM Hardware security module

KMRA Key Management Reference Application (KMRA)

LGPL Lesser general public license

mTLS Mutual transport layer security

OS Operating system

PCCS Provisioning Certificate Caching Service

PKCS Public-Key Cryptography Standard

PKCS#11 Public-Key Cryptography Standard. The PKCS#11 standard defines a platform-independent API to cryptographic
tokens, such as hardware security modules (HSM) and smart cards.

PSW Platform software

RHEL Red Hat Enterprise Linux

RSA RSA is a public-key cryptosystem that is widely used for secure data transmission. The acronym RSA comes from
the surnames of Ron Rivest, Adi Shamir, and Leonard Adleman, who publicly described the algorithm in 1977.
(Wikipedia)

SGX Intel® Software Guard Extensions (Intel® SGX) is a set of instructions that increases the security of application
code and data, giving them more protection from disclosure or modification.

SSL Secure Sockets Layer is a networking protocol designed for securing connections between web clients and web
servers over an insecure network, such as the internet.

TLS Transport Layer Security

VMware Virtualization and cloud computing software

vSphere VMware's cloud computing virtualization platform. It includes an updated vCenter Configuration Manager, as well
as vCenter Application Discovery Manager, and the ability of vMotion to move more than one virtual machine at a
time from one host server to another.

ESXi VMware ESXi is a bare metal hypervisor that installs easily on to a server and partitions it into multiple virtual
machines.

1.2 Reference Documentation

Table 2. Reference Documents

REFERENCE SOURCE

Intel® SGX Binaries and Installation Instructions https://01.org/intel-software-guard-extensions/downloads

https://01.org/intel-software-guard-extensions/downloads

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 5

REFERENCE SOURCE

Intel® SGX Programming Reference and SDK for Linux https://www.intel.com/content/www/us/en/developer/articles/technical/i
ntel-sdm.html#combined

https://download.01.org/intel-sgx/latest/linux-latest/docs/

https://github.com/intel/linux-sgx

PKCS#11 Specification http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-
v2.40.html

ETSI NFV Security Standards (SEC001, SEC012, SEC013,
others)

http://www.etsi.org/technologies-clusters/technologies/nfv

Intel® SGX Resources https://www.intel.com/content/www/us/en/developer/tools/software-
guard-extensions/overview.html

https://www.intel.com/content/www/us/en/develop/download/intel-
software-guard-extensions-intel-sgx-developer-guide.html

https://www.intel.com/content/www/us/en/developer/articles/technical/i
ntel-sdm.html

Intel® SGX Crypto - Toolkit Open Source https://github.com/intel/crypto-api-toolkit

Intel® SGX ECDSA Attestation DCAP and APIs https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/

https://github.com/cloud-security-research/sgx-ra-tls

https://github.com/intel/SGXDataCenterAttestationPrimitives

Intel® SGX Flexible Launch Control (FLC) https://github.com/intel/linux-sgx/blob/master/psw/ae/ref_le/ref_le.md

https://www.intel.com/content/www/us/en/developer/articles/technical/
an-update-on-3rd-party-attestation.html

Intel® SGX Open Source Projects https://github.com/intel/intel-sgx-ssl

https://github.com/intel/sgx-ra-sample

https://github.com/oscarlab/graphene

Intel® SGX Security Analysis https://www.intel.com/content/www/us/en/security-center/default.html

https://www.intel.com/content/www/us/en/developer/topic-
technology/software-security-guidance/overview.html

Intel® Software Guard Extensions (Intel® SGX) Platform
Enablement and Validation Requirements for Intel® Xeon® SP

https://cdrdv2.intel.com/v1/dl/getContent/611589

Ubiquitous Availability of Crypto Technologies Solution Brief https://networkbuilders.intel.com/solutionslibrary/crypto-ubiquitous-
availability-of-crypto-technologies-solution-brief

Intel® Software Guard Extensions (Intel® SGX) – Key
Management Reference Application (KMRA) on Intel® Xeon®
Processors Technology Guide

 https://networkbuilders.intel.com/solutionslibrary/intel-sgx-kmra-on-
intel-xeon-processors-technology-guide

Red Hat Enterprise Linux Download for Development Use https://developers.redhat.com/products/rhel/download

VMware vSphere https://docs.vmware.com/en/VMware-vSphere/index.html

VMware ESXi https://www.vmware.com/products/esxi-and-esx.html

2 Solution Overview
2.1 NGINX Key Management Architecture Flow with Intel® SGX

The key management architecture shown in Figure 1 enables NGINX applications to help protect the private key inside an Intel
SGX enclave. This architecture demonstrates the integration of Intel SGX with the NGINX application, with SGX Enclave
Attestation and Key Server. Readers may refer to the Intel® Software Guard Extensions (Intel® SGX) – Key Management
Reference Application (KMRA) on Intel® Xeon® Processors Technology Guide (see Reference Documentation) for architecture
and software design details.

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html#combined
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html#combined
https://download.01.org/intel-sgx/latest/linux-latest/docs/
https://github.com/intel/linux-sgx
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://www.etsi.org/technologies-clusters/technologies/nfv
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/develop/download/intel-software-guard-extensions-intel-sgx-developer-guide.html
https://www.intel.com/content/www/us/en/develop/download/intel-software-guard-extensions-intel-sgx-developer-guide.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://github.com/intel/crypto-api-toolkit
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/
https://github.com/cloud-security-research/sgx-ra-tls
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/linux-sgx/blob/master/psw/ae/ref_le/ref_le.md
https://www.intel.com/content/www/us/en/developer/articles/technical/an-update-on-3rd-party-attestation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/an-update-on-3rd-party-attestation.html
https://github.com/intel/intel-sgx-ssl
https://github.com/intel/sgx-ra-sample
https://github.com/oscarlab/graphene
https://www.intel.com/content/www/us/en/security-center/default.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/overview.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/overview.html
https://cdrdv2.intel.com/v1/dl/getContent/611589
https://networkbuilders.intel.com/solutionslibrary/crypto-ubiquitous-availability-of-crypto-technologies-solution-brief
https://networkbuilders.intel.com/solutionslibrary/crypto-ubiquitous-availability-of-crypto-technologies-solution-brief
https://developers.redhat.com/products/rhel/download
https://docs.vmware.com/en/VMware-vSphere/index.html
https://www.vmware.com/products/esxi-and-esx.html

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 6

Figure 1. NGINX Key Management with Intel SGX Enclave Architecture

As shown in Figure 1, the key management flow of NGINX with Intel SGX has three main steps.

 Step 1 - SGX Enclave Launch with DCAP Attestation

A compute node has Intel SGX enabled and Crypto API Toolkit for Intel SGX installed. An Intel SGX quote is generated inside
the Crypto API Toolkit for Intel SGX Enclave for DCAP attestation. The Intel SGX quote is attested on the key server side.

 Step 2 - Customer Key Delivery into Enclave

The wrapped private key is provisioned by the key server into the Crypto API Toolkit for Intel® SGX enclave.

 Step 3 - NGINX Application Uses the Key Protected Inside the Enclave

The NGINX workload can more securely access the private key through the PKCS#11 interface using the libp11 engine
configured with OpenSSL. NGINX can establish a transport layer security (TLS) connection using the private key from the
Crypto API Toolkit for Intel SGX enclave.

2.2 KMRA Software Design

Key Management Reference Application (KMRA) is a proof-of-concept software created to demonstrate the integration of the
asymmetric key capability of Intel® SGX with a third-party hardware security model (HSM) on a centralized key server. Figure 2
shows the KMRA NGINX/Intel SGX key management software design. For a complete list of components, see Table 3.

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 7

Figure 2. KMRA NGINX/Intel SGX Key Management Software Design

KMRA service node is a centralized HSM that provisions wrapped keys to the compute node. A Flask REST API runs on the
service node with Connexion verifying all incoming requests. The REST API uses a Cython wrapper for C to interact with
SoftHSMv2 to wrap and extract keys through the PKCS#11 interface. The operations are exposed and supported via the
PKCS#11 interface for Linux. This universal interface helps security applications to access and work with the key servers and
HSM. In this case, the PKCS#11 interface is used by the NGINX application to access keys in the Crypto API Toolkit for Intel SGX
enclave.

