intel.

Intel® Reference Architecture for NFV/|
Forwarding Platform on 4th Gen Intel®
Xeon® Scalable Processors on Red Hat*
Enterprise Linux* with vVAGF Workload

Intel Accelerated Solution

Authors
Sarita Maini

Padraig Connolly

Key Contributors
AiBeelLim
Andrew Duignan

1 Introduction

Intel® Accelerated Solutions are configurations of hardware and software that have
been optimized forand accelerated by Intel technologies to minimize the challenges
of evaluation and deployment. This document describes an Intel Accelerated
Solution reference architecture that utilizes the 4th Gen Intel® Xeon® Scalable
processor family.

When network operators, service providers, cloud service providers, or enterprise
infrastructure companies choose a Network Functions Virtualization Infrastructure
(NFVI) Forwarding Platform Reference Architecture from Intel, they should be able
to deploy various virtualized forwarding plane applications more quickly, securely,
and effortlessly.

The solution leverages the hardened hardware, firmware, and software which allows
customers to integrate on top of this known platform configuration.

1.1 NFVIForwarding Platform

This NFVIForwarding Platform reference architecture is defined in collaboration
with Communication Service Providers and ecosystem partners to expose the
value of an 1/0O Balanced Architecture to maximize network 1/O throughput with
NUMA nodes. Itis an enhanced NFVI solution for 4G or 5G core User Plane
Functions (UPF), broadband use cases such as virtual Broadband Network Gateway
(vVBNG), virtual Access Gateway Function (vVAGF), Network Services such as virtual
Evolved Packet Core (VEPC), IPSEC Gateway application, and cable use cases
such as virtual Cable Modem Termination System (vVCMTS) that have a great
demand for high performance and throughput.

This workload-optimized solution is designed to minimize the challenges of
infrastructure deployment and optimization for the best performance with balanced
10 across sockets for core-bound as well as |O-bound workloads. It defines the
software and hardware stacks and has step-by-step instructions on virtualized
Access Gateway Function (vVAGF) deployment and optimization as well as the
throughput that can be achieved with this solution.

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

1.2 Terminology

TERM DESCRIPTION

AlC Add-In Card

API Application Program interface

AGF Access Gateway Function

BIOS Basic Input/OQutput System

BOM Bill of Materials

BtG Boot Guard Technology

CUPS Control Plane and User Plane Separation
DC Data Center

DIMM Dual Inline Memory Module

DPDK Data Plane Development Kit

DRAM Dynamic Random Access Memory

DUT Device Under Test

FN-RG Fixed Network — Residential Gateway

GbE Gigabit Ethernet

HQoS Hierarchical Quality of Service

Intel® QAT Intel® QuickAssist Technology

Intel® TXT Intel® Trusted Execution Technology

Intel® UPI Intel® Ultra Path Interconnect

Intel® VT Intel® Virtualization Technology

NFVI Network Function Virtualization Infrastructure
NIC Network Interface Controller

NUMA Non-Uniform Memory Access

NVMe* Non-Volatile Memory Express*

OAM Operation, Administration and Management
OCP Open Compute Project

OEM Original Equipment Manufacturer

PCle* Peripheral Component Interconnect express*
QinQ A standard that allows multiple VLAN headers in an Ethernet frame
RAS Reliability, Availability, and Serviceability
SR-IOV Single Root Input/Output Virtualization
SSD Solid State Drive

TPM Trusted Platform Module

vAGF virtualized Access Gateway Function

vBNG virtual Broadband Network Gateway
vCMTS virtual Cable Modem Termination System
VIM Virtualization Infrastructure Management
VMX Virtual Machine Extension

VNFM Virtual Network Function Management

Table 1. Terminology

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

1.3 Reference Documents and Resources

DOCUMENT DOCUMENT NUMBER/LOCATION
Intel® Select Solutions for Network Verification Scripts 639557
VBNG-VAGF.L.22.03.0-00072.tar.gz 764478

Red Hat's Certified Guest Operating System policy

https://access.redhat.com/articles/973163

Wireline Access Evolution and 5G Fixed-Mobile Convergence

https://builders.intel.com/docs/networkbuilders/wireline-access-
evolution-and-5g-fixed-mobile-convergence-1639769220.pdf

Intel® Ethernet Controller E810 Dynamic Device Personalization

(DDP) Technology Guide ol
Intel® Ethernet Controller E810 Dynamic Device Personalization 618651
Package (DDP) for Telecommunications Technology Guide

System Check for Speculative Execution Side Channel 614140

RFC 2544, Benchmarking Methodology for Network Interconnect
Devices

https://tools.ietf.org/html/rfc2544

RFC 1242, Benchmarking Terminology for Network
Interconnection Devices

https://tools.ietf.org/html/rfc1242

RFC 6201, Device Reset Characterization

https://tools.ietf.org/html/rfc6201

Intel® Select Solution for Network Function Virtualization

639782

Infrastructure (NFVI) v3 on Red Hat* Reference Design

Table 2. Reference Documents and Resources

2 Solution Components

This solution consists of select hardware and various Intel® Xeon® processor technologies along with optimized software and
firmware configurations.

2.1 Intel® Xeon® Processor Scalable Performance Family

Intel® Xeon® Scalable processors are designed to accelerate performance across the fastest-growing workloads. These
processors have the most built-in accelerators of any CPU on the market to help maximize performance efficiency for emerging
workloads, especially those powered by Al.

In addition to delivering outstanding general-purpose performance, Intel® Xeon® drives efficiency with built-in accelerators.
Data center operators can leverage built-in Al, telemetry, and power management tools to intelligently control electricity
usage.

Intel’s innovative workload accelerators enable end users to do more with less reducing TCO by delivering performance,
power, resource, and cost efficiency as well as providing advanced security technologies.

The 4th Gen Intel® Xeon® Scalable Processors (formerly code-named Sapphire Rapids) are the latest processors for
Datacenter workloads that offer:

= Enhanced Per Core Performance with up to 60 cores in a standard socket

= Enhanced Memory Performance with support for up to 4800MT/s DIMMs (2 DPC)

= Increased Memory Capacity with up to 8 channels

= Breakthrough System Memory & Storage with Intel® Optane™ persistent memory 200 series
= Built-in Al Acceleration with enhanced performance of Intel® Deep Learning Boost

= Faster UPI with 3 Intel® Ultra Path Interconnect (Intel® UPI) at11.2 GT/s

= More, Faster /O with PCl Express 4 and up to 64 lanes (per socket) at16 GT/s

* New Hardware-Enhanced Security delivering security technologies leadership with Intel® Software Guard Extensions
(Intel® SGX), Intel® Total Memory Encryption (Intel® TME), Intel® Platform Firmware Resilience (Intel® PFR) etc.

= Enhanced Intel® Speed Select Technology (Intel® SST) with three capabilities supported on the majority of Gold CPUs

https://cdrdv2.intel.com/v1/dl/getContent/639557?explicitVersion=true&wapkw=639557%20
https://cdrdv2.intel.com/v1/dl/getContent/764478
https://access.redhat.com/articles/973163
https://builders.intel.com/docs/networkbuilders/wireline-access-evolution-and-5g-fixed-mobile-convergence-1639769220.pdf
https://builders.intel.com/docs/networkbuilders/wireline-access-evolution-and-5g-fixed-mobile-convergence-1639769220.pdf
https://cdrdv2.intel.com/v1/dl/getContent/617015
https://cdrdv2.intel.com/v1/dl/getContent/618651
https://cdrdv2.intel.com/v1/dl/getContent/614140?wapkw=614140
https://tools.ietf.org/html/rfc2544
https://tools.ietf.org/html/rfc1242
https://tools.ietf.org/html/rfc6201
https://cdrdv2.intel.com/v1/dl/getContent/639782

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

2.2 Intel® Ethernet 800 Series
Intel® Ethernet 800 Series offers:

= Higher Bandwidth as Intel’s first NIC with PCle* 4.0 and 50Gb PAM4 SerDes

= Improved Application Efficiency with Application Device Queues (ADQ), Dynamic Device Personalization (DDP)
= Versatility with Flexible speeds: 2x100/50/25/10GbE, 4x25/10GbE, or 8xI0GbE

= RDMA support for bothiWARP and RoCEv2 providing a choice in hyper-converged networks

2.2.1 Intel® Ethernet Network Adapter E810 Drivers: In-tree vs. Out-of-tree

Generally, the NFVIForwarding Platform reference architecture recommends in-tree Intel® Ethernet Adapter E810 ice/
iavf drivers and DDP components. However, the Ethernet Out-of-Tree (OOT) drivers often contain support for new features
and fixes to known issues. For example, the features such as Rate limiting, ADQ and eDDP (enhanced Dynamic Device
Personalization) are not presently supported in the in-tree driver for the ES10 NICs.

The virtual Broadband Network Gateway being used as a workload in this reference architecture requires the OOT driver
due to limitations in in-tree driver support. Intel continues to work with Red Hat* to add support for these types of functions
in the Red Hat* Open Stack. Refer to https://access.redhat.com/articles/1067 which explains Red Hat* Support policy for
Out of Tree (OOT) drivers.

The E810 Drivers can be found at the following locations:

DRIVER OOT VERSION LOCATION
. https://www.intel.com/content/www/us/en/download/19630/intel-network-adapter-driver-for-
ice 1.9.1) ; .
e810-series-devices-under-linux.html
CVL3.0 Sampling/NVMUpdatePackage
NVM 3.0 https://www.intel.com/content/www/us/en/download/19626/non-volatile-memory-nvm-update-

utility-for-intel-ethernet-network-adapters-e810-series-linux.html

2.2.2 Intel® Network Adapters with Data Plane Development Kit (DPDK)

Intel® Network Products deliver continuous innovation for high throughput and performance for networking infrastructure.
The Intel® Network Adapter with Data Plane Development Kit (DPDK) provides highly optimized Network Virtualization
and fast data path packet processing. DPDK offers many use cases that are hardened on this NFVI Forwarding Platform.

