
 1

QATzip provides an extremely easy programming interface to extremely powerful
compression accelerators embedded in the 4th Gen Intel® Xeon® Scalable processor.

Authors
Gordon McFadden

Joel D Schuetze

Gokhan Simsek

Executive Summary
QATzip is a user space library, which builds on top of the Intel® QuickAssist Technology
(Intel® QAT) user space library, to provide extended accelerated compression and
decompression services by offloading the actual compression and decompression requests
to one or more Intel devices. QATzip produces data using the standard gzip format with
extended headers or LZ4 blocks with LZ4 frame format. The data can be decompressed
with a compliant gzip* or LZ4 implementation. QATzip is designed to take full advantage of
the performance provided by Intel® QuickAssist Technology. This paper discusses why
QATzip exists, its applications, value for developers, and reviews the performance gains.

This document is part of the Network Transformation Experience Kits.

Introduction
The QATzip library was created to solve a relatively simple problem. A few generations ago,
Intel® QAT Hardware was available as a PCIe plugin card, or in a subset of the chipsets.
Customers may have different servers; some with the acceleration hardware, some without.
A common software stack was required; one that is able to detect the presence of Intel®
QAT and use it or make use of a software library if the platform did not have Intel® QAT. The
requirement was to have a simple and fast programming model with seamless installation
that would be consistent through future generations.

 Solution Brief

Intel® QuickAssist Technology - Deliver Compression
Efficiencies in the Cloud with Intel® QAT and QATzip

https://networkbuilders.intel.com/intel-technologies/experience-kits

Solution Brief | Intel® QuickAssist Technology - Deliver Compression Efficiencies in the Cloud with Intel® QAT and QATzip

 2

Solution Description
Usages and Applications

Figure 1. QATzip with a Conceptual Database Engine for a Datastore Application

QATzip is a user-space library built on Intel® QAT Software stack, supplying added features, capabilities, and utilities. It aims
to simplify usage of Intel® QAT Software by supplying programming abstractions. For example, QATzip Library initializes the
Intel® QAT hardware resources on the first call, thus cutting the need for initialization of the device resources separately. The
application/middleware software developer can focus on the needs of the application, minimizing the need to know the Intel®
QAT software specific concepts. Similarly, if the software application is deployed on a platform without Intel® QAT
capabilities, QATzip seamlessly uses the software equivalent of the data compression libraries.

Typically, QATzip integrates with a software middleware, which has the in-memory compression/decompression
functionality. The middleware might be enabling database engines, web compression, and big data applications.

As an example, see Figure 1 that depicts a conceptual integration with a storage/database application. Here, the database
engine’s Codec (encoder/decoder) wraps the calls to the QATzip, and the database engine’s internal logic remains the same.
If the Intel® QAT software stack is not available on the platform or the Intel® QAT software device detects an error, QATzip
seamlessly falls back to the equivalent software implementation. In this case, storage application’s logic does not need to
change if the underlying compression implementation changes.

QATzip also provides the qzip command line application, which can be used for file compression to immediately validate and
interact with the Intel® QAT software and automate compression command line applications with other standard system
utilities.

Intel QAT Software Stack

Intel® QAT
Device DriverKernel Space

Hardware

User Space

Data Compression
Libraries

Intel® QAT User Space
Library

 Intel® QAT Software API

QATziplibz.soliblz4.so

libzstd.so Lib*.so

Conceptual
Database Engine

Library

Application

In-Memory

CODEC

API

Application

Persistent
Storage

O
p

1

Database
Logic

Database
Internals

File System

O
p

2

O
p

3

O
p

4

qzip

4th Gen Intel® Xeon® Scalable processor
Intel® QAT
Device(s)

Solution Brief | Intel® QuickAssist Technology - Deliver Compression Efficiencies in the Cloud with Intel® QAT and QATzip

 3

Features and Benefits
The features and benefits of this solution are as follows:

• Dynamic memory allocation for zero copy by exposing qzMalloc() and qzFree() allowing working buffers to be
pinned, contiguous buffers that can be used for DMA (Direct Memory Access) operations to and from the hardware.

• Instance over-subscription, allowing several threads in the same process to seamlessly share a smaller number of
hardware instances.

• Conceptual integration with a storage/database application; allocating from huge page memory when there is kernel
memory contention. See Figure 1.

• Configurable accelerator device sharing among processes.
• Optional software failover for both compression and decompression services. QATzip may switch to software if

there are insufficient system resources including acceleration instances or memory. This feature allows for a
common software stack between server platforms that have acceleration devices and non-accelerated platforms.

• Automatic recovery from hardware compression failure.
• Provide streaming interface of compression and decompression to achieve better compression ratio and throughput

for data sets that are submitted piecemeal.
• “qzip” utility supports compression from regular files, pipes, and block devices.
• For standard gzip format, try hardware decompression first before switching to software decompression.
• Enable adaptive polling mechanism to save CPU (Central Processing Unit) usage in stress mode.
• ‘qzip’ utility supports compression files and directories into 7z format.
• Starting with the Intel® QAT Gen 4 device, QATzip supports LZ4/LZ4s (de) compression algorithms as well as

Zstd6 compressed data format through software post processing of compressed data blocks with LZ4s format.