To validate the client, mutual transport layer security (TLS) is implemented on the service node where each client certificate is
verified. The client certificate must be generated by a mutual certificate authority (CA). The Subject OUN field is extracted from
the certificate and mapped to permissions and keys in the configuration file. The Intel SGX quote of a client is validated by the
Quote Verification Library before the keys are extracted and provisioned.

KMRA compute node is a client running on an Intel SGX-enabled platform. The client sends a request to a service node. The
request contains an Intel SGX quote, a public key from Crypto API Toolkit for Intel SGX, and a unique ID to identify the keypair to
extract. The client constructs the requests by using json-c and sends requests with libcurl.

When the client receives a response containing wrapped keys, the server certificate is validated, and the keys are imported into
Crypto API Toolkit for Intel SGX. For NGINX to access the secured private key provisioned by the service node, a libp11 engine is
configured with OpenSSL. The libp11 engine is an interface for NGINX to access keys secured by Crypto API Toolkit for Intel
SGX.

2.3 KMRA Software Bill of Materials

Table 3. KMRA Software Bill of Materials

COMPONENT NAME SOURCE

Connexion https://github.com/zalando/connexion

Flask-RESTful https://github.com/flask-restful/flask-restful/

Flask https://github.com/pallets/flask/

Cython https://github.com/cython/cython/

Glib https://tracker.debian.org/pkg/glib2.0

Json-c https://tracker.debian.org/pkg/json-c

libcurl https://tracker.debian.org/pkg/curl

https://github.com/zalando/connexion
https://github.com/flask-restful/flask-restful/
https://github.com/pallets/flask/
https://github.com/cython/cython/
https://tracker.debian.org/pkg/glib2.0
https://tracker.debian.org/pkg/json-c
https://tracker.debian.org/pkg/curl

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 8

COMPONENT NAME SOURCE

crypto-api-toolkit https://github.com/intel/crypto-api-toolkit

SoftHSMv2 https://github.com/opendnssec/SoftHSMv2/

Intel SGX PSW, SDK https://github.com/intel/linux-sgx

Intel SGX driver https://github.com/intel/linux-sgx-driver

Ansible https://github.com/ansible/ansible/

DCAP https://github.com/intel/SGXDataCenterAttestationPrimitiv
es

Libp11 https://github.com/OpenSC/libp11/

NGINX https://github.com/nginx/nginx/

OpenSSL https://www.openssl.org/

requests https://tracker.debian.org/pkg/requests

Intel SGX SSL https://github.com/intel/intel-sgx-ssl

pytest https://github.com/pytest-dev/pytest/

pylint https://github.com/PyCQA/pylint

cmocka https://github.com/clibs/cmocka/

Ansible-lint https://github.com/ansible-community/ansible-lint

Autoconf https://www.gnu.org/software/autoconf/

Build-essentials https://packages.debian.org/jessie/build-essential

Docker https://www.docker.com/

Git https://tracker.debian.org/pkg/git

Automake https://www.gnu.org/software/automake/

Libtool https://www.gnu.org/software/libtool/

Wget https://www.gnu.org/software/wget/wget.html

Make http://savannah.gnu.org/projects/make/

Pip https://github.com/pypa/pip/

Python-apt https://sourceforge.net/projects/python-apt/

Sudo https://www.sudo.ws/

G++ https://gcc.gnu.org/
Dkms https://github.com/dell/dkms

NodeJS https://nodejs.org/en/

J2cli https://github.com/kolypto/j2cli

GnuPG https://gnupg.org/

PKCS11-Proxy https://github.com/SUNET/pkcs11-proxy

2.4 KMRA Releases

Refer to the following table for Intel SGX and DCAP versions in KMRA releases. These versions are required in the Prerequisites
section.

https://github.com/intel/crypto-api-toolkit
https://github.com/opendnssec/SoftHSMv2/
https://github.com/intel/linux-sgx
https://github.com/intel/linux-sgx-driver
https://github.com/ansible/ansible/
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/OpenSC/libp11/
https://github.com/nginx/nginx/
https://www.openssl.org/
https://tracker.debian.org/pkg/requests
https://github.com/intel/intel-sgx-ssl
https://github.com/pytest-dev/pytest/
https://github.com/PyCQA/pylint
https://github.com/clibs/cmocka/
https://github.com/ansible-community/ansible-lint
https://www.gnu.org/software/autoconf/
https://packages.debian.org/jessie/build-essential
https://www.docker.com/
https://tracker.debian.org/pkg/git
https://www.gnu.org/software/automake/
https://www.gnu.org/software/libtool/
https://www.gnu.org/software/wget/wget.html
http://savannah.gnu.org/projects/make/
https://github.com/pypa/pip/
https://sourceforge.net/projects/python-apt/
https://www.sudo.ws/
https://gcc.gnu.org/
https://github.com/dell/dkms
https://nodejs.org/en/
https://github.com/kolypto/j2cli
https://gnupg.org/
https://github.com/SUNET/pkcs11-proxy

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 9

Table 4. Intel® SGX and DCAP Versions for KMRA

KMRA VERSION SGX VERSION DCAP VERSION

2.4 2.21 1.18

2.3 2.18.1 1.15

2.2.2 2.17 1.14

2.2 2.16 1.13

2.0, 2.0.1, 2.1 2.15.1 1.12.1

1.4 2.15 1.12

1.3 2.14 1.11

1.2, 1.2.1 2.13.3 1.10.3

1.1 2.12 1.9

1.0 2.11 1.8

3 Step by Step Installation Overview
The following table summarizes the installation steps and includes links to the details elsewhere in this document.

Table 5. Installation Steps

STEP DESCRIPTION LINK TO WHERE DISCUSSED

Step 1 Install prerequisites Prerequisites

Step 2 Install Intel Provisioning Certificate Caching Service
(PCCS)

Platform Registration and Attestation

Step 3 Deploy KMRA Docker containers Deploy KMRA using containers

Step 4 Use Ansible to install Intel SGX components Installation of SGX Components Using Ansible

Step 5 Use Ansible scripts to set up and install KMRA KMRA Setup and Installation Using Ansible Scripts

Step 6 Remove components installed by the Ansible playbooks Removal of Components Installed by Ansible Scripts

4 Prerequisites
4.1 Software

It is assumed Linux is being used, specifically Ubuntu 18.04, 20.04, 22.04, or RHEL 8.2. For any other operating system, see the
Reference Documentation for source code and more information about each component.

4.2 Hardware

This document is specific to the setup of NGINX with the Crypto API Toolkit for Intel SGX on a production-fused 3rd and 4th
Gen Intel® Xeon® Scalable processor.

 SGX BIOS Option on a 3rd and 4th Gen Intel® Xeon® Scalable Processor

Intel SGX must be enabled in the BIOS. Without that, the Intel SGX kernel module cannot be loaded. The process requires the
correct hardware (installing memory modules in certain way) and software configuration (microcode updates, BIOS options).

4.2.1.1 BIOS Hardware Configuration

To enable Intel SGX in BIOS on a 3rd and 4th Gen Intel® Xeon® Scalable processor, correct memory installation is required. See
the Reference Documentation for platform enablement and validation requirements. Not every memory configuration is
supported by Intel SGX. If your memory configuration is not correct, the Intel SGX option is grayed in the BIOS settings.

The reference setup was tested on a platform where every slot 0 of each memory bank contained an 8 GB DDR4 module.

4.2.1.2 BIOS Software Configuration
Note: We recommend installing the latest microcode updates before enabling SGX in the BIOS.

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 10

The following lists the options needed for Intel SGX enablement.

Socket Configuration->Common RefCode Configuration->UMA-Based Clustering = [Disable]

Socket Configuration->Processor Configuration->Total Memory Encryption (TME) = [Enable]

Socket Configuration->Processor Configuration->SW Guard Extensions (Intel® SGX) = [Enable]

Socket Configuration->Processor Configuration->SGXLEPUBKEYHASHx Write Enable = [Enable]

Socket Configuration->Processor Configuration->Enable/Disable SGX Debug = [Disable]

Socket Configuration->Processor Configuration->Enable/Disable SGX Auto MP Registration Agent = [Enable]

(Optional) Advanced->HW Validation Test Only->Delayed Authentication Mode (DAM) Override = [Enable]

(Optional) Advanced->HW Validation Test Only->Delayed Authentication Mode (DAM) = [Disable]

4.3 Ansible

Ansible is an open-source project for managing software installations and configurations. With Ansible you can automate many
installation steps in ‘playbooks’ that are easy to run and maintain.