2.2.3 Intel®Ethernet 800 Series Dynamic Device Personalization (DDP)

Dynamic Device Personalization (DDP) usage to reconfigure network controllers for different network functions on-demand,
without the need for migrating all VMs from the server, avoids unnecessary loss of compute for VMs during server cold
restart. It also improves packet processing performance for applications/VMs by adding the capability to process new
protocolsin the network controller at run-time.

This kind of on-demand reconfiguration is offered in the Intel® Ethernet 800 Series NICs.

DDP describes the capability of Intel® Ethernet 800 Series devices to load an additional firmware profile on top of the
device’s default firmware image, enabling parsing and classification of additional specified packet types that can be distributed
to specific queues on the NIC’s host interface using standard filters. Software applies these custom profilesin anon-
permanent, transaction-like mode so that the original network controller’s configuration is restored after NIC reset or by
rolling back profile changes by software. Using APIs provided by drivers, personality profiles can be applied by the DPDK.
Support for kernel drivers and integration with higher level management/orchestration tools is in progress.

DDP can be used to optimize packet processing performance for different network functions, native or runningin virtual
environment. By applying a DDP profile to the network controller, the following use cases could be addressed.

A general purpose, OS-default DDP package is automatically installed with all supported Intel® Ethernet Controller 800
Series drivers on Microsoft* Windows*, ESX*, FreeBSD*, and Linux* operating systems. Additional DDP packages are
available to address needs for specific market segments. For example, a telecommunications (Comms) DDP package is
available to support certain market-specific protocolsin addition to the protocolsin the OS-default package.

https://access.redhat.com/articles/1067
https://www.intel.com/content/www/us/en/download/19630/intel-network-adapter-driver-for-e810-series-devices-under-linux.html
https://www.intel.com/content/www/us/en/download/19630/intel-network-adapter-driver-for-e810-series-devices-under-linux.html
https://www.intel.com/content/www/us/en/download/19626/non-volatile-memory-nvm-update-utility-for-intel-ethernet-network-adapters-e810-series-linux.html
https://www.intel.com/content/www/us/en/download/19626/non-volatile-memory-nvm-update-utility-for-intel-ethernet-network-adapters-e810-series-linux.html

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

* The OS-default DDP package supports the following:

- MAC, EtherType, VLAN

- IPv4,1Pv6, TCP, ARP,UDP

- SCTP,ICMP,ICMPv6, CTRL

- LLDP,VXLAN-GPE, VXLAN (non-GPE), Geneve, GRE, NVGRE, RoCEv2

- MPLS (up to 5 consecutive MPLS labels in the outermost Layer 2 header group)
= |Inaddition to the previous list, the Comms DDP package also supports the following protocols:

- GTP

- PPPOE

- L2TPv3

- IPSec

- PFCP

3 NFVIForwarding Platform Reference Architecture Requirements

The primary focus of this reference architecture is to provide details of the customized NF VI Forwarding Platform configuration
along with supporting the performance data for a high performance/throughput workload such as vAGF.

This chapter also focuses on the design requirements for this NFVI Forwarding Platform solution.

3.1 Reference Architecture Hardware Requirements

The checklistin the table below is a guide for assessing the conformance to the NFVI Forwarding Platform hardware platform
requirement for the vVAGF Configuration.

For the platform to conform, all requirements listed in the checklist below must be satisfied.

REQUIRED/ QUANTITY
INGREDIENT REQUIREMENT RECOMMENDED PER SERVER

Option 1: 4th Gen Intel® Xeon® Platinum 8470N Processor
at1.7 GHz, 52C/104T, 300W

Processor Option 2: 4th Gen Intel® Xeon® Gold 6428N at 1.8 GHz, Required 2
32C/64T,185WOption 3: 4th Gen Intel® Xeon® Gold 6438N
at 2.0 GHz, 32C/64T, 205W

Option 1: DRAM only configuration: 512 GB (16 x 32 GB

DDR5, 4800 MHz) 16
Memory Required
Option 2: DRAM only configuration: 256 GB (16 x 16 GB 16
DDR5, 4800 MHz)
Network Intel® Ethernet Network Adapter E10-2CQDA2 Required 4
Storage (Boot Intel® SATA Solid State Drive D3 S4510 or higher at 480 GB .
. . Required 1
Drive) or larger boot drive
LANon
Motherboard 1/10 Gbps port for Internet access Required 1
(LOM) or NIC

Table 3. NFVI Forwarding Platform - vAGF HW Configuration

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

3.2 Reference Architecture Software Requirements

The table below is a guide for assessing the conformance to the NFVI Forwarding Platform software requirements.

Forthe platform to conform, all requirements listed in the checklist below must be satisfied.

INGREDIENT SW VERSION DETAILS
BIOS EGSDCRBI1.86B.8901.P01.2209200239
MCU 0Oxab0000c0O

Firmware ice driver: 4.18.0-372.16.1.el8_6.x86_64

firmware-version: 2.40
Intel® Ethernet Network Adapter ES10-2CQDA2
ice driver: 1.9.11

firmware-version: 3.00

Red Hat* Enterprise Linux*
0s release 8.6 (Ootpa) 4.18.0-372.16.1.el8_6.x86_64
System VAGF 22.03
Under Test
APPs/Libraries DPDK 20.11.5

ICE COMMS Package version DDPICE COMMS 1.3.31.0

Table 4. NFVIForwarding Platform — vAGF SW Configuration

Note: The software versions listed in the previous table are minimum requirements. It is recommended to use the latest
version if available. Thisis a hardened software stack that has gone through verification.

3.3 BIOS Settings

To meet the performance requirements for the NFVI Forwarding Platform solution, the following BIOS settingsin Table 5
provide guidance for optimized settings with 4th Gen Intel® Xeon® Scalable processors.

MENU REQUIRED SETTING FOR
(ADVANCED) PATHTOBIOS SETTINGS BIOS SETTINGS DETERMINISTICPERFORMANCE
?ngwl;;zturation ég\ggcggfeogsgtl\:l;nagement ClemifEEen == Energy Efficient Turbo Disable

Socket Advanced Power Management Configuration -> CPU C1 auto demotion Disable

Configuration CPU C State Control

Socket Advanced Power Management Configuration -> . .
Configuration CPU C State Control CPU Clautoundemotion BEsbl
Socket Advanced Power Management Configuration ->

Configuration Package C State Control Package C State CO/Clstate
Socket Advanced Power Management Configuration -> Uncore Freq Scaling Enable

Configuration CPU - Advanced PM Tuning

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

Socket Advanced Power Management Configuration ->

Configuration CPU - Advanced PM Tuning Uncore Freq RAPL DL

Socket Advanced Power Management Configuration ->

Configuration CPU - Advanced PM Tuning -> Energy Perf BIAS Power Performance Tuning [EESSISIREEERE

Socket Advanced Power Management Configuration -> ENERGY_PERF_BIAS_

Configuration CPU - Advanced PM Tuning -> Energy Perf BIAS CFG Mode PERDITEITE

Socket Advanced Power Management Configuration ->

Configuration CPU - Advanced PM Tuning -> Energy Perf BIAS Workload Configuration 1/O Sensitive

Table 5. Platform BIOS Settings

Note: Some servers may not provide the BIOS options as documented in the table above.

3.4 Platform Technology Requirements
This section lists the requirements for Intel’s advanced platform technologies.
NFVIrequires Intel® VT and Intel® Scalable I/O Virtualization (Intel® Scalable IOV) to be enabled to reap the benefits of

hardware virtualization. Either Intel® Boot Guard or Intel® Trusted Execution Technology establishes the firmware verification,
allowing for platform static root of trust.

PLATFORM TECHNOLOGIES ENABLE/DISABLE REQUIRED/RECOMMENDED
Intel® CPU VMX Support Enable Required
Intel® Virtualization Technology (Intel® VT) for .
®
Intel® VT Directed I/O (Intel® VT-d) Enable Required
Single Root I/O Virtualization (SR-10V) Enable Required
®
Intel® Boot Intel® Boot Guard Enable Recommended
Guard
Intel® TXT Intel® Trusted Execution Technology Enable Recommended

Table 6. Platform Technology Requirements

3.5 Platform Security

This NFVI solution mustimplement and enable Intel® Boot Guard Technology to ensure that the platform firmware is verified
to be suitable in the boot phase.

In addition to protecting against the known attacks, Intel recommends installing the Trusted Platform Module (TPM). The
TPM enables administrators to secure platforms for a trusted (measured) boot with known trustworthy (measured) firmware
and OS, as well as enabling local and remote verification by third parties to advertise such known safe conditions for these
platforms with the implementation of Intel® Trusted Execution Technology (Intel® TXT).

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

4 Virtual Access Gateway Function (VAGF)
4.1 vAGF Overview

The Access Gateway Function (AGF) is a function that provides connectivity from a wireline Access Network to the 5G Core
Network. Access Gateway Function (AGF) is the access point for subscribers, through which they connect to the Internet
and private networks. It provides critical subscriber management functions, such as authentication, IP address assignment,
bandwidth allocation and accounting.