Methodology
QATzip was designed from its inception to be a straightforward path to accelerate compression and decompression
operations using the Intel® QuickAssist Technology. In its simplest form, all setup APIs (Application Programming Interfaces)
can be skipped, and compression requests can be called directly.

Session
QATzip is constructed with the concept of sessions, allowing a software developer to describe the format of the compressed
data required, including algorithm and compression level.
The default session compresses using the deflate algorithm, compression level six and wraps the compressed block of data
with RFC compliant gzip header and footer. Large submissions will be chunked and submitted in 64 kilobyte blocks.

Buffers
Access to the Intel® QAT accelerator required pinned memory. QATzip uses the User Space DMA-able Memory (USDM)
memory driver and sets up a pool of memory buffers that are contiguous pinned memory. The source and destination buffers
used for accessing Intel® QAT might be either pinned or traditional buffers. If the buffer is not pinned from USDM, then
QATzip library will copy the data to an internal buffer entry from the buffer pool.

Example Code
QATzip can be invoked with minimal setup code. Following is an example of how to compress a buffer:

 1 #include <stdio.h>
 2 #include <qatzip.h>
 3
 4 int main(int argc, char *argv[])
 5 {
 6 unsigned char src[1024] = { “1” };
 7 unsigned char dest[1024];
 8 unsigned int sl, dl, rc;
 9 QzSession_T sess = { 0 };
 10
 11 sl = 1024; dl = 1024;
 12
 13 rc = qzCompress(&sess, src, &sl, dest, &dl, 1);
 14
 15 printf("rc = %d sl = %u\n", rc, sl, dl);
 16
 17 return rc;
 18 }

Solution Brief | Intel® QuickAssist Technology - Deliver Compression Efficiencies in the Cloud with Intel® QAT and QATzip

 4

This level of simplicity allows developers to focus on their application, and what data needs to be compressed and
decompressed, and not on how to compress or decompress. This fast access to fact compression is a hallmark of QATzip.

Important Session Parameters
There are many session options. Some of the more commonly used ones are as follows:

• Compression format to select - deflate, LZ4, LZ4s
• Compression level
• Whether to use software for the operation if no Intel® QAT hardware is available
• The size to submit to Intel® QAT hardware when large buffers are supplied

The following example shows how to set compression level six as a session parameter:

 1 #include <stdio.h>
 2 #include <qatzip.h>
 3
 4 int main(int argc, char *argv[])
 5 {
 6 QzSession_T sess = {0};
 7 QzSessionParams_T params;
 8
 9 char src[1024] = {" "};
 10 char dest[1024];
 11 unsigned int i,j;
 12 int rc;
 13
 14 i = 1024; j = 1024;
 15
 16 rc = qzGetDefaults(¶ms);
 17 params.comp_lvl = 6;
 18 rc = qzInit(&sess, 1);
 19 rc = qzSetupSession(&sess, ¶ms);
 20 rc = qzCompress(&sess, src, &i, dest, &j, 1);
 21
 22 printf("rc = %d j = %d\n", rc, j);
 23
 24 return 0;
 25
 26 }

Available session parameters are defined in qatzip.h.

Overloading to Cores

There is an interesting artifact of two features of QATzip. The first feature, called sw_backup, allows the usage of cores to
compress if there are no Intel® QAT instances available to the process. The second feature is instance sharing. In a threaded
application it may not be necessary to assign an Intel® QAT instance to each thread. QATzip will seamlessly share any number
of instances to any number of threads. For example, if ten threads require compress services 25% percent of the time, then
the ten threads could be used four or five instances with no contention.

If both features are enabled, and the compression requests exceed the capacity of the Intel® QAT device, then QATzip will
use the cores for some compression services. This can have the effect of sustaining compression or decompression rates that
exceed the capacity of the Intel® QAT device by using cores for some operations.

https://github.com/intel/QATzip/blob/master/include/qatzip.h

Solution Brief | Intel® QuickAssist Technology - Deliver Compression Efficiencies in the Cloud with Intel® QAT and QATzip

 5

System Configuration
Table 1 lists the system configuration.

Table 1. System Configuration

Hardware
CPU 2S pre-production 4th Gen Intel® Xeon® Scalable processor
Platform pre-production Intel® reference platform
Memory 1,024 GB (16*64 GB DDR5)
Hard drive 1x 1.92 TB Intel® SSD SC2KG01
Microcode 0xf000380
HT On
Intel® QAT Hardware Gen 4
Turbo Disabled
SNC Off

Software
Operating System Ubuntu 22.04.1 LTS
Kernel 5.15.0-47-generic
Intel® QAT driver QAT v20.l.0.9.1
Intel® ISA-L ISA-L v2.3.0
QATzip QATzip v1.0.9

Test date September 2022
Test by Intel

Test Setup
To showcase the performance that can be achieved with Intel® QAT devices included on the 4th Gen Intel® Xeon® Scalable
processor with QATzip, we created a set of performance scripts that utilize the test application included with the QATzip
package.