The ansible package can be installed using the pip3 Python package manager. It is recommended to always use the latest
version of the ansible package.

For Ubuntu, use the following:
sudo apt install python3-pip
sudo -H python3 -m pip install ansible

For RHEL, use the following:
$ sudo yum install python3-pip
$ sudo -H python3 -m pip install ansible

4.4 Configuration of sudo

Ansible playbooks for installing Intel SGX components must be executed as a non-root user with sudo password-less access. To
enable ‘sudo’ without password’ for a target user, use the following command:
sudo visudo

A configuration screen is displayed.

Enter the following for password-less sudo access for the target user.
your_username ALL=(ALL) NOPASSWD: ALL

5 Platform Registration and Attestation
5.1 Provisioning Certification Service

Log in and subscribe to get a key for the Provisioning Certification Service at the following site:
https://api.portal.trustedservices.intel.com/provisioning-certification

The primary key from the subscription is used in the next steps.

This key is accessible at any time on that website.

5.2 Intel® SGX Multi-Package Registration Software Installation

This section is designed to provide a brief set of instructions to aid a user in installing and configuring the multi-package libraries
and tools. Packages for multi-package registration service are available at the following sites.

Note: The following commands install Intel SGX components for KMRA v2.4 with SGX 2.21 and DCAP 1.18 versions.

For Ubuntu:

Packages (in an archive) for Ubuntu 22.04 are located here:

https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/ubuntu22.04-server/sgx_debian_local_repo.tgz

Packages (in an archive) for Ubuntu 20.04 are located here:

https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/ubuntu20.04-server/sgx_debian_local_repo.tgz

Packages (in an archive) for Ubuntu 18.04 are located here:

https://api.portal.trustedservices.intel.com/provisioning-certification
https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/ubuntu22.04-server/sgx_debian_local_repo.tgz
https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/ubuntu20.04-server/sgx_debian_local_repo.tgz

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 11

https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/ubuntu18.04-server/sgx_debian_local_repo.tgz

Download and extract the Packages above. For example, Ubuntu 22.04.
(non-root user) $ wget https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/ubuntu22.04-
server/sgx_debian_local_repo.tgz
(non-root user) $ tar zxvf sgx_debian_local_repo.tgz

Examples of Ubuntu 22.04, please change the .deb name in the following commands based on your Ubuntu version.

libsgx-ra-network
(non-root user) $ sudo dpkg -i ./sgx_debian_local_repo/pool/main/libs/libsgx-ra-network/libsgx-ra-
network_1.18.100.1-jammy1_amd64.deb

libsgx-ra-uefi
(non-root user) $ sudo dpkg -i ./sgx_debian_local_repo/pool/main/libs/libsgx-ra-uefi/libsgx-ra-
uefi_1.18.100.1-jammy1_amd64.deb

sgx-ra-service
(non-root user) $ sudo dpkg -i ./sgx_debian_local_repo/pool/main/s/sgx-ra-service/sgx-ra-
service_1.18.100.1-jammy1_amd64.deb

To query the installed packages and their versions:
(non-root user) $ sudo dpkg-query --list libsgx-ra-network libsgx-ra-uefi sgx-ra-service

For RHEL:

Packages (in an archive) for RHEL 8.6 are here: https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/rhel8.6-
server/sgx_rpm_local_repo.tgz

Download and extract archive:
(non-root user) $ wget https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/rhel8.6-
server/sgx_rpm_local_repo.tgz
(non-root user) $ tar zxvf sgx_rpm_local_repo.tgz

Install the libsgx-ra-network, libsgx-ra-uefi, and sgx-ra-service packages:
(non-root user) $ sudo rpm -i ./sgx_rpm_local_repo/libsgx-ra-network-1.18.100.1-1.el8.x86_64.rpm
./sgx_rpm_local_repo/libsgx-ra-uefi-1.18.100.1-1.el8.x86_64.rpm ./sgx_rpm_local_repo/sgx-ra-
service-1.18.100.1-1.el8.x86_64.rpm

To query the installed packages and their versions:
(non-root user) $ sudo rpm --query libsgx-ra-network libsgx-ra-uefi sgx-ra-service

Be sure to set correct proxy variables in the /etc/environment. The primary key needs to be added to the Intel SGX Multi-
Package Registration configuration file at /etc/mpa_registration.conf.
non-root user) $ cat /etc/mpa_registration.conf
subscription key = <ADD THE PRIMARY KEY HERE>
log level = error

After rebooting, observe the log at /var/log/mpa_registration.log for successful registration.
non-root user) $ cat /var/log/mpa_registration.log
[21-09-2023 07:22:27] INFO: SGX Registration Agent version: 1.18.100.1
[21-09-2023 07:22:27] INFO: Starts Registration Agent Flow.
[21-09-2023 07:22:27] INFO: Registration Flow - Registration status indicates registration is
completed successfully. MPA has nothing to do.
[21-09-2023 07:22:27] INFO: Finished Registration Agent Flow.

5.3 Intel Provisioning Certificate Caching Service (PCCS) Installation

Before running Ansible playbooks for KMRA installation, install the Intel Provisioning Certificate Caching Service (PCCS).

The installation steps and the procedure are described in more detail in the DCAP PCCS readme:
https://github.com/intel/SGXDataCenterAttestationPrimitives/blob/DCAP_1.18/QuoteGeneration/pccs/README.md

5.3.1 (Recommended) Install PCCS using ansible-playbooks:

Before running the install_pccs Ansible script, you must first add your “Intel API key” in
/kmra/ansible/sgx_infra_setup/group_vars/all. To do this, on line 76, replace the “X” api_key: XXXX with your Intel
API primary key from Section 5.1.

To install PCCS with KMRA ansible-playbook, run:
(non-root user) $ ansible-playbook -i inventory install_pccs.yml

https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/ubuntu18.04-server/sgx_debian_local_repo.tgz
https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/rhel8.6-server/sgx_rpm_local_repo.tgz
https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/rhel8.6-server/sgx_rpm_local_repo.tgz
https://github.com/intel/SGXDataCenterAttestationPrimitives/blob/DCAP_1.18/QuoteGeneration/pccs/README.md

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 12

Note: In the following steps, it is assumed that PCCS is installed on every host, is used in setup, and listens on 'localhost' using
port 8081. If PCCS is installed on a separate machine, set its hostname in the group_vars/all file by updating the variable
named 'pccs_hostname'.

5.3.2 (Optional) Install PCCS manually:

For Ubuntu:

PCCS package (in an archive) for Ubuntu 22.04 is located here: https://download.01.org/intel-sgx/sgx-
dcap/1.18/linux/distro/ubuntu22.04-server/sgx_debian_local_repo.tgz

PCCS package (in an archive) for Ubuntu 20.04 is located here: https://download.01.org/intel-sgx/sgx-
dcap/1.18/linux/distro/ubuntu20.04-server/sgx_debian_local_repo.tgz

PCCS package (in an archive) for Ubuntu 18.04 is located here: https://download.01.org/intel-sgx/sgx-
dcap/1.18/linux/distro/ubuntu18.04-server/sgx_debian_local_repo.tgz

As root user, update the NodeJS version to 16 or later:
(root user) # curl -sL https://deb.nodesource.com/setup_16.x | bash -
(root user) # apt-get install -y nodejs
(root user) # node --version

Download and install the PCCS Debian package from the archive above. For example, Ubuntu 22.04:
(root user) # wget https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/ubuntu22.04-
server/sgx_debian_local_repo.tgz
(root user) $ tar zxvf sgx_debian_local_repo.tgz
(root user) # dpkg -i ./sgx_debian_local_repo/pool/main/s/sgx-dcap-pccs/sgx-dcap-pccs_1.18.100.1-
jammy1_amd64.deb

For RHEL:

As root user, install NodeJS version 10.20 or later:
(root user) # yum install -y nodejs

Download, extract, and install the PCCS RHEL package:
(root user) # wget https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/rhel8.6-
server/sgx_rpm_local_repo.tgz
(root user) # tar zxvf sgx_rpm_local_repo.tgz
(root user) # rpm -i ./sgx_rpm_local_repo/sgx-dcap-pccs-1.18.100.1-1.el8.x86_64.rpm
Go to /opt/intel/sgx-dcap-pccs directory and run the following command:
(root user) # sudo -u pccs ./install.sh

Answer all questions when prompted and use the primary key when asked to “Set your Intel PCS API key”.