When a connection is established between the Customer Premises Equipment (CPE) and the AGF network function, the
subscriber can access the broadband services provided by the telecom operator or Internet Service Provider (ISP). The role
of the AGF is to aggregate traffic from various subscriber sessions from an access network and route it to the network of the
service provider.

Since the subscriber directly connects to the edge router, vVAGF effectively manages subscriber access and subscriber
management functions such as:

= Authentication, authorization, and accounting (AAA) of subscriber sessions
= |P Address assignment

= Security

= Policy management

= Quality of Service (QoS) and Traffic Management

Radio
Access
"""""" Network
(3GPP) Access 5G Core
Gateway (Control Plane,
Function User Plane) Data
_ Network
L Wireline

Access

AGF-UP
(CE)

Figure 1. vVAGF Overview

The vAGF is a virtualized software instantiation of what is typically a large ASIC-based fixed-function appliance usually
located in a central office or metro Point of Presence (PoP). The VAGF is implemented as a set of Virtual Network Function
(VNF) instances with each instance supporting a single Subscriber Service-Group, which typically contains hundreds of
home routers/subscribers.

4.2 vAGF Pipeline

The vAGF Data Plane (DP), or User Plane (UP), is built around two packet processing pipelines - uplink (UL) and downlink
(DL) - described below. The uplink data plane manages the flow of traffic from the end user’s Customer Premises Equipment
(CPE) to the core network. The downlink data plane handles the flow of traffic and data from the core network network to the
end user. It manages and schedules traffic to users attached to the AGF.

The VAGF DP has beenimplemented using the FD.io VPP framework and run as a containerized application using Kubernetes
as anorchestrator.

This reference architecture focuses on the data plane functions since the main goal is to show maximization of I/O forintense
workloads like VAGF.

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

AGF Uplink Pipeline >

Packet ACL Flow Metering and GTPU Packet Packet
Rx Classification Policy Encap Routing Tx

s AN

Eth QinQ PPPoE IP [BEIE] AG F D t Pl Eth OuterlP UDP GTPU 1P Data
Access Network Packet ata ane 5G Core Network Packet
\ Packet HQoS Traffic QinQ/PPPoE Packet Flow

Rx Mgmt Encap Routing Classification

< AGF Downlink Pipeline

Figure 2. AGF Data Plane

4.2.1 Uplink Pipeline Overview
The reference implementation of the AGF uplink packet processing pipeline consists of the following functions:

Packet Rx (Receive): Packets from the wireline subscriber access network are received from the Network Interface Controller
(NIC) ports using DPDK PMD drivers and sent to the next stage to begin packet processing.

Firewall/Access Control List (ACL): This stage employs an Access Control List (ACL) table to implement firewall policies
(i.e., blockrules) on the incoming traffic. This blocklist firewall has 150 block (random) rules. Table lookup operation is
performed on each received packet, and in the case of rule match, the packetis dropped.

Flow Classification: This stage classifies each subscriber flow based on the source MAC address and double VLAN tags
and strips the Q-in-Q header (and PPPoE header if PPPoE subscriber trafficis enabled).

Flow Metering and Policing: This function meters the subscriber traffic flows to determine the compliance with a service
contractand applies traffic policing to enforce the contract. As aresult, packets that conform to a specified rate are sent to
the next stage of the pipeline while packets that violate the rate are dropped.

GTPu Encapsulation: At this stage, a GTP-U headeris added to the IP packet
Routing: At this stage, an Ethernet headeris added based on the route

Packet Tx (Transmit): Finally, the packets are sent out to the core network. With the help of DPDK poll mode drivers, packets
are transmitted out of the system through the NIC ports connected to wireline core network.

4.2.2 Downlink Pipeline Overview

The reference implementation of the vVAGF Downlink packet processing pipeline consists of the following functions. The
incoming downlink packet typically consists of an Ethernet frame with IP/UDP header. The outbound traffic will be an
Ethernet frame with encapsulated QinQ VLAN and IP/UDP headers.

Packet Rx (Receive): Packets from the core network are received from the Network Interface Controller (NIC) ports using
DPDK PMD drivers and sent to the next stage to begin packet processing.

Firewall/Access Control List (ACL): This stage employs an access control list (ACL) table to implement firewall policies
(i.e., allow rules) on the incoming traffic. Table lookup operation is performed on each received packet, and in the case of
rule match, the packet is permitted to the next stage. The Allow list firewall has 4K allow (subscriber flow) rules.

Flow Classification: This stage performs exact-match classification on the 5-tuple header fields (inner IPv4 source and
destination IP address, UDP source and destination ports and IP transport layer protocol ID) of the input packets to identify
the session and stores the session info as packet metadata to be used laterin the pipeline. In addition to this, access network
encapsulations are stripped off the packets at this stage. It first strips the GTP-U header and then classifies each subscriber
flow based on the 5-tuple header.

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

QinQ/Q-in-Q+PPPoE Encapsulation and Routing: At this stage, packets are encapsulated with a QinQ header added to
the inner IPv4 packet based on the flow ID and (and PPPoE header if enabled) and routed to the access network via the
correct network interface port.

Hierarchical QoS Traffic Management: Each packet runs through a hierarchical QoS (HQoS) scheduler to ensure that
thousands of subscribers can get the desired broadband capacity as per the service contract. Itimplements a 4-level HQoS
with one pipe per subscriber (configured to allow all traffic to pass)

Packet Tx (Transmit): With the help of DPDK poll mode drivers, packets are transmitted out of the system through the NIC
ports connected to access network. Downlink Traffic Profile

4.3 vAGF Test Setup

The Intel® AGF Data Plane Package can be used to install multiple instances of a VAGF data plane reference applicationina
Linux Container environment on an Intel® Xeon® server.

The application and environment can be used to evaluate the performance of a vVAGF data plane on Intel® Xeon® based
platforms. Thisis a POC evaluation application only and is neitherintended nor is fully featured, hardened, or secured. Deploy
in anisolated evaluation environment only.

Source code and build instructions are provided for the vVAGF data plane application, and to set up an environment for traffic-
generation and performance analysis of the application.

Figure 3 shows the test setup with multiple Physical Functions (PFs) splitinto Virtual Functions (VFs) that connect to each
vAGF instances on both the sockets. The System Under Test (SUT) is connected to the Traffic generator. Ixia IxXNetwork is
used to generate the L2-3 traffic required to benchmark the vVAGF. Each TOOGbE port on Ixiais connected directly to a 100GbE
portonthe SUT. The vVAGF containerinstances are NUMA-optimized, ensuring that the cores and VFs used in a specific
VAGF instance are ina processorand a NIC in the same socket.

Ixia IxNetwork is configured for both Uplink and Downlink Traffic Flows in a single port.

System Under Test

Socket |

C
=
<
=
o)
=t
<
T

dATALUSATINL
JATALEATINL
JATIALUIATINL
SATALSATINL
dATALUSATINL
SATALSATINL
JATaUSATINL
JATaUSATINL
dATALUSATINL
JATAUSATINL
JATALUSATINL
JATALEATINL
JATALEATINL
JATALSATINL
JATALUSATINL
dATALUSATINL
dATALSATINL
JATALSATINL
dATALUSATINL
SATALEATINL
JATALIATINL
SATALEIATINL

4 x100G IXIA ports 4 x100G IXIA ports
Ixia Traffic Generator

Figure 3. VAGF Test Setup

Detailed steps on configuring the Ixia traffic generator for benchmarking vAGF is described in Section 6 — Traffic Generator
Configuration Guide.

The Intel® reference AGF application is benchmarked to understand how the architecture works in a real context. To geta
more comprehensive view, two different configurations have been benchmarked - a symmetric traffic workload and an
asymmetric traffic workload.

The following table provides more key information points about the benchmarking setup for these two test configurations.

10

https://cdrdv2.intel.com/v1/dl/getContent/764478

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

Test Parameters Configuration 1Settings Configuration 2 Settings
Symmetric Traffic Workload Asymmetric Traffic Workload

Maximum number of Instances per socket 16

Number of vCPUs per instance 4 4
Max number of active vVCPUs per socket 64 64
Number of VVFs per instance 2 2
Number of Flows per vVAGF instance 2 2
Max number of instances per ES10-2CODA2

100G NIC port

Acceptable Frame Loss 0.001% of Line Rate 0.001% of Line Rate

Table 7. Symmetric vs Asymmetric Traffic Workloads

Each VAGF containerinstance has both a downlink and uplink pipeline. Each 100 Gbps Intel® Ethernet E810-2CQDA2 Port
has 4 vAGF instances running on it, each served with 25 Gbps.

5 vAGF Installation Guide

5.1 vAGF Application Server Preparation

Onthe VAGF server, perform the following steps to prepare the server for the installation of vVAGF.

5.2 System BIOS Settings
Configure the following within the system BIOS settings:

oUs LN

Enable Intel® Hyper-Threading Technology (Intel® HT Technology).

Enable Intel® Virtualization Technology (Intel® VT) for Directed I/O (Intel® VT-d) (SR-IOV).
Set CPU Power and Performance profile to “Performance”.

Disable Intel® Turbo Boost Technology.

Disable Energy Efficient Turbo.

Disable Enhanced Intel SpeedStep® Technology.

Referto Table 5 for optimized BIOS settings for this workload

Note: Turbo-boost, P-States, and C-States can be controlled on a per core basis using the Intel® power-management tools
available from https://github.com/intel/CommsPowerManagement.

5.3 RHEL" 8.6 Installation

N

Download the RHEL 8.6 Binary DVD from the Red Hat* Enterprise Linux* website.
Use the *.iso file to create bootable USB installation media and install the USB drive onto a USB port on the server.
Bootinto the RHEL 8.6 installer. Select “Install Red Hat* Enterprise Linux*”.