The test application is named “test” and is located in the test folder. The script makes many simultaneous invocations like the
following:

numactl -C 0 /usr/local/src/QATzip/test/test -m 4 -l 500 -t 1 -D comp -B 0 -L 1 -C 65536 -S

1 -i ./test/performance_tests/calgary_1mb

The command breaks down as follows:

• Run the test application on core 0

• Execute test mode 4, which corresponds to test comp/decomp by configurable parameters

• Execute the test case for 500 iterations

• Use one thread

• Compression direction test

• Disable software fallback so cores are not used

• Compression level 1

• Chunk size of 64K

• Set sleep thread interval to 1 ms

• Selected input file “calgary_1mb”, which is the first megabyte of the Calgary corpus files concatenated into one file

When testing with Intel® QAT, the script invoked 24 simultaneous invocations of the test application, with multiple
invocations of the test app tied to the same core. Individual results were then aggregated to produce the total throughput.

To obtain the software numbers using the default zlib library, the Intel® QAT devices were shut down and the invocation of the
test application was modified to enable software fallback (-B 1). The script invoked 120 simultaneous invocations of the test
app, each instance tied to a specific core, and aggregated the individual results to produce total throughput.

Solution Brief | Intel® QuickAssist Technology - Deliver Compression Efficiencies in the Cloud with Intel® QAT and QATzip

 6

Figure 2. QATzip Performance Results

Results
Figure 2 highlights the value of offloading compression workloads to the Intel® QAT device. Performance is shown for
standard zlib library, the optimized compression library Intel® ISA-L, and with offloading to the Intel® QAT devices. With zlib
and Intel® ISA-L we fully saturate all 60 cores on both sockets to achieve the specified level of performance. Offloading that
same compression workload to Intel QAT allowed for a higher level of performance all while utilizing just four cores.

Summary
This document shows that it is simple to program the QATzip API. To compress data with the default algorithm–deflate – at
the default compression level–1- and encapsulate the compressed in a gzip header with RFC compliant extensions that
include the source and destination buffers, then no explicit session set is required.

The paper also shows that using QATzip software to access Intel® QAT hardware provides incredible acceleration, freeing
cores for other tasks.

Solution Brief | Intel® QuickAssist Technology - Deliver Compression Efficiencies in the Cloud with Intel® QAT and QATzip

 7

Terminology

Table 2. Terminology

Abbreviation Description
API Application Programming Interfaces

CPU Central Processing Unit

DMA Direct Memory Access

RFC Request for Comment

USDM User Space DMA-able Memory

References

Table 3. References

Reference Source
GZIP file format specification https://www.ietf.org/rfc/rfc1952.txt

LZ4 Block Format Description https://github.com/lz4/lz4/blob/dev/doc/lz4_Block_format.md

LZ4 Frame Format Description https://github.com/lz4/lz4/blob/dev/doc/lz4_Frame_format.md

QATzip package https://github.com/intel/QATzip

Getting Started Guide
https://www.intel.com/content/www/us/en/content-details/632506/intel-
quickassist-technology-intel-qat-software-for-linux-getting-started-guide-hardware-
version-2-0.html

Zstandard compression algorithm https://facebook.github.io/zstd/

Document Revision History

Revision Date Description
001 January 2023 Initial release.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

 0123/DN/WIT/PDF 767068-001US

https://www.ietf.org/rfc/rfc1952.txt
https://github.com/lz4/lz4/blob/dev/doc/lz4_Block_format.md
https://github.com/lz4/lz4/blob/dev/doc/lz4_Frame_format.md
https://github.com/intel/QATzip
https://www.intel.com/content/www/us/en/content-details/632506/intel-quickassist-technology-intel-qat-software-for-linux-getting-started-guide-hardware-version-2-0.html
https://www.intel.com/content/www/us/en/content-details/632506/intel-quickassist-technology-intel-qat-software-for-linux-getting-started-guide-hardware-version-2-0.html
https://www.intel.com/content/www/us/en/content-details/632506/intel-quickassist-technology-intel-qat-software-for-linux-getting-started-guide-hardware-version-2-0.html
https://facebook.github.io/zstd/
http://www.intel.com/PerformanceIndex

	Executive Summary
	Introduction
	Solution Description
	Usages and Applications

	Features and Benefits
	Methodology
	Session
	Buffers
	Example Code
	Important Session Parameters
	Overloading to Cores
	System Configuration

	Test Setup
	Results
	Summary
	Terminology
	References
	Document Revision History