Use the following command to check the status of the PCCS service:
(root user) # systemctl status pccs

Use the following command to start/stop/restart the PCCS service:
(root user) # systemctl start/stop/restart pccs

5.4 Create group and add user to group for SGX components

To provision crypto-api-toolkit token for nginx the user needs to be added to 'sgx' and 'sgx_prv' group. The group is not created
on "sgx-aesm-service" package installation. Use the following instructions to create and configure this group manually:

GID - Next available group ID in /etc/group for 'sgx_prv' group eg. 1004

USER - User to add to 'sgx_prv' group for access to SGX
(non-root user) $ sudo groupadd --gid <GID> sgx_prv
(non-root user) $ sudo usermod -a -G sgx_prv <USER>

Repeat same steps for 'sgx' group:
(non-root user) $ sudo groupadd --gid <GID> sgx
(non-root user) $ sudo usermod -a -G sgx <USER>

Verify that group and user in /etc/group is created correctly.

To refresh permissions for the current user, perform one of the following actions:

- Reload the session by logging out and in.

OR

https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/ubuntu22.04-server/sgx_debian_local_repo.tgz
https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/ubuntu22.04-server/sgx_debian_local_repo.tgz
https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/ubuntu20.04-server/sgx_debian_local_repo.tgz
https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/ubuntu20.04-server/sgx_debian_local_repo.tgz
https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/ubuntu18.04-server/sgx_debian_local_repo.tgz
https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/ubuntu18.04-server/sgx_debian_local_repo.tgz

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 13

- Start a new shell session by logging to a new group:
(non-root user) $ newgrp sgx_prv
(non-root user) $ newgrp sgx

To check that the current user is in group, run:
(non-root user) $ groups

To check that the root folder /kmra under the group ‘sgx’, run:
(non-root user) $ ls -lrt

5.5 KMRA deployment using containers

This section outlines the steps to deploy KMRA using containers.

Note: KMRA Docker images are available on the Docker Hub.

https://hub.docker.com/r/intel/apphsm

https://hub.docker.com/r/intel/ctk_loadkey

https://hub.docker.com/r/intel/pccs

https://hub.docker.com/r/intel/nginx

The source code for GPL/LGPL licensed components distributed in KMRA Docker images can be found in the Docker images
here: /sources

KMRA v1.4 - v1

KMRA v2.0.1 - v2

KMRA v2.1 - v2.1

KMRA v2.2 – v2.2.2

KMRA v2.3 – v2.3

KMRA v2.4 – v2.4

Figure 3. KMRA SW Design and Deployment Using Docker Images

5.6 Prerequisites

To build KMRA Docker images from Dockerfiles, follow these steps:

1. Add the user in docker group

2. In case you are behind a network proxy add the proxy variables in the ~/.docker/config.json file

https://hub.docker.com/r/intel/apphsm
https://hub.docker.com/r/intel/ctk_loadkey
https://hub.docker.com/r/intel/pccs
https://hub.docker.com/r/intel/nginx

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 14

3. Install the Intel SGX kernel driver. The out-of-tree Intel SGX kernel driver can be installed using the KMRA Ansible scripts in
the ansible/sgx-infra-setup directory, as described in Section 6.4.

4. If deploying containers behind a proxy, update no_proxy, http_proxy, and https_proxy in Dockerfile.apphsm and
Dockerfile.ctk with the correct proxy settings. Also, update the no_proxy variable in *.sh files.

5.7 Deployment via Dockerfiles

Use the following steps to deploy the containers via Dockerfiles.
1. Create custom bridge network:

 $ docker network create kmra-net
 $ docker network ls | grep kmra

2. Build and run the Dockerfiles from the main directory as mentioned in the next sections:
 $ cd kmra/

Note: Update <PATH-TO-REPO> in the Docker run commands below as Docker requires absolute paths when mounting
volumes (-v option).

5.8 PCCS Container

1. If needed, set proxy environment variables (no_proxy, http_proxy, https_proxy) before building PCCS container:
 $ export no_proxy="..."
 $ export http_proxy="..."
 $ export https_proxy="..."

2. Build the PCCS container:
 $ docker build -t pccs -f containers/pccs/Dockerfile .

3. Prepare certificate and configuration file for the PCCS container (on host):
 $ cd kmra/containers/pccs/
 $ rm -rf certs/*
 $ mkdir -p certs
 $ cd certs
 $ bash ../scripts/pccs_generate_certificates.sh

4. Set PCCS_* environment variables before generating config file using export (on host). Log in and subscribe to get a key
for the Provisioning Certification Service at the following site: https://api.portal.trustedservices.intel.com/provisioning-
certification. The primary key from the subscription will be used in the next steps. This key is accessible at any time on this
website.
 $ (Optional) export PCCS_ADMIN_PASS="example-admin-pass"
 $ export PCCS_API_KEY="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

PCCS_API_KEY environment is required by the script. Other settings are optional, and default values are used for values not
given. See Environment Variables for a list of available variables.
Note: Remove the quotation marks after adding the values.

5. Generate configuration for PCCS (on host):
 $ cd kmra/containers/pccs/config/
 $ bash ../scripts/pccs_generate_config.sh

6. Run PCCS container with mounted generated certificates and config file:
 $ cd kmra/containers/pccs/
 $ bash run_pccs.sh

7. Build arguments
• USER - the name of the user inside the container (kmra by default)
• UID - UID for the above user (1000 by default)

8. Environment Variables
• PCCS_API_KEY - value of 'primary key' from the subscription from site:

https://api.portal.trustedservices.intel.com/provisioning-certification
• PCCS_ADMIN_PASS - password for PCCS admin (not used in this demo but value can be provided)
• PCCS_USER_PASS - password for PCCS user (not used in this demo but value can be provided)
• http_proxy, https_proxy - must be set if using PCCS behind corporate proxy: '-e https_proxy="http://proxy:port"' (to be

set at image build time)
• PCCS_PORT - port on which PCCS service will listen (8081 by default)
• PCCS_LOCAL_ONLY - flag (Y/N) indicating whether PCCS service should listen on local network interface only (N by

default)

https://api.portal.trustedservices.intel.com/provisioning-certification
https://api.portal.trustedservices.intel.com/provisioning-certification
https://api.portal.trustedservices.intel.com/provisioning-certification

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 15

5.9 AppHSM Container
1. Generate mTLS certificates and keys to share with the containers. The keys and certificates generated by the following

script are valid for one day only.
 $ cd kmra/apphsm/ca/
 $ bash -c "APPHSM_HOSTNAME=apphsm ./gen_all.sh"

Note: APPHSM_HOSTNAME must match the name of AppHSM container. The key(s), certificate(s) and csr files might
need to be regenerated as they have an expiry time on them. Also, the user might have to change permissions to make those
file readable.

2. Build and run Apphsm Key Server container:
 $ cd kmra/
 $ docker build -t apphsm -f containers/Dockerfile.apphsm .
 $ docker run -it --rm I am running a few minutes late; my previous meeting is running over.
 --cpu-shares 512 --pids-limit 100 --memory=2048m --security-opt=no-new-privileges \
 --read-only --tmpfs /var/lib/softhsm/tokens --tmpfs /tmp \
 -v `pwd`/containers/apphsm/sgx_default_qcnl.conf:/etc/sgx_default_qcnl.conf:ro \
 -v `pwd`/apphsm/ca/:/opt/intel/ca:ro \
 --name apphsm --env no_proxy="pccs" --cap-drop=all \
 --network kmra-net apphsm:latest

3. (Optional) Run AppHSM with custom configuration:
• Create custom key and certificate. They can be generated by the script:
 $ cd containers/apphsm/custom_config
 $ bash ./gen_key_cert.sh

• To generate example ECDSA keys for a custom configuration, use the scripts provided in /kmra/apphsm/ecdsa
directory. To generate sample RSA keys for a custom configuration, use "gen_key_cert.sh" script in
/kmra/containers/apphsm/custom_config directory.