Select the appropriate options for Language, Keyboard layout, time zone and Network settings, SSD, partitioning, root
password, create a user etc.

1

https://github.com/intel/CommsPowerManagement

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

5.4 Install VAGF Dependencies

1. Install the following package dependencies:

subscription-manager repos --enable=rhel-8-for-x86 64-appstream-rpms --enable=rhel-8-for-
x86_64-baseos-rpms

yum groupinstall “Development Tools”

yum install -y kernel-tools numactl numactl-devel libvirt-devel socat python38 kernel-
devel-$(uname -r)

yum install -y podman-docker

pip3 install fabric -U --force-reinstall

pip3 install paramiko -U --force-reinstall

pip3 install cryptography -U --force-reinstall
yum install elfutils-libelf-devel

Note: For pip3, ensure that all_proxy and/or socks_proxy environment variables are not set. If either of these environment
variables are set, pip will generate an error related to missing dependencies for SOCKS support.

2. Installthe Intel®ice network adapter driver for PCle:

Download ice driver out-of-tree version 1.9.11

tar -xvf ice-1.9.1l.tar.gz

cd ice-1.9.11/src/

make

make install

modprobe -r ice; modprobe ice

3. Download the Comms DDP package that enables the NIC to parse extra header fields such as PPPoE and GTPu, from this

link

unzip '800 Series DDP Comms Package 1.3.31.0.zip'

unzip ice_ comms-1.3.31.0.zip -d ice-ddp-comms

cd ice-ddp-comms/

cp ice_comms-1.3.31.0.pkg /lib/firmware/updates/intel/ice/ddp/
cp ice.pkg /lib/firmware/updates/intel/ice/ddp/

modprobe -r ice

modprobe ice

To confirm that the DDP ICE COMMS Package version 1.3.31.0 is successfully loaded:
dmesg | grep COMMS

4. Configure the Linux* Kernel settings.

The following should be configured in Linux* Kernel Grub settings:

Set huge-page memory size and number of pages for DPDK app:

(default_hugepagesz=2M hugepagesz=2M hugepages=30024)

Enable SR-IOV (intel_iommu=on iommu=pt).

Disable hardware control of P-states (intel_pstate=disable)

Isolate vVAGF dataplane cores from the Linux* kernel task scheduler.

Forexample:isolcpu = isolcpus=3-31,35-63,67-95,99-127).

Note: The isolcpus settings will need to be adapted to the specific core layout of the CPU.

5. Runthe DPDK utility to verify logical core layout for CPU socket O and socket 1

$DPDK_ROOT RELEASE/usertools/cpu_layout.py

6. Compile the GRUB configuration and reboot the server for these settings to take effect:

grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg
reboot

5.5 vAGF Dataplane Application Environment Set-up

7. Copy Intel's vBNG-vAGF Reference Architecture package to the root directory of the target vVAGF server and extract
filesasrootuser:

12

https://www.intel.com/content/www/us/en/download/19660/intel-ethernet-800-series-telecommunication-comms-dynamic-device-personalization-ddp-package.html

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

cp VBNG-VAGF.L.22.03.0-00072.tar.gz /root
cd /root

tar -zxvf VBNG-VAGF.L.22.03.0-00072.tar.gz
The vAGF application and environment files are extracted to the /root/AGF directory

8. Start podman (Linux* container engine).
systemctl disable firewalld
systemctl stop firewalld
systemctl start podman

9. Build the vf-init podmanimage:

Note: \VF-Initis used to program the E810 eSwitch using the new DCF PMD technology

a. Move tothe VF-Initdirectory:
cd AGF/vf-init

b. Buildthe VF-Init podmanimage

podman build --tag vf-init:22.03 . --build-arg http proxy=$http proxy --build-arg https
proxy=$https proxy

10. Build the vVAGF container:
a. Move tothe AGF/VAGF directory (From VF-Init directory):
cd ../VAGF
b. In AGF/vAGF/Dockerfile, add this line after line 41, to increase the number of logical cores supported to 512:

RUN sed -i '/-Db _pie=true*/a \ \ \ \ \ \ \ \ -Dmax 1lcores=512 \\' /opt/vagf vpp/build/
external/packages/dpdk.mk

c. Usingpodman build the vAGF image:

podman build --tag vagf:22.03 . --build-arg http_ proxy=$http proxy --build-arg https_
proxy=$https_proxy

11. Create VFs:

a. Checkwhatavailable Intel® Ethernet Network Adapter EB10-2CQDAZ2 resources you have on your vAGF server:
lshw -c network -businfo | grep E810

For example, suppose your output was as follows:

pci@0000:86:00.0 ensl3f0 network Ethernet Controller E810-C for QSFP
pci@0000:86:00.1 ensl3fl network Ethernet Controller E810-C for QSFP
pci@0000:d8:00.0 ens21f0 network Ethernet Controller E810-C for QSFP
pci@0000:d8:00.1 ens21fl network Ethernet Controller E810-C for QSFP

You should use a PF from each Bus Pool (For E810-2CQDA?2) thus to create your VFs it should be:
echo 10 > /sys/class/net/ensl3f0/device/sriov_numvfs

echo 10 > /sys/class/net/ens21f0/device/sriov_numvfs
12. Bind VFs to DPDK:

a. Downloadigb_uiokmod:

git clone http://dpdk.org/git/dpdk-kmods && cd dpdk-kmods/linux/igb uio/

make

modprobe uio && insmod igb_uio.ko
b. Downloadand un-tar DPDK:

cd

wget https://fast.dpdk.org/rel/dpdk-20.11.5.tar.xz && tar -xvf dpdk-20.11.5.tar.xz
c. Bindtherequired VFsto DPDK:

./dpdk-stable-20.11.5/usertools/dpdk-devbind.py -b igb uio $(lshw -c network -businfo | grep
-v "vl " | grep "Virtual Function" | awk '{print $2}')

13

http://dpdk.org/git/dpdk-kmods
https://fast.dpdk.org/rel/dpdk-20.11.5.tar.xz

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

d. Enable trust mode on the VF O of each PF that you will be using
ip link set ensl3f0 vf 0 trust on
ip link set ens21f0 vf 0 trust on
13. Make a note of the cpus to assign to your workloads later on:
Use cpu_layout.py to determine core enumeration and their hyper-threaded pair.
./dpdk-stable-20.11.5/usertools/cpu_layout.py

Example for a 32-core processor:

Core and Socket Information (as reported by '/sys/devices/system/cpu')

cores = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31]
sockets = [0, 1]

Socket 0 Socket 1
Core 0 [0, 64] [32, 96]
Core 1 [1, 65] [33, 971
Core 2 [2, 66] [34, 98]
Core 3 [3, 67] [35, 99]
Core 4 [4, 68] [36, 100]
Core 5 [5, 69] [37, 101]
Core 6 [6, 70] (38, 102]
Core 7 [7, 71] [39, 103]
Core 8 [8, 721 [40, 104]
Core 9 [9, 73] [41, 105]
Core 10 [10, 74] [42, 106]
Core 11 [11, 75] [43, 107]
Core 12 [12, 76] [44, 108]
Core 13 (13, 771 [45, 109]
Core 14 [14, 78] [46, 110]
Core 15 [15, 79] [47, 111]
Core 16 [16, 80] [48, 112]
Core 17 [17, 81] [49, 113]
Core 18 [18, 82] [50, 114]
Core 19 [19, 83] [51, 115]
Core 20 [20, 84] [52, 116]
Core 21 [21, 85] [53, 117]
Core 22 [22, 86] [54, 118]
Core 23 [23, 87] [55, 119]
Core 24 [24, 88] [56, 120]
Core 25 [25, 89] [57, 121]
Core 26 [26, 90] [58, 122]
Core 27 [27, 91] [59, 123]
Core 28 [28, 92] [60, 124]
Core 29 [29, 93] [61, 125]
Core 30 [30, 94] [62, 126]

Core 31 [31, 95] [63, 127]

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

14. Run VF-Init Instance:

podman run -d --network="host" --privileged=true -v /dev/hugepages:/dev/hugepages -v /lib/firmware/
updates/intel/ice/ddp/:/lib/firmware/updates/intel/ice/ddp/ --cpuset-cpus=0,1 —-env PCIDEVICE INTEL _
COM INFRA DCF=0000:16:01.0,0000:19:01.0,0000:27:01.0,0000:22:01.0,0000:28:01.0,0000:a0b:01.0,0000:0b8:01.
0,0000:bb:01.0 --env MY POD IP=localhost --name=vf-init-0 -h vf-init-0 -it vf-init:22.03

a. Oncethe VF-Initinstanceis running, we now need to program the rules, this can be done using telnet by running
the following:

telnet localhost 8152
vi-init>
vf-init> set mac 00:00:00:01:WW:XX Y Z
Where:
= WW isreplacedbyinstance ID
= XXisreplaced by VF type (00 for Uplink and O1 for Downlink)
= Yisreplaced by VF ID
= Zisreplaced by PortID
Examples:
Uplink 0000:86:01.0:
vi-init> set mac 00:00:00:01:00:00
vf-init> set mac 00:00:00:01:01:00
vi-init> set mac 00:00:00:01:02:00
vi-init> set mac 00:00:00:01:03:00
Downlink 0000:86:01.0:
vf-init> set mac 00:00:00:01:00:01
vf-init> set mac 00:00:00:01:01:01
vi-init> set mac 00:00:00:01:02:01
vf-init> set mac 00:00:00:01:03:01
Uplink 0000:d8:01.0:
vf-init> set mac 00:00:00:01:04:00
vi-init> set mac 00:00:00:01:05:00
vi-init> set mac 00:00:00:01:06:00
vf-init> set mac 00:00:00:01:07:00
Downlink 0000:d8:01.0
vf-init> set mac 00:00:00:01:04:01
vi-init> set mac 00:00:00:01:05:01
vf-init> set mac 00:00:00:01:06:01
vf-init> set mac 00:00:00:01:07:01

g W N
o O O o

O o J o
o O O o

g w N
e

© © J o
=R e e

15. Run vAGF dockerinstances (Uplink and Downlink are in same container).
podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \
--cpuset-cpus=<CLI-MGMT-CPU-ID>,<DL-CPU2-ID>,<UL-CPU-ID>,<DL-CPU-ID> \
--env PCIDEVICE INTEL COM APP AGF UP _UL=0000:<UL-VF-PCI-ADDRESS> \
--env PCIDEVICE INTEL COM APP AGF UP DL=0000:<DL-VF-PCI-ADDRESS> \
-—env MY POD IP=localhost --env MY NODE NAME=<SYSTEM-HOSTNAME> \
-—-env ETCD ENABLED=false --name=agf-<INST-ID> -h agf-<INST-ID> \
-it vagf:22.03