• Edit the configuration file "apphsm.conf" and add the required key(s). The "token_name" name field must be different
for every key. The "key_name" is the label of the key in the token. The “key_path” and "certificate_file" fields must
correspond to the key file names and certificate placed in "custom_config" directory. Mount the directory with custom
config file, keys, and certificates:

 $ cd kmra/
 $ docker run -it --rm \
 --cpu-shares 512 --pids-limit 100 --memory=2048m --security-opt=no-new-privileges \
 --read-only --tmpfs /var/lib/softhsm/tokens --tmpfs /tmp \
 -v `pwd`/containers/apphsm/sgx_default_qcnl.conf:/etc/sgx_default_qcnl.conf:ro \
 -v `pwd`/apphsm/ca/:/opt/intel/ca:ro \
 -v `pwd`/containers/apphsm/custom_config:/opt/apphsm_config:ro \
 --name apphsm --env no_proxy="pccs" --cap-drop=all \
 --network kmra-net apphsm:latest

If you are using ECDSA keys generated in /kmra/apphsm/ecdsa directory, add the following line:

4. Build arguments
• DCAP_VERSION - 1.18 by default
• DCAP_LIB_VERSION - 1.18.100.1 by default
• SGX_LIB_VERSION - 2.21.100.1 by default
• USER - a name of the user inside the container (kmra by default)
• UID - UID for the above user (1000 by default)

5. Environment variables
• APPHSM_PORT - port on which AppHSM service listens (5000 by default)
• no_proxy - a list of host names, IP addresses, IP subnets for which the proxy is not used
• APPHSM_KEY_IN_TOKEN_NAME - label of the key in the softhsm for apphsm (key_1 by default)
• APPHSM_KEY_IN_TOKEN_CERT_PATH - path to a sample certificate served with key from softhsm
• APPHSM_TOKEN_NAME - label of the token in the softhsm for apphsm (token_1 by default)
• TEST_CTK_LOADKEY_CERT_USER_ID - name of the client that is visible in the 'OU' field of the generated certificate

for the client side. This name must be defined in apphsm.conf in the 'clients' section. (ctk_loadkey_user_id_01234 by
default)

• TEST_UNIQUE_UID - unique id of the key definition located on AppHSM side in apphsm.conf. You can obtain this key by
requesting this unique id using ctk_loadkey

• DEFAULT_USER_PIN - softhsm user pin. Valid length is 4-16 chars. (1234 is default)

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 16

• DEFAULT_SO_PIN - softhsm security officer pin. Valid length is 4-16 chars. Consult your security officer. (12345678 is
default)

• APPHSM_CUSTOM_CONFIG_DIR - location of custom configuration inside container (/opt/apphsm_config by default)
• ECDSA_KEYS - Set to TRUE if provisioning ECDSA keys to SGX Enclaves (FALSE by default)

PCCS configuration file containers/apphsm/sgx_default_qcnl.conf:
• PCCS_URL - valid URL address of PCCS service (https://pccs:8081/sgx/certification/v3/ by default)
• USE_SECURE_CERT - to accept insecure HTTPS cert for PCCS URL, set this option to FALSE (FALSE by default)

gen_key_cert.sh script:
• DEFAULT_KEY_NAME - file name to store the generated key
• DEFAULT_CERTIFICATE_NAME - file name to store the generated certificate

5.10 Ctk_loadkey Container

1. Build and run ctk_loadkey container:
 $ cd kmra/
 $ docker build -t ctk_loadkey -f containers/Dockerfile.ctk .
 $ docker run -it --rm --device /dev/sgx_enclave \
 --cpu-shares 512 --pids-limit 100 --memory=2048m --security-opt=no-new-privileges \
 --device /dev/sgx_provision \
 --env PCCS_HOSTNAME=pccs --env APPHSM_HOSTNAME=apphsm --env no_proxy="apphsm,pccs" \
 --name ctk_loadkey --network kmra-net \
 --read-only --tmpfs /opt/intel/cryptoapitoolkit/tokens --tmpfs /tmp \
 -v `pwd`/containers/ctk/sgx_default_qcnl.conf:/etc/sgx_default_qcnl.conf:ro \
 -v `pwd`/containers/nginx/p11_proxy_tls.psk:/etc/p11_proxy_tls.psk:ro \
 -v `pwd`apphsm/ca/:/opt/intel/ca:ro \
 --user kmra:$(getent group sgx_prv | cut -d: -f3) ctk_loadkey:latest

NOTE:
On some host systems (e.g Ubuntu 22.04) additional argument may be required to mount /dev/sgx_enclave inside container:

--group-add $(getent group sgx | cut -d: -f3)
You can check if sgx group is needed by executing command below on host:

$ ls -lg /dev/sgx_enclave
 crw-rw---- 1 sgx 10, 125 Dec 13 10:54 /dev/sgx_enclave

2. Build arguments

• DCAP_VERSION - 1.18 by default

• DCAP_LIB_VERSION - 1.18.100.1 by default

• SGX_VERSION - 2.21 by default

• SGX_LIB_VERSION - 2.21.100.1 by default

• USER - a name of the user inside the container (kmra by default)

• UID - UID for the above user (1000 by default)

3. Environment variables

• APPHSM_HOSTNAME - host on which AppHSM service listens (localhost by default). Usually, it is set to the name of the
AppHSM container - "apphsm" (the last argument in Docker run ... command starting AppHSM container)

• APPHSM_PORT - port on which AppHSM service listens (5000 by default)

• NGINX_HOSTNAME - the host name on which NGINX listens (0.0.0.0 by default)

• NGINX_PORT - port on which NGINX listens (8082 by default)

• no_proxy - a list of host names, IP addresses, IP subnets for which the proxy is not used

• CLIENT_TOKEN - private key for the certificate for NGINX is stored by ctk_loadkey in this token label (client_token by
default)

• CLIENT_KEY_LABEL - label of the key which NGINX uses to find its key (client_key_priv by default)

• TEST_UNIQUE_UID - unique id of the key definition located on AppHSM side in apphsm.conf. You can obtain this key by
requesting this unique id using ctk_loadkey

• TEST_UNIQUE_UID - unique id of the key definition located on AppHSM side in apphsm.conf. Client can obtain this key
by requesting this unique id using ctk_loadkey

• DEFAULT_USER_PIN - Crypto-Api-Toolkit user pin. Valid length is 4-16 chars. (1234 is default)

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 17

• DEFAULT_SO_PIN - Crypto-Api-Toolkit security officer pin. Valid length is 4-16 chars. Consult your security officer.
(12345678 is default)

• DEFAULT_CLIENT_TOKEN_ID - ID of the key pair. The ID is in hexadecimal with a variable length, used by pkcs11-tool as
argument to write certificate into token

• KEEP_TOKENS - Do not cleanup crypto api toolkit tokens on startup

• ECDSA_KEYS - Set to TRUE if provisioning ECDSA keys to SGX Enclaves (FALSE by default)

PCCS configuration file containers/ctk/sgx_default_qcnl.conf:

• PCCS_URL - valid URL address of PCCS service (https://pccs:8081/sgx/certification/v3/ by default)

• USE_SECURE_CERT - to accept insecure HTTPS cert for PCCS URL, set this option to FALSE (FALSE by default)

5.11 NGINX Container

Build and run NGINX container:
$ cd kmra/
$ docker build -t nginx -f containers/nginx/Dockerfile.nginx
$ docker run -it --rm --cpu-shares 512 --pids-limit 100 --memory=2048m \
 --security-opt=no-new-privileges \
 --read-only --tmpfs /tmp \
 --env PKCS11_PROXY_SOCKET=tls://ctk_loadkey:5657 \
 --env no_proxy="ctk_loadkey" \
 -v `pwd`/containers/nginx/p11_proxy_tls.psk:/etc/p11_proxy_tls.psk:ro \
 --name nginx --network kmra-net -p 8082:8082 nginx:latest

• Environment variables:
• PKCS11_PROXY_SOCKET - ctk_loadkey container IP address and exposed port number of pkcs11-proxy
• NGINX_HOSTNAME - the host name on which NGINX will listen (0.0.0.0 by default)
• NGINX_PORT - port on which NGINX will listen (8082 by default)
• CLIENT_TOKEN - token name with private key for NGINX (client_token by default)
• CLIENT_KEY_LABEL - label of the key which NGINX will use to finds its key (client_key_priv by default)
• DEFAULT_USER_PIN - Crypto-Api-Toolkit user pin, valid length is 4-16 chars (1234 is default)

REMARKS:
• TLS pre-shared key file format: key_name:16 bytes of key in hexadecimal format. The key is common for both

ctk_loadkey and NGINX container. See sample p11_proxy_tls.psk file in the source code.

5.12 Common Issues

 Failure in task '[create_empty_token_in_hsm: Create token ...]'

Error log:
TASK [create_empty_token_in_hsm : Create token with name 'client_token'] ******* fatal:
[localhost]: FAILED! => {"changed": true, "cmd": ["softhsm2-util", "--module",
"/usr/local/lib/libp11sgx.so.0.0.0", "--init-token", "--free", "--label", "client_token", "--
pin", "1234", "--so-pin", "12345 678"], ... Could not initialize the PKCS#11 library/module:
usr/local/lib/libp11sgx.so.0.0.0\nERROR: Please check log files for additional information.",
"stderr_lines": ["[get_driver_type /home/sgx/jenkins/ubuntuServer2004-release-build-tr unk-
213.3/build_target/PROD/label/Builder-UbuntuSrv20/label_exp/ubuntu64/linux-trunk-
opensource/psw/urts/linux/edmm_utility.cpp:111] Failed to open Intel SGX device.", "ERROR:
Could not initialize the PKCS#11 library/module: /usr/local/lib/libp11sgx.so.0.0.0", "ERROR:
Please check log files for additional information."], "stdout": "", "stdout_lines": []}

Root cause:
There is a problem with sharing SGX services (e.g., lack of --device /dev/sgx/enclave passed to the container during
runtime)

 Failure in task [install_ctk_loadkey: Copy ca cert and ctk_loadkey keys ...]

Error log:
TASK [install_ctk_loadkey : Copy ca cert and ctk_loadkey keys to /opt/intel/ctk_loadkey] ***
changed: [localhost] => (item=ctk_loadkey.crt) fatal: [localhost]: FAILED! => {"msg": "an error
occurred while trying to read the file /opt/intel/ca/ctk_loadkey.key': [Errno 13] Permission

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 18

denied: b'/opt/intel/ca/ctk_loadkey.key'. [Errno 13] Permission denied:
b'/opt/intel/ca/ctk_loadkey.key'"}

Root cause:
There is mismatch between user id in the container and the user that owns shared certificate/key files. Make sure that
certificate/key files for ctk_loadkey are accessible for 'kmra' user inside container.

 Enclave not authorized to run in task [provision_ctk_with_key_from_apphsm ...]

Error log:
TASK [provision_ctk_with_key_from_apphsm : Provision token client_token with key
client_key_priv from AppHSM] *** fatal: [localhost]: FAILED! => {"changed": true, "cmd": "cd
/opt/intel/ctk_loadkey; https_proxy=\"\" ./ctk_loadkey -t client_token -p 1234 -u
unique_id_1234 -P 5000 -H silpixa00400537", "delta": "0:00:00.478512", "end": "2021-07-19
13:33:45.166066", "msg": "non-zero return code", "rc": 5, "start": "2021-07-19
13:33:44.687554", "stderr": "[error_driver2api sgx_enclave_common.cpp:247] Enclave not
authorized to run, .e.g. provisioning enclave hosted in app without access rights to
/dev/sgx_provision. You need add the user id to group sgx_prv or run the app as
root.\n[load_pce ../pce_wrapper.cpp:175] Error, call sgx_create_enclave for PCE fail
[load_pce], SGXError:4004.", "stderr_lines": ["[error_driver2api sgx_enclave_common.cpp:247]
Enclave not authorized to run, .e.g. provisioning enclave hosted in app without access rights
to /dev/sgx_provision. You need add the user id to group sgx_prv or run the app as root.",
"[load_pce ../pce_wrapper.cpp:175] Error, call sgx_create_enclave for PCE fail [load_pce],
SGXError:4004."], "stdout": "Error during C_WrapKey-size: CKR_GENERAL_ERROR\nError during
creating ecdsa_quote: CKR_GENERAL_ERROR\nError during ctk_quote generation", "stdout_lines":
["Error during C_WrapKey-size: CKR_GENERAL_ERROR", "Error during creating ecdsa_quote:
CKR_GENERAL_ERROR", "Error during ctk_quote generation"]}

Root cause:
There is a mismatch between group id for 'sgx_prv' group in the container and the same group on the host. Make sure that
both group ids are the same.

 SSL peer certificate error in task [provision_ctk_with_key_from_apphsm..]

Error log:
fatal: [localhost]: FAILED! => {"changed": true, "cmd": "cd /opt/intel/ctk_loadkey;
https_proxy=\"\" ./ctk_loadkey -t client_token -p 1234 -u unique_id_1234 -P 5000 -H apphsm",
"delta": "0:00:01.702477", "end": "2021-07-20 12:15:58.111058", "msg": "non-zero return code",
"rc": 5, "start": "2021-07-20 12:15:56.408581", "stderr": "", "stderr_lines": [], "stdout":
"rest_api_check_version: Supports AppHSM v0.1 (or newer) API v0.1.\nrest_api_perform_request:
REST API request failed 'SSL peer certificate or SSH remote key was not
OK'!\nrest_api_check_version: Failed to get AppHSM version!\nFAILED REST API initialization for
host 'apphsm' on port 5000: -93\nFailed to send export key request: CKR_GENERAL_ERROR",
"stdout_lines": ["rest_api_check_version: Supports AppHSM v0.1 (or newer) API v0.1.",
"rest_api_perform_request: REST API request failed 'SSL peer certificate or SSH remote key was
not OK'!", "rest_api_check_version: Failed to get AppHSM version!", "FAILED REST API
initialization for host 'apphsm' on port 5000: -93", "Failed to send export key request:
CKR_GENERAL_ERROR"]}

Root cause:
AppHSM common name in the AppHSM certificate does not match domain name used for connecting to AppHSM from
ctk_loadkey container (e.g., in the error above, certificate was generated for 'localhost,' but it should be generated for
'apphsm' instead). Generate certificates again with proper APPHSM_HOSTNAME variable set and restart apphsm and
ctk_loadkey containers.

6 Installation of SGX Components Using Ansible
6.1 Overview

This section outlines the steps to set up the ecosystem for Intel SGX components. Installation is done using Ansible scripts. All
components are installed automatically in the correct sequence and configured.

At the end of the installation process, your system is ready to run Intel SGX enclaves.

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 19

6.2 Intel SGX Ingredients

The following contains short descriptions of the components that are installed by the Ansible scripts.

 Intel SGX DCAP Kernel Driver

The Intel SGX DCAP kernel driver can be used on a machine supporting flexible launch control (FLC) capability. The module is
named intel_sgx. Before installation, the in-tree kernel driver for intel_sgx is checked. If intel_sgx is not detected, it is installed. If it
is detected, then this step is skipped.

 Intel SGX Runtime Libraries – SGX PSW (Platform Software)

Intel SGX PSW libraries are needed for running Intel SGX enclaves.

 Intel SGX SDK

SGX SDK contains tools and libraries needed for building Intel SGX applications, including the Crypto API Toolkit for Intel SGX.

 Intel® SGX DCAP Libraries

Intel® Software Guard Extensions Data Center Attestation Primitives (Intel® SGX DCAP) provides SGX attestation support
targeted for data centers, cloud services providers, and enterprises. This attestation model uses the elliptic curve digital
signature algorithm (ECDSA). These libraries are needed for third-party Intel SGX attestation.

 Intel® SGX SSL

The Intel® Software Guard Extensions SSL (Intel® SGX SSL) cryptographic library provides cryptographic services for Intel®
Software Guard Extensions (Intel® SGX) enclave applications. The Intel® SGX SSL cryptographic library is based on the
underlying OpenSSL open-source project, providing a general-purpose cryptography library.

 Crypto API Toolkit for Intel® SGX

The Crypto API Toolkit for Intel SGX provides cryptographic functionality, PKCS#11 API, and the SGX enclave to store the
NGINX private key and perform crypto operation with the private key. This is based on the open-source SoftHSMv2 project.

 Other Components

Additional libraries and tools are installed that are required by some parts of the setup, for example, autotools, compilers, zlib.

6.3 Installed Intel SGX Component Versions

The table below lists the versions of the installed SGX components.