15

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

Where:
+ <CLI-MGMT-CPU-ID>isreplaced by anisolated core (Use step 7 above to figure this out)
+ <DL-CPU2-ID> is replaced by anisolated vCPU (Use step 7 above to figure this out)
« <UL-CPU-ID>isreplaced by anisolated vCPU (Use step 7 above to figure this out)

+ <DL-CPU-ID> isreplaced by anisolated vCPU (Use step 7 above to figure this out) (Make sure this is on the
same Physical core as <DL-CPU2-ID> or else performance will degrade significantly)

« <UL-VF-PCI-ADDRESS>isreplaced by a data plane VF (Make sure this aligns with the rules set in step 8)
+ <DL-VF-PCI-ADDRESS> is replaced by a data plane VF (Make sure this aligns with the rules setin step 8)
* <SYSTEM-HOSTNAME> is replaced by the hostname of your vVAGF server

¢ <INST-ID> is replaced by the instance ID of the container

= Yisreplaced by VF ID

= Zisreplaced by PortID

Note: Make sure all VFs and CPU-IDs are on the same NUMA node or else performance will significantly degrade, you
can check the NUMA Node of a VF using this command:

cat /sys/bus/pci/devices/0000\:86\:01.2/numa _node

Examples fora52-core processor:

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \
--env CPUSET=2,3,106,107 \

--—env PCIDEVICE INTEL COM APP AGF UP UL=0000:16:01.2 \

--env PCIDEVICE INTEL COM APP AGF UP DL=0000:16:01.6 \

-—env MY POD IP=localhost --env MY NODE NAME=arch5-hddc301 \
--env ETCD ENABLED=false --name=agf-0 -h agf-0 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \
--env CPUSET=4,5,108,109 \

--env PCIDEVICE INTEL COM APP AGF UP _UL=0000:16:01.3 \

--env PCIDEVICE INTEL COM APP AGF UP _DL=0000:16:01.7 \

--env MY POD IP=localhost --env MY NODE NAME=arch5-hddc301 \
--env ETCD ENABLED=false --name=agf-1 -h agf-1 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \
--env CPUSET=6,7,110,111 \

--env PCIDEVICE INTEL COM APP AGF UP UL=0000:16:01.4 \

--env PCIDEVICE INTEL COM APP AGF UP DL=0000:16:02.0 \

--—env MY POD _IP=localhost --env MY NODE NAME=arch5-hddc301 \
--env ETCD ENABLED=false --name=agf-2 -h agf-2 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \
--env CPUSET=8,9,112,113 \

--env PCIDEVICE INTEL COM APP AGF UP UL=0000:16:01.5 \

--env PCIDEVICE INTEL COM APP AGF UP DL=0000:16:02.1 \

16

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

-—env MY POD IP=localhost --env MY NODE NAME=arch5-hddc301 \
--env ETCD _ENABLED=false --name=agf-3 -h agf-3 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \
--env CPUSET=10,11,114,115 \

--env PCIDEVICE INTEL COM APP AGF UP UL=0000:19:01.2 \
--env PCIDEVICE INTEL COM APP AGF UP DL=0000:19:01.6 \
-—env MY POD IP=localhost --env MY NODE NAME=arch5-hddc301 \
-—env ETCD _ENABLED=false --name=agf-4 -h agf-4 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \
--env CPUSET=12,13,116,117 \

--env PCIDEVICE INTEL COM APP AGF UP _UL=0000:19:01.3 \

--env PCIDEVICE INTEL COM APP AGF UP DL=0000:19:01.7 \

-—env MY POD IP=localhost --env MY NODE NAME=arch5-hddc301 \
-—env ETCD _ENABLED=false --name=agf-5 -h agf-5 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \
--env CPUSET=14,15,118,119 \

--env PCIDEVICE INTEL COM APP AGF UP UL=0000:19:01.4 \

--env PCIDEVICE INTEL COM APP AGF UP _DL=0000:19:02.0 \

-—env MY POD IP=localhost --env MY NODE NAME=arch5-hddc301 \
--env ETCD ENABLED=false --name=agf-6 -h agf-6 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \
-—-env CPUSET=16,17,120,121 \

--env PCIDEVICE INTEL COM APP AGF UP _UL=0000:19:01.5 \

--env PCIDEVICE INTEL COM APP AGF UP DL=0000:19:02.1 \

--env MY POD IP=localhost --env MY NODE NAME=arch5-hddc301 \
—-—env ETCD ENABLED=false --name=agf-7 -h agf-7 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \
--env CPUSET=18,19,122,123 \

--env PCIDEVICE INTEL COM APP AGF UP UL=0000:27:01.2 \

--env PCIDEVICE INTEL COM APP AGF UP DL=0000:27:01.6 \

--env MY POD _IP=localhost --env MY NODE NAME=arch5-hddc301 \
--env ETCD ENABLED=false --name=agf-8 -h agf-8 \

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

-it localhost/vagf:22.03
sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \
-—-env CPUSET=20,21,124,125 \

--env PCIDEVICE INTEL COM APP AGF UP UL=0000:27:01.3 \

--env PCIDEVICE INTEL COM APP AGF UP DL=0000:27:01.7 \

--env MY POD IP=localhost --env MY NODE NAME=arch5-hddc301 \
--env ETCD ENABLED=false --name=agf-9 -h agf-9 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \
--env CPUSET=22,23,126,127 \

--env PCIDEVICE INTEL COM APP AGF UP UL=0000:27:01.4 \

--env PCIDEVICE INTEL COM APP AGF UP DL=0000:27:02.0 \

--env MY POD IP=localhost --env MY NODE NAME=arch5-hddc301 \
--env ETCD ENABLED=false --name=agf-10 -h agf-10 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \
--env CPUSET=24,25,128,129 \

--—env PCIDEVICE INTEL COM APP AGF UP _UL=0000:27:01.5 \

--env PCIDEVICE INTEL COM APP AGF UP DL=0000:27:02.1 \

--env MY POD IP=localhost --env MY NODE NAME=arch5-hddc301 \
-—env ETCD ENABLED=false --name=agf-11 -h agf-11 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \
--env CPUSET=26,27,130,131 \

--env PCIDEVICE INTEL COM APP AGF UP UL=0000:2a:01.2 \

--env PCIDEVICE INTEL COM APP AGF UP DL=0000:2a:01.6 \

--env MY POD _IP=localhost --env MY NODE NAME=arch5-hddc301 \
--env ETCD ENABLED=false --name=agf-12 -h agf-12 \

-it localhost/:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \
--env CPUSET=28,29,132,133 \

--env PCIDEVICE INTEL COM APP AGF UP UL=0000:2a:01.3 \

--env PCIDEVICE INTEL COM APP AGF UP DL=0000:2a:01.7 \

--env MY POD IP=localhost --env MY NODE NAME=arch5-hddc301 \
--env ETCD ENABLED=false --name=agf-13 -h agf-13 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

18

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \
-—env CPUSET=30,31,134,135 \

--env PCIDEVICE INTEL COM APP AGF UP UL=0000:2a:01.4 \

--env PCIDEVICE INTEL COM APP AGF UP _DL=0000:2a:02.0 \

-—env MY POD IP=localhost --env MY NODE NAME=arch5-hddc301 \
--env ETCD ENABLED=false --name=agf-14 -h agf-14 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \
--env CPUSET=32,33,136,137 \

--env PCIDEVICE INTEL COM APP AGF UP _UL=0000:2a:01.5 \

--env PCIDEVICE INTEL COM APP AGF UP _DL=0000:2a:02.1 \

--env MY POD IP=localhost --env MY NODE NAME=arch5-hddc301 \
—--env ETCD ENABLED=false --name=agf-15 -h agf-15 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \
-—-env CPUSET=54,55,158,159 \

--—env PCIDEVICE INTEL COM APP AGF UP UL=0000:a8:01.2 \

--env PCIDEVICE INTEL COM APP AGF UP DL=0000:a8:01.6 \

--—env MY POD _IP=localhost --env MY NODE NAME=arch5-hddc301 \
--env ETCD ENABLED=false --name=agf-16 -h agf-16 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \
--env CPUSET=56,57,160,161 \