Table 6. Versions of Installed Intel SGX Components

COMPONENT NAME VERSION

Intel SGX Linux Driver for Intel DCAP 1.41

Intel SGX SDK 2.21

Intel SGX PSW runtime libraries 2.21

Intel SGX SSL 3.0_Rev1

Crypto-Api-Toolkit 454bca

DCAP libraries 1.18.100.1

6.4 Using Ansible Scripts for Intel SGX Ingredient Installation

KMRA source code is at this link: https://01.org/key-management-reference-application-kmra

The Ansible script that is responsible for installing and configuring Intel SGX ingredients is named
‘install_sgx_dcap_ingredients.yml’. It is in the ansible/sgx_infra_setup directory.
$ cd ansible/sgx_infra_setup/

Run the following command as a non-root user with password-less sudo authentication.
(non-root user) $ ansible-playbook -i inventory install_sgx_dcap_ingredients.yml

The install_sgx_dcap_ingredients.yml command installs the following components:
• Intel SGX DCAP kernel driver
• Intel SGX SDK
• Intel SGX runtime libraries
• Intel SGX DCAP quote generation and quote verification libraries

https://01.org/key-management-reference-application-kmra

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 20

• Intel SGX-SSL
• Crypto-Api-Toolkit
• SoftHSMv2

During the installation, the Ansible playbook command reports elements as they are installed.

Note: The SGX 2.21 sgx_prv group is not created on “sgx-aesm-service” package installation. Create and configure this group
manually with the following instructions.

GID – Next available group ID in /etc/group for sgx-prv group, for example, 1004

USER – User to add to SGX_prv group for access to Intel SGX
(non-root user) $ sudo groupadd --gid <GID> sgx_prv
(non-root user) $ sudo usermod -a -G sgx_prv <USER>

Verify group and user in /etc/group are created correctly, log off, and log in to refresh permissions.

Figure 4. Sample Output of Ansible Playbook Command

Figure 5. Sample Output of Ansible Playbook Command Installing Intel SGX DCAP Driver and SGX PSW

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 21

Figure 6. Sample Output of Ansible Playbook Command Installing crypto-api-toolkit

At the end of the installation process, a summary of tasks is displayed. Installation is successful if there are no ‘failed’ entries
reported.

Figure 7. Sample Output of Successful Installation

7 KMRA Setup and Installation Using Ansible Scripts
7.1 Overview

AppHSM is a server application that provides a REST API for delivering cryptographic keys from the SoftHSMv2 key server to
the authorized compute servers. This flow is shown in Figure 2. Ctk_loadkey is a client for AppHSM service. The AppHSM REST
API server provisions wrapped keys to the Crypto API Toolkit for Intel® SGX token, secured in the enclave. Both applications are
installed using Ansible scripts provided by KMRA.

7.2 Installed Components

The following lists the main activities that are completed as a part of the KMRA setup and installation using Ansible scripts:
• Install Intel SGX ingredients (if not installed earlier)
• Install NGINX
• Install local instance of OpenSSL for NGINX
• Install libp11 library support for local OpenSSL
• Create token with RSA2K keypair in Crypto API Toolkit for Intel® SGX
• Create certificate for NGINX using the Crypto API Toolkit for Intel® SGX token
• Start NGINX with the created certificate to help secure the mutually authenticated TLS connection between the KMRA

Client (CTK-LoadKey) and KMRA Server (AppHSM) applications
• Run KMRA client application
• Start KMRA server application

Table 7. Versions of Components Installed by KMRA

COMPONENT NAME VERSION

NGINX 1.24.0

OpenSSL 3.0.11

Libp11 for OpenSSL 1d93ed

7.3 Using Ansible Scripts for KMRA Setup

Run the following command to start the Ansible scripts to set up KMRA.
(non-root user) $ ansible-playbook -i inventory install_ctk_loadkey_and_apphsm.yml

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 22

On client hosts:
• SGX components are installed (if not installed already)
• Crypto-Api-Toolkit is installed
• ctk_loadkey application, with keys/certificates for mTLS connection, is installed
• Empty token named 'nginx_token' is created in Crypto-Api-Toolkit

On server host:
• SGX components are installed (if not installed already)
• SoftHSMv2 library is installed
• AppHSM, with keys/certificates for mutual transport layer security (mTLS) connection, is installed and started - it listens on

port '5000' by default

7.4 Provisioning Wrapped Keys to Crypto-Api-Toolkit

In the setup step above, an empty token was created in Crypto-Api-Toolkit. The empty token needs to be provisioned with a
private key from AppHSM before it can be used more securely by NGINX. Actions needed for token provisioning and starting
the NGINX instance that will use the provisioned token are defined in the 'provision_ctk_token_and_start_nginx.yml' Ansible
playbook.

Before executing this playbook, do the following:

- add current user to the "sgx_prv" group:
(non-root user) $ sudo gpasswd -a current_username sgx_prv

and one of the following:
- reload the session by relogging
or
– start a new shell session:
(non-root user) $ newgrp sgx_prv

For token provisioning and to start the NGINX instance, use the following Ansible command:
(non-root user) $ ansible-playbook -i inventory provision_ctk_token_and_start_nginx.yml

This playbook only targets client hosts and completes the following steps:
• ctk_loadkey is used to download the private key from AppHSM and to import it into the 'nginx_token' inside the Crypto-Api-

Toolkit
• Private openssl-3.0.11 instance is installed for NGINX
• NGINX installed
• NGINX is configured to use the 'nginx_token' from Crypto-Api-Toolkit for TLS connections
• NGINX is started and it is listening on '8082' port

At the end of the scripts, NGINX is configured and started. The Crypto-Api-Toolkit token is used to help secure the TLS
connection. NGINX is installed and listening for connections on 8082 port.

The Ansible scripts automatically test whether NGINX is able to use the secured keys for the TLS connection. This test is done
using the OpenSSL_time command.

8 Removal of Components Installed by Ansible Scripts
8.1 Overview

The Ansible playbook named 'uninstall_ctk_loadkey_and_apphsm.yml' automatically removes components installed by the
previous playbooks.

8.2 Uninstalled Components

The following components are removed automatically:
• NGINX instance with custom OpenSSL (/opt/intel/nginx and /opt/intel/nginx_openssl)
• ctk_loadkey application (/opt/intel/ctk_loadkey)
• AppHSM application (/opt/intel/apphsm)
• Ansible workspace directory (/opt/ansible_local_$USER)

8.3 Using Ansible Scripts for KMRA Cleanup

To remove the KMRA client and server applications and installed components directories, run:
(non-root user) $ ansible-playbook -i inventory uninstall_ctk_loadkey_and_apphsm.yml

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 23

9 VMware vSphere Deployment
To deploy KMRA on virtual machine using VMware vSphere, ensure that ESXi 7.0 is used. Host MPA registration is required
(only once) to use SGX:

1. Create a live Linux distribution (i.e., Linux Ubuntu 20.04) bootable USB key using a tool like Rufus.

2. Download the SGX DCAP driver and the PCK Cert ID Retrieval Tool (PCKCIDRT) and copy them both to the live USB
key also.

3. Boot to the live Linux distribution and start a command line terminal.

4. Un-tar PCKCIDRT and use it to grab the Platform Manifest and other data from the UEFI variables.

5. Separate and convert the Platform Manifest to a binary blob.

6. Upload the Platform Manifest to the Intel Registration Service to register the platform.
Here are the specific command line instructions to perform the above mentioned steps on the USB key
after booting the live OS:

chmod +x ./sgx_linux_x64_driver_1.41.bin

sudo ./sgx_linux_x64_driver_1.41.bin

sudo mount -o remount,exec /dev

tar xvzf ./PCKIDRetrievalTool_v 1.18.100.1.tar.gz

cd PCKIDRetrievalTool_v 1.18.100.1/

sudo ./PCKIDRetrievalTool -f platform_id.csv

csvtool col 6 platform_id.csv | xxd -r -p > platformmanifest.bin

curl -v --data-binary @platformmanifest.bin -X POST
https://api.trustedservices.intel.com/sgx/registration/v1/platform -H "Content-Type:
application/octet-stream"

On successful registration, the reply will be a “201 Created” success status.

After MPA host registration, create a Virtual Machine in vSphere with SGX enabled: Under Customize hardware -> Security
devices select “Enable check box for SGX”. Proceed with setup instructions using Ansible scripts on guest OS.

10 Summary
Intel® SGX provides a more secure environment for application owners to run their applications’ sensitive code and data inside
an Intel SGX enclave, enhancing protection of their enclave code and data from privileged software and applications. This
document outlines the steps needed to set up a NGINX workload to access the private key protected inside an Intel® Software
Guard Extensions (Intel® SGX) enclave on a 3rd and 4th Gen Intel Xeon Scalable processor with production-fused CPU parts,
using the Public-Key Cryptography Standard (PKCS) #11 interface and OpenSSL. This paper focuses on making SGX easy to
use and deploy, including automated deployment of all required system components. It is recommended that readers may
extend this example and refer to the Intel® Software Guard Extensions (Intel® SGX) – Key Management Reference Application
(KMRA) on Intel® Xeon® Processors Technology Guide (see Reference Documentation) and associated collateral to assist in
the development and deployment of their Intel® SGX systems.