--env PCIDEVICE INTEL COM APP AGF UP UL=0000:a8:01.3 \

--env PCIDEVICE INTEL COM APP AGF UP DL=0000:a8:01.7 \

--env MY POD IP=localhost --env MY NODE NAME=arch5-hddc301 \
--env ETCD ENABLED=false --name=agf-17 -h agf-17 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \
--env CPUSET=58,59,162,163 \

--env PCIDEVICE INTEL COM APP AGF UP UL=0000:a8:01.4 \

--env PCIDEVICE INTEL COM APP AGF UP DL=0000:a28:02.0 \

-—env MY POD IP=localhost --env MY NODE NAME=arch5-hddc301 \
-—env ETCD _ENABLED=false --name=agf-18 -h agf-18 \

-it localhost/vagf:22.03

19

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

6 Traffic Generator Configuration Guide

6.1 Ixia as Traffic Generator
1. Select Trafficand Add L2-3 Traffic Items.

ol Overview £ o (Y X Trafiic >
&3 Scenario
~ © Ports Create Traffic
i‘i Chassis
~ B Protocols
» 68 Protocol Interfaces % Add L2-3 Traffic Items
» 6B static >
~ o4 Traffic
v 24 12-3 Traffic ltems
2 Downlink % Add L2-3 Quick Flow Groups
¢ Uplink <> >
24 12-3 Flow Groups <+
@) Impairments
5 % Add Egress Only Tracking
(4 QuickTests Y
=D
%P Captures 4—
% Add L4-7 ApplLibrary Traffic (]
> 4

Figure 4. Add Traffic Iltems

2. Create each endpoint with one port as source and same port as destination. Repeat the same for all the required Traffic
Items.

@ Advanced Traffic Wizard m] X

Endpoints IXNetwork

4

— Traffic tem ——— —— Source / D

Traffic Name Traffic Group / Tag Filters | None selected ‘
Flow Group Setu
P oely Type of Traffic Source T 9 Destination b N

Frame Setup

Packet / QoS

— Traffic Mesh —————— Select Multiple Ports ~ Select Multiple Ports ~

Rate Setu Source Dest, gl ctervet 0 |
9 O] Ethernet - 002 [Ethernet - 002
Flow Trackng Roukesjosts 0 Ethernet - 003 0] Ethermet 003

W/ validate

é Bi-Directional [0 Ethernet - 004 [[] Ethernet - 004
= Protocol Behaviors [[] Ethernet - 005 [[] Ethernet - 005
< Allow Self-Destined [] Ethernet - 006 [] Ethernet - 006
@ Preview [[] Ethernet - 007 .| [ethernet -007
[Ethernet - 008 *| [Ethernet - 008

Number of hosts per Route g K) x =TT
Merge Destination Ranges E::apsulabon Source Endpoints | Destination Endpoints | Traffic Groups/Tags
5 y . v Name: EndpointSet-1 -
D s Ethernet ILVLAN.VLAN.IPv4.UDP 1 Endpoints 1Endpoints None selected =
v Name: EndpointSet-2
Max # of VPN Label Stack 2 Ethernet II.VLAN.VLAN.IPv4,UDP 1Endpoints 1 Endpoints None selected
Name: intSet-3
Ethernet II.VLAN.VLAN.IPv4.UDP 1Endpoints 1 Endpoints None selected
> Name: EndpointSet-4
> Name: EndpointSet-5 M
4 1] 4
Help Prev Next Finish Cancel

Figure 5. Create Required Endpoints

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

6.2 Configure Traffic ltems Based on the Uplink or Downlink Configuration

6.2.1 Uplink Flow Groups
Configure the following settings that are common for all the Flow Groups. Add the VLAN followed by another VLAN to
simulate QinQ followed by IPv4 and then UDP protocols to the frame.
= Destination MAC Address: Described below
= Source MAC Address:
- Mode: Increment
- Start: 6e:00:00:00:00:01
- Step: 00:00:00:00:00:01
- Count:4096
= Ethernet Type: 0x88a8
= VLAN-ID: 0O
= Ethernet Type: 0x8100
= VLAN-ID:
- Mode: Increment
Start: 0
- Step:1
- Count:4096
= Ethernet Type: 0x8864
= PPPoE Session-ID:
- Mode:Increment
- Start: O
- Step:1
- Count:4096
= Source IP Address:
- Mode: Increment
- Start:110.0.0.1
- Step:0.0.0.1
- Count:4096
= Destination IP Address: 210.0.0.1
= UDP Source Port:
- Mode: Increment
- Start: 50176
- Step:1
- Count:4096
= UDP Destination Port: 443
= Payload:Increment Byte

Packet / QoS IxNetwork
) MlEncapsdations (@ Por Encapaaton
3% MAC Adcrass Ethemet 1L : Source MAC Address. Ethemet Il : Etharnet-Type | EthemetIl:FFCQueve | VLAN:VLANPrionty VLAN :VLANProrfy £1 VLAN:VLANID | VLAN:VLAN-D #1 | [Pyv4:PFrodty | [Fy4:TIL (Tme to bve) Pv4 : Source Address 1Pv4: Destnation Acdress | UDP : UDP-SourceFort | LDP : LDP-DestFort
i = | Inc £6:00:00:00:00:0:, 00:00:00:0€:00:01, %6 8528 cefeutt (0) cefeutt (0) Defauit (9) o 0, 1, 4% o5 & Inc: 116.0.0.1,0.0.0.1, 4056 | 210.6.1 lre: 50178, 1, 0%6] 443 v
« [0 »
JEthernet LLVLAN.VLAN.IPv4.U0° (Note: Miefd trading is sppbed © ol encapsulatiors)
Sove i} loed B Go toPacket Edtoe G
- Ciracked] Destration MAC Acdress: <00:00R0:0L0000> Source MAC Aress: <5es00:00:00:00:01 lnc: Se-00:00:00:00:0%, Q0:00:00:00-0001, 40561 Ethemet-Type: <ias>
%o BENH | w0
fad e— [0, 1, 495]
we s TIL (Tme i bve): <645 Source Acdress: <110.0.0.1 i 00.0.1, 9%6]> Cestston Address: <210.0.0,1>

we e UOP-SourcePort: <50175 [nc: 50176, 1, 40%6] > UDPDest: 35

Figure 6. Add Protocols to the Frame in the Packet/QoS Editor

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

Table 8 shows example Destination MAC Address for the traffic items starting from O to 7, for a total of 8 uplink instances,
in the order shown here. It can be extended to 32 instances by incrementing the 5th octet of the MAC address.

IXIA* 8x25GbE Traffic Profile - vVAGF Uplink Traffic Item

TRAFFICITEM TXPORT RXPORT DESTINATION MAC ADDRESS
Flow Group 1 Uplink Port O Uplink Port O 00:00:00:01:00:00
Flow Group 2 Uplink Port O Uplink Port O 00:00:00:01:01:00
Flow Group 3 Uplink Port O Uplink Port O 00:00:00:01:02:00
Flow Group 4 Uplink Port O Uplink Port O 00:00:00:01:03:00
Flow Group 5 Uplink Port 1 Uplink Port 1 00:00:00:01:04:00
Flow Group 6 Uplink Port 1 Uplink Port 1 00:00:00:01:05:00
Flow Group 7 Uplink Port 1 Uplink Port 1 00:00:00:01:06:00
Flow Group 8 Uplink Port 1 Uplink Port 1 00:00:00:01:07:00

Table 8. Uplink Flow Traffic Item Variable Values

v B ethernett
v B Ethernet Header
= Destination MAC Address 00:00:00:01:00:00
== Source MAC Address 6€:00:00:00:00:01 [Inc: 6:00:00:00:00:01, 00:00:00:00:00:01, 4096]

== Ethernet-Type 0x88a8
v B van
v E3 VLAN Header
v BR VLAN-Tag
== VLAN Priority 0
== Canonical Format Indicator 0
== VLAN-ID 0
== Protocol-ID Ox<Auto>8100
v B wan
v B3 VLAN Header
v B2 VLAN-Tag
== VLAN Priority 0
== Canonical Format Indicator 0
== VLAN-ID 0 [Inc: 0, 1, 4096]
== Protocol-ID 0Ox<Auto>800
v B pva
v B3 IP Header
== Version 4
== Header Length <Auto>5
v B2 1P Priority TOS
> BB T10s
== Total Length (octets) <Auto>624
== Identification 0
> B Flags
== Fragment offset 0
== TTL (Time to live) 64
== Protocol <Auto>UDP
== Header checksum <Auto>0
== Source Address 110.0.0.1 [Inc: 110.0.0.1, 0.0.0.1, 4096]
== Destination Address 210.0.0.1
> BR IP options
v & woe
> E= UDP Header
B Payload Increment Byte
v ﬁ Ethernet II (Trailer)
== Frame Check Sequence CRC-32 Ox<Auto>0

Figure 7. Add Protocols to the Frame in the Packet/QoS Editor

6.2.2 Downlink Flow Groups

Configure the following settings that are common for all the Flow Groups.
= Destination MAC Address: Described below
* Source MAC Address: 00:00:01:01:00:01
= Source |IP Address: 210.0.0.1
= Destination IP Address:
- Mode: Increment
- Start:110.0.0.1
- Step:0.0.0.1
Count: 4096

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

= UDP Source Port: 443
= UDP Destination Port:
- Mode: Increment
- Start: 50176
- Step:1
- Count:4096

Table 9 shows the Destination MAC Address for the instances starting from O to 7 for a total of 8 downlink instances in the
order given next. It can be extended to 32 instances by incrementing the 5th octet of the MAC address.

IXIA* 8x25GbE Traffic Profile - vAGF Downlink Traffic Item

TRAFFICITEM TXPORT RXPORT DESTINATION MAC ADDRESS
Flow Group1 Downlink Port O Downlink Port O 00:00:00:01:00:01
Flow Group 2 Downlink Port O Downlink Port O 00:00:00:01:01:01
Flow Group 3 Downlink Port O Downlink Port O 00:00:00:01:02:01
Flow Group 4 Downlink Port O Downlink Port O 00:00:00:01:03:01
Flow Group 5 Downlink Port 1 Downlink Port 1 00:00:00:01:04:01
Flow Group 6 Downlink Port 1 Downlink Port 1 00:00:00:01:05:01
Flow Group 7 Downlink Port 1 Downlink Port 1 00:00:00:01:06:01
Flow Group 8 Downlink Port 1 Downlink Port 1 00:00:00:01:07:01

Table 9. Downlink Flow Traffic Item Variable Values

Name Value
v E8 Frame length: 650
v E Ethernet II
v B3 Ethernet Header
= Destination MAC Address
== Source MAC Address

00:00:00:01:00:01
00:00:01:01:00:01

== Ethernet-Type Ox<Auto>800
v E IPv4
v B3 IP Header
== Version 4
== Header Length <Auto>5
v B3 IP Priority TOS
v B2 105
== Precedence 000 Routine
== Delay Normal
== Throughput Normal
== Reliability Normal
== Monetary Normal
== Unused 0x0
== Total Length (octets) <Auto>632
== Identification 0
v B Flags
== Reserved 0
== Fragment May fragment
== |ast Fragment Last fragment
== Fragment offset 0
== TTL (Time to live) 64
== Protocol <Auto>UDP
== Header checksum <Auto>0
== Source Address 20.1.0.0 [Inc: 20.1.0.0, 0.0.0.1, 4096]
== Destination Address 10.1.0.0

v B= IP options
v B Next option

v BH IP option No operation
=== No operation Ox1
== Padding
v & uop
v B3 UDP Header

== UDP-Source-Port 2152

== UDP-Dest-Port 2152

== UDP-Length <Auto>612

== UDP-Checksum <Auto>0

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

v E GTPu
v B3 GTPu Header
== \ersion
== PT
== Reserved
== E
== 5
== N
== Type
== Total Length
== TEID
v E GTPu Optional Fields
v B3 GTPu Optional Fields Header
== Sequence Number
== N-PDU Number
== Next Extension Header Field
v Next Extension Headers
v B3 Next Extension Header
== Total Length
== Contents
== Next Extension
v i Pv4
v B3 IP Header
== \ersion
== Header Length
v IP Priority
v B2 10S
== Precedence
== Delay
== Throughput
== Reliability
== Monetary
== Unused
== Total Length (octets)
== Identification
v B3 Flags
== Reserved
== Fragment
== | ast Fragment
== Fragment offset
== TTL (Time to live)
== Protocol
== Header checksum
== Source Address
== Destination Address
v BH IP options
v Next option
v BX IP option
== No operation
== Padding
v & uop
v B3 UDP Header
== UDP-Source-Port
== |JDP-Dest-Port
== UDP-Length
== UDP-Checksum
B Payload
v ﬁ Ethernet II (Trailer)
== Frame Check Sequence CRC-32

GTPv1

GTP

<Learned Info>0

Extension Header Present
Sequence Number Not Present
N-PDU Field Not Present

255

<Auto Learned Info>596

0x0 [Inc: 0, 1, 4096]

133

0x0
128

4
<Auto>5
TOS

000 Routine
Normal
Normal
Normal
Normal

0x0
<Auto>588
0

0

May fragment

Last fragment

0

64

<Auto>UDP

<Auto>0

210.0.0.1

110.0.0.1 [Inc: 110.0.0.1, 0.0.0.1, 4096]

No operation
0x1

443

50176 [Inc: 50176, 1, 4096]
<Auto>568

<Auto>0

Increment Byte

Ox<Auto>0

HexView | KI 4 4 ‘»77717‘} D Db Dl Packet 10f4096

Figure 8. Example Downlink Packet /QoS for one Endpoint Set

24

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

Flow Group Setup

*) All Encapsulations (©) Per Encapsulation
5 z]'?:i Encapsulahon ‘
|+ ¥ Name: EndpointSet-1 ‘
Per Encapsulahon Settings will be applied to: EndpointSet-1 / Ethernet II.IPv4.UDP.GTPu.GTPu Optional Fields.IPv4.UDP

—— Create Flow Groups based on

None (use default distribution)

[[] src/Dest Endpoint Pair

] RxPort

[C] Frame Size (for incrementing only)
[C] Ethernet II : Destination MAC Address
[C] Ethernet II : Source MAC Address
[[] Ethernet II : Ethernet-Type

[[] Ethernet II : PFC Queue

[[] 1Pv4: Precedence

[[] 1Pv4: Source Address

[C] 1Pv4: Destination Address

[] upP : UDP-Source-Port

[C] uoP : UDP-Dest-Port

[[] 1Pv4: Precedence(1)

[C] 1Pv4: Source Address(1)

[[] 1Pv4 : Destination Address(1)

[C] upP : UDP-Source-Port(1)

[] uDP : UDP-Dest-Port(1)

Tx Port] Flow Group Setup ‘

A flow group provides the ability to control rate and frame size per unique value of the fields selected from the list.

How it works: Checking QoS for example, the distribution will look like in the diagram below

@&ud
@i
S@us

e

@

5 Jespl

Figure 9. Flow Group Setup for one Endpoint Set

& Advanced Traffic Wizard *

5 Endpoints Losus suny IxNetwork
D) AllEncapsulations ©) Per Encapsulation
a Packet | QoS Per Encapsulation - Settings will be applied to: EndpointSet-1 / Ethernet ILYLAN.YLAN. IPv4.UDP
—— Frame Size — Payload
Flow Group Setup
© Fixed size 128 Type |Random -
© Increment Pattern
_ Repeat
Rate Setup © Random
_ —— CRC Settings
© mx
B €
=3 © Custom IMIX -
Frotocol Behaviors - © Bad CRC
&< (© Quad Gaussian
@ Preview © Auto [] Disparity Errors

Validate

—— Retrieve Frame Size

| Use Control Plane Frame Size, i available

—— Preamble Size
© Auto

© Custom 8

Figure 10. Frame Setup with Packet Size of 128B for Uplink and 504B for Downlink

1 Advanced Traffic Wizard *

Flow Tracking
Protocol Behaviors

Preview

Endpoints
Packet 1 QoS
Flow Group Setup
Frame Setup

-

2

1A

&

o)

7| Validate

Rate Setup

© All Encapsulations

(© Per Encapsulation

Per Encapsulation - Settings will be applied to: EndpointSet-1 § Ethernet ILYLAN.YLAN.IPv4,UDP

Mode

= Retrieve Rate

[¥| Use Control Plane

—— Traffic Item Transmission Mode —— Flow Group
© Interleaved (© Continuous Stop After 1] iterations
(©) Sequential (©) Fixed Packet Count Start Delay 0 bytes @~
| The Interleaved Transmit mode willinterleave the -))
b packets from each Flow Group when sending Traffic (O Fixed Iteration Count Minimun Gap 12| bytes
(©) Fixed Duration
(©) Burst (Aut
Round Robin Packet Ordering B
— Rate (©) Burst {Custom)
© Line rate 11.0000 | % How it will ook on the wire: | |4 |E N 2 EJ N B E N 4 EI
() Packet rate —— Rate Di
(©) Layer2 Bit Rate Forts:

(©) Apply rate on all ports
*) 5plit rate evenly among ports
Flow Groups:
Rate, i available :) Apply port rate to all Flow Groups
(©) Split port rate evenly among Flow Groups

Figure 11. Rate Setup of 11% Line Rate for Upstream and 89% Line Rate for Downstream

25

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

o Advanced Traffic Wizard *

Endpoints Flow Tracking

B

= Track Flows by ————————————— —— (ustom Override
1 . iz One - One meshed
[source/Dest Port Pair
[DE Flow Group Setup [Source Fort Offset from
O] Intended Rx Ports Offset [0/ bits

Frame Setup

(] Traffic Group / Tag
[Z] MPLS Flow Descriptor
[Frame Size

[Flow Group

[] AvB Stream Name

@ Protocol Behaviors [C] Ethernet I1 : Destination MAC Address

Field width

Rate Setup

=

[C] Ethernet I1 : Source MAC Address
Preview [T Ethernet I1 : Ethernet-Type
[T Ethernet I1 : PFC Queue
(] vLAN : VLAN Priority
[WLAN : YLAN Priority(1)
[vLan : vLAN-ID
[T wLAN : WLAN-ID(1)
[1Pv4 : Precedence
[] 1Pv4 : Source Address
] 1Pv4 : Destination Address
] UDP : UDP-Source-Port
] UDP : UDP-Dest-Port
[Custom Override

Validate

Figure 12. Flow Tracking Set to ‘Traffic Item’

Thelast stepis to validate the flow.