Appendix A REST API Endpoints

The KMRA REST API server allows remote access. It is an interface that allows the client to request keys from the key server to
be more securely sent to the Intel SGX-enabled node running ctk_loakdey. The REST API requires the client to send a quote
generated in the Intel SGX enclave, a public key from the enclave and a client certificate. The REST API uses mutual TLS to
authenticate a client. The certificates for AppHSM and ctk_loadkey are generated by the same certificate authority (CA). The
CA certificate is used to authenticate the client. The client certificate also has a Subject OUN field with a specific client ID. Key
permissions for this client ID are outlined in the apphsm.conf configuration file. The mutual TLS certificates are not related to the
wrapped keys provisioned to the client.

The following list provides a detailed key flow sequence:

• Client generates RSA key pair (rsa_pub, rsa_priv) out-of-band on service node (key server).

• Client generates customer public/private key pair (cust_pub/cust_priv) as a session object on the compute node. An
attestation quote sgx_quote_t is generated using Crypto API Toolkit for Intel SGX and attests the hash of cust_pub and
the enclave. Client sends REST API request containing a (cust_pub) to AppHSM to trigger the Intel SGX quote
verification library.

• The quote provides proof to the service node that the client’s enclave is running with Intel SGX protections on a trusted
Intel SGX-enabled platform, with a valid TCB. If quote is correct, the hash of cust_pub is verified with sgx_quote_t,

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 24

cust_pub is imported into the HSM as a session object, and a symmetric wrapping key (aes_swk) is generated as a
session object.

• AppHSM creates wrapped_priv_key by wrapping RSA private key (rsa_priv) with SWK (aes_swk) using
CKM_AES_KEY_WRAP_PAD. AppHSM also creates wrapped_swk by wrapping SWK (aes_swk) with the imported
customer public key (cust_pub) using RSA OAEP. Wrapped keys wrapped_priv_key and wrapped_swk are returned to
the client on the compute node.

• Client unwraps keys into Crypto API Toolkit for Intel SGX using cust_priv secured in the enclave. Cust_pub and
cust_priv are destroyed after unwrapping when the session ends. OpenSSL on the client node is configured to retrieve
protected key using Libp11 engine and provide it to NGINX workload.

The REST API has two URIs implemented.

1. To get the KMRA server version
GET /sys/version

• HTTPS 201 – OK
• HTTPS 401 – Unauthorized

Example command:
curl https://localhost:5000/sys/version -X GET -k --cacert ./ca.crt –key
./ctk_loadkey.key --cert ./ctk_loadkey.crt

Example response:
{ "version": "0.02", "api_version": "0.02_API"}

2. To verify quote and hash, import key, and return wrapped keys and the certificate
POST /sgx/keys/export

• HTTPS 201 – OK
• HTTPS 401 – Unauthorized
• HTTPS 400 – Bad Request
• HTTPS 500 - Internal Server Error

Example command:
curl https://localhost:5000/sgx/keys/export -X POST -k
--cacert ./ca.crt --key ./ctk_loadkey.key --cert ./ctk_loadkey.crt
-H "Content-Type: application/json" -d
'{'HsmObject': {'h_unique_id': 'xxxx'}, 'SgxObject': {'RsaPublicKey':
{'ExponentLen': 0, 'Exponent': 'xxxx', 'ModulusLen': 0,
'Modulus': 'xxxx'}, 'SgxQuote': 'xxxx'}}'

Example response:
{ "wrappedSWK": "L3NneC9rZXlzL2V4cG9ydCB3cmFwcGVkU1dL",
"wrappedKey": "L3NneC9rZXlzL2V4cG9ydCB3cmFwcGVkS2V5",
"certificate": "L3NneC9rZXlzL2V4cG9ydCB3cmFwcGVkSCrT"}

3. To verify quote and hash
POST /sgx/attest

• HTTPS 201 – OK
• HTTPS 401 – Unauthorized
• HTTPS 400 – Bad Request
• HTTPS 500 - Internal Server Error

Example command:
curl https://localhost:5000/sgx/attest -X POST -k
--cacert ./ca.crt --key ./ctk_loadkey.key --cert ./ctk_loadkey.crt
-H "Content-Type: application/json" -d
'{'HsmObject': {'h_unique_id': 'xxxx'}, 'SgxObject': {'RsaPublicKey':
{'ExponentLen': 0, 'Exponent': 'xxxx', 'ModulusLen': 0,
'Modulus': 'xxxx'}, 'SgxQuote': 'xxxx'}}'

Example response:
{ "verified": true }

https://localhost:5000/sys/version
https://localhost:5000/sgx/keys/export
https://localhost:5000/sgx/attest

User Guide | Intel® Software Guard Extensions (Intel® SGX) - Key Management Reference Application (KMRA) on 3rd and 4th
Gen Intel® Xeon® Scalable Processors

 25

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

No product or component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

 1023/DN/WIT/PDF 634677-008US

http://www.intel.com/PerformanceIndex

	1 Introduction
	1.1 Terminology
	1.2 Reference Documentation

	2 Solution Overview
	2.1 NGINX Key Management Architecture Flow with Intel® SGX
	2.1.1 Step 1 - SGX Enclave Launch with DCAP Attestation
	2.1.2 Step 2 - Customer Key Delivery into Enclave
	2.1.3 Step 3 - NGINX Application Uses the Key Protected Inside the Enclave

	2.2 KMRA Software Design
	2.3 KMRA Software Bill of Materials
	2.4 KMRA Releases

	3 Step by Step Installation Overview
	4 Prerequisites
	4.1 Software
	4.2 Hardware
	4.2.1 SGX BIOS Option on a 3rd and 4th Gen Intel® Xeon® Scalable Processor
	4.2.1.1 BIOS Hardware Configuration
	4.2.1.2 BIOS Software Configuration

	4.3 Ansible
	4.4 Configuration of sudo

	5 Platform Registration and Attestation
	5.1 Provisioning Certification Service
	5.2 Intel® SGX Multi-Package Registration Software Installation
	5.3 Intel Provisioning Certificate Caching Service (PCCS) Installation
	5.3.1 (Recommended) Install PCCS using ansible-playbooks:
	5.3.2 (Optional) Install PCCS manually:

	5.4 Create group and add user to group for SGX components
	5.5 KMRA deployment using containers
	5.6 Prerequisites
	5.7 Deployment via Dockerfiles
	5.8 PCCS Container
	5.9 AppHSM Container
	5.10 Ctk_loadkey Container
	5.11 NGINX Container
	5.12 Common Issues
	5.12.1 Failure in task '[create_empty_token_in_hsm: Create token ...]'
	5.12.2 Failure in task [install_ctk_loadkey: Copy ca cert and ctk_loadkey keys ...]
	5.12.3 Enclave not authorized to run in task [provision_ctk_with_key_from_apphsm ...]
	5.12.4 SSL peer certificate error in task [provision_ctk_with_key_from_apphsm..]

	6 Installation of SGX Components Using Ansible
	6.1 Overview
	6.2 Intel SGX Ingredients
	6.2.1 Intel SGX DCAP Kernel Driver
	6.2.2 Intel SGX Runtime Libraries – SGX PSW (Platform Software)
	6.2.3 Intel SGX SDK
	6.2.4 Intel® SGX DCAP Libraries
	6.2.5 Intel® SGX SSL
	6.2.6 Crypto API Toolkit for Intel® SGX
	6.2.7 Other Components

	6.3 Installed Intel SGX Component Versions
	6.4 Using Ansible Scripts for Intel SGX Ingredient Installation

	7 KMRA Setup and Installation Using Ansible Scripts
	7.1 Overview
	7.2 Installed Components
	7.3 Using Ansible Scripts for KMRA Setup
	7.4 Provisioning Wrapped Keys to Crypto-Api-Toolkit

	8 Removal of Components Installed by Ansible Scripts
	8.1 Overview
	8.2 Uninstalled Components
	8.3 Using Ansible Scripts for KMRA Cleanup

	9 VMware vSphere Deployment
	10 Summary
	Appendix A REST API Endpoints