S Aasaance A T Siard ™ ERE 2~
B D ———m— ——
@' o ¢ Tt e v
svel iem to quicily idertty ategory of rrorn detected per Traftic Rem
D swaoesae
Teebc e [Pachets FowGraies Tredwa s
S S » Tafcremt a v v 3 v 3

i
i

PoBol
:

© 0Erers | i) 1Waming: | () bessages |52 0TestInspectorEvers | | (2] ShowDeails| 42 Copy (D) Hide Cumer Erors

Tre Emors

LRGBS & E Tt

Frames Size Adusted
Tealtc Ram FouGup Port FrceLcgs

b Tt et Tt e 1 B St L Fis Greun 0001 Fitemer <001 (10,127,128 160:5: 17 (arncekogs)
Tt e | Tt e | Enpan St 2 - Fos Greun 001 Etreme: oz, (erreekocs)
Tt e | T Ttem 1 EncponSat € -Fiom Greun €001 Etreme: -COS (10 1 2 (errcebocs)
Tt e 1 Trafhs e 1-EncaeSat € - Fo Greun €3t Etremes -C03(10 1 (arrcetocs)
Tofhe e 1 T1aFh T 1-EnckaneSat 7 - Fow Greun COIL Etreme: {avreckocs)
s e 1 Traff I 1-EncpneSat 3 - Fo Greus CO3L Etrere: {svrerkogs)
s e 1 Traff Jem 1-Enp SRt € - Fo Greun CO3L Etere:- isvrerkocs)
s e 1 Traff leem 1-Encponksstd - Po Greun CO3L Eemes-cosi s isvrerkogs)

Frew e Y cancsl Heb

Figure 13. Validate Flow Group

7 VvAGF Benchmarks

7.1 vAGF Symmetric Traffic Benchmarks

The results of the VAGF Symmetric benchmarks on 4th Gen Intel® Xeon® 8470N processors with 800 Gbps Line Rate (8 x
100G Intel® Ethernet Network Adapter ES10-2CQDAZ2), 650B UL /DL Packet Size and a traffic ratio of DL/UL 1:1and a Packet
Loss of less than 0.001% with turbo disabled show a Maximum Receive Rate (MRR) of up to 773 Gbps Rx L2/L3 throughput
whichis 96.62% of the line rate and up to 795 Gbps Rx L1 throughput which is 99.37% of the line rate

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

900.00
800.00
700.00
600.00
? —
53
[l 500.00
- Q
S n
5@
£
3 -ED 400.00
T
£
300.00
200.00
100.00
0.00
1.00 2.00 4.00 8.00 15.00 16.00 19.00 23.00 30.00 32.00
= Downlink (Gbps) 11.46 22.91 45.80 91.60 171.24 182.62 216.86 262.63 342.42 365.10
mmm Uplink (Gbps) 12.80 25.60 51.17 102.35 191.32 204.03 242.30 293.42 382.57 407.91

—e-Aggregated (Gbps) 24.25 48.51 96.98 193.95 362.55 386.66 459.16 556.05 724.99 773.01

Number of VAGF Instances

Figure 14. vAGF Symmetric Traffic Benchmarks'?

7.2 vAGF Asymmetric Traffic Benchmarks

The results of the VAGF Asymmetric benchmarks on 4th Gen Intel® Xeon® 8470N processors with 800 Gbps Line Rate (8
x100G Intel® Ethernet Network Adapter ES10-2CQDA?2), 504B DL and 128B UL Packet Size and a traffic ratio of DL/UL
89:11and a Packet Loss of less than 0.001% with turbo disabled show a Maximum Receive Rate (MRR) of up to 629 Gbps Rx
L2/L3 throughput whichis 78.62% of the line rate and up to 663 Gbps Rx L1throughput which is 82.87% of the line rate

700.00
600.00
500.00
’VT —
a8
CE= 400.00
+~ QO
2@
8-
o ©
2o 300.00
ET
}—
200.00
100.00
0.00
1 2 4 8 15 16 19 23 30 32
mmDownlink (Gbps) ~ 18.27 36.55 71.45 142.90 254.54 27114 320.72 388.24 509.12 531.60
mmm Uplink (Gbps) 3.05 609 1219 2438 4571 4876 57.90 7009 91.42 97.51

=0—Aggregated (Gbps) 21.32 42.64 83.64 167.28 300.25 319.89 378.62 458.33 600.54 629.11
Number of VAGF Instances

Figure 15. VAGF Asymmetric Traffic Benchmarks'?

el

NN

8 Summary

The Intel virtualized Access Gateway Function benchmarks on 4th Gen Intel® Xeon® Platinum 8470N processors showed an
impressive /O throughput of up to 773 Gbps Maximum Receive Rate for L2/L3, which was 96.62% of the maximum line rate

of 800 Gbps and up to 795 Gbps Maximum Receive Rate for L1, which was 99.37% of the maximum line rate. Only 32 cores

out of a total 52 available cores were used per NUMA node, with both sockets populated. The use of the Dynamic Device

Personalization (DDP feature in the Intel® Ethernet Adapter ES10

to the high performance.

2CQDA2 with the Intel COMMS DDP package contributed

combined with architectural improvements, feature

’

The high core count of the 4th Gen Intel® Xeon® Scalable processors

enhancements, and high memory bandwidth, is a tremendous performance and scalability advantage over previous Intel®

Xeon® processor generations, especially in today’s NFVI environments. These processors are optimized for network, cloud

native, wireline, and wireless core-intensive workloads

with up to 60 powerful cores and a wide range of frequency, features

’

and power levels. The Intel® Xeon® Platinum 8470N processors with 52 cores at 1.7 GHz core frequency, 2.4 GHz uncore

frequency, high DDR5 memory bandwidth and PCle Gen 4 |0 throughput has outstanding performance based on abalanced,

efficient architecture thatincreases performance memory and I/O bandwidth to accelerate diverse workloads from the data

centerto theintelligent edge.

28

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

Table of Contents
I 1 4o o LT3 o) o S0P 1
1.1 NFV T FOrWArdiNg PlatfOrmm ...ttt st ss st s s8££ bbbttt 1
L ISZ =T 5 01T T o YT OSSPSR 1
1.3 Reference DOCUMENTS NG RESOUICES.c.iiuiieireeeeiereeesetsess st sssesase st ses s s s st ses s se A4 b s bbb bbbttt 3
B2 Yo (VN T o @ 0T g o) o T=T o | =TSPTSRO 3
2.1 Intel® Xeon® Processor Scalable Performance FamIily ...t ssssssessssssesnas 3
2.2 INTEI® ETNEINET BO0 SEIIES ..ot asests e s ettt e e b s e £ s s ee e s e A e £ e A S e £ e A e A e e xRS eE RS s E st A £ eE st eE e A e b eE e et e s e b et e b et et e bt 4
3 NFVIForwarding Platform Reference Architecture REQUIFEIMENTS ..ot 5
3.1 Reference Architecture Hardware REQUITEIMENTS ...ttt sess s s sttt 5
3.2 Reference Architecture SOftWare REQUIFEMENTS ...t s st 6
BTG I =L@ 2SI Y= 4 T [OOSR 6
3.4 Platform TeChNOIOgY REGUIFEMENTS ...ttt s e es e R bt 7
TR T o =Y 0T TR Y=Y U YOO 7
4 Virtual ACCess GateWay FUNCHION (VAG)......oo..eereeseeesnsessessssssssssssssssssssssessssssssssssssssessssssssssssssssesssssessssssssssssssssssssssssssssssssssssssnssssnssssss 8
A1 VAGRE OVEIVIEW ..ttt ettt sttt s e £ s e £ a8 eE £ e a8 a8 e s e 8 eE 2R S8 £E e s 8L R e AL A £ A S LA AR AL b AR e e eE A eE s e b e b e s e s e e e s et nmaenenneanaes 8
4.2 VAGKE PIPEIINE ..ottt RS R R AR R AR AR AR 8
LG Y 7N €] 1 B0 Y U 3OO 10
LSRN 7N € o [a 1y =1 | =Y d oY a1 U T [P PPTTP n
5.1 VAGF ApPPlication SErver Preparation ... nessesesssssesssessess s sessss st sessssssssssssssessssssessessssssssssssssssssssssssasssssssasens n
LI A A =T T =1 (@ IS T ST =Y a] o OO OO PO n
LRG| Il ST o a1y 2= 1= Lo o OO n
LR Tt = | IV]l =T oYY gl =Y o ol T PSP 12
5.5 VAGF Dataplane Application ENVIrONMENT SET-UP ..ottt sssses s ssssensesseas 12
6 Traffic Generator CONFIGUIAtION GUITE ...t bbbt 20
Lo I D =T T I Y i ol 7T =T =Y o OO 20
6.2 Configure Traffic Items Based on the Uplink or Downlink Configuration ... ssssssessseseens 21
AN C Tl = 7= g Yol o g =T o <PV 26
7.1 VAGF Symmetric Traffic BENCMAIKS ...ttt s 26
7.2 VAGF AsymmetriC Traffic BENCNIMAIKS ...ttt es s bbbt 27
LSS TU] o 0'a Y- OO TSPV 28

intel

"Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more on the Performance Index site. Performance results are based on testing as of dates shownin configurations and
may notreflectall publicly available updates. See backup for configuration details. No product or component can be absolutely secure. Your costs and results may vary. Intel technologies
may require enabled hardware, software or service activation.

©IntelCorporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation orits subsidiaries. *Other names and brands may be claimed as the property of others.

2Configuration

Testby Intel as of 11/05/2022.1-node, 2x Intel® Xeon® Platinum 8470N, 52 cores, HT On, Turbo Off, Total Memory 512 GB (16 x 32GB DDR5-48000), BIOS EGSDCRB1.86B.8901.
P01.2209200239, ucode OxabO000c0, Red Hat Enterprise Linux 8.6 (Ootpa), kernel 4.18.0-348.¢18.x86_64, gcc compiler 8.5.0, vVAGF 22.03, DPDK 20.11.5, ice driver: 1.9.11, DDP ICE
COMMS package version1.3.31.0

0123/SM/H09/PDF {yPleaseRecycle 763626-001US

29

