
 1

White Paper
Intel Corporation

Intel Platform Service Assurance - Platform Policy Enabling
Resource Management

Authors
Wojciech Andralojc

John Browne

Tomasz Kantecki

1 Introduction
Network Function Virtualization (NFV) enables the consolidation of a wide variety of
communication appliances. To meet NFV input/output performance requirements,
production Virtual Network Functions (VNFs) must perform to a high standard. However,
these production VNFs can be impacted by a third-party VNF that is using an unfair
amount of system resources, causing a performance decrease in production VNFs. These
third-party VNFs are generally known as Noisy Neighbors. Specifically, competition for
and contention over processor cache resources are a well-established cause of noisy
neighbor conditions.

To help alleviate the impacts of noisy neighbors in such scenarios, Intel provides Intel®
Resource Director Technology (Intel® RDT) and a tool called Platform Quality of Service
(PQoS). One of the main parts of Intel® RDT is Cache Allocation Technology (CAT), a
component that allows system administrators and developers to gain control of cache
memory.

The capabilities that Intel processors integrate to deal with the potential resource
contention issues associated with NFV are described and discussed in an earlier paper
titled Performance Evaluation of Cache Allocation Technology for NFV Noisy Neighbor
Mitigation. This paper describes dynamic partitioning encompassing both guaranteed
partitions and fixed partitions.

To get optimal performance in a CAT-enabled environment, it is critical to allocate an
adequate number of Cache Ways (CWs) for each VNF. If the number of CWs is too small,
the VNF performance and overall system performance may degrade. If the number of
CWs is too large, that can be considered a waste of resources. It is important to keep in
mind that a VNF’s cache demand may differ depending on the load placed on it.
Therefore, static cache allocation may be suboptimal in cases where the load is changing
over time. On the other hand, if load changes are sudden (for example, going from no
load to fully loaded) dynamic cache allocation may lead to transient packet loss. This is
more likely to happen if a large amount of a production VNF’s cache was reallocated to a
third-party VNF. There is a tradeoff to make between a production VNF’s transient packet
loss and a third-party VNF’s performance gain. The user must decide if transient packet
loss is acceptable and how high it can be and configure the system accordingly.

The purpose of this paper is to explore the dynamic resource partitioning of Last Level
Cache (LLC) using the CAT component of Intel® RDT and verify if there are currently
available statistics that allow the detection of a VNF’s current cache demand and
implement the Platform Policy Agent that would allow fully-automated Dynamic
Resource Partitioning (DRP).

This document is part of the Network Transformation Experience Kit, which is available
at: https://networkbuilders.intel.com/

https://ieeexplore.ieee.org/abstract/document/8004214
https://ieeexplore.ieee.org/abstract/document/8004214
https://networkbuilders.intel.com/

White Paper | Intel Platform Service Assurance - Platform Policy Enabling Resource Management

 2

Table of Contents

1.4.1 Intel® Resource Director Technology (RDT) .. 4
1.4.2 Platform Quality of Service (PQoS) Toolkit ... 4
1.4.3 Platform Policy Agent ... 4

2.1.1 System Under Test (SUT) for SD-WAN Replication ... 5
2.1.2 SUT (SD-WAN) with Best Effort VNF Introduced .. 6

3.2.1 Monitored Performance Indicators .. 8
3.2.2 Algorithm ... 8
3.2.3 Cache Ways Partitioning Scheme ... 9
3.2.4 External Dependencies ... 9
3.2.5 CAT Configuration .. 10
3.2.6 Cache Sensitivity and Changing Cache Demand ... 10

Figures
Figure 1. SD-WAN High-Level Overview... 5
Figure 2. SUT (SD-WAN) Setup .. 6
Figure 3. SUT (SD-WAN) with Best Effort (Noisy Neighbor) VNF Setup .. 7
Figure 4. Group Configuration with CPU Assignment .. 7
Figure 5. Platform Policy Agent Algorithm .. 9
Figure 6. Cache Ways Partitioning Scheme ... 9
Figure 7. Minimal CWs Needed vs. Line Rate for the High-Priority VNFs Group ... 10
Figure 8. Retired Instruction vs. Allocated CWs for the Best Effort VMs Group ... 11
Figure 9. Dynamic Resource Allocation, Theoretical Best Effort VMs Group Performance Gain ... 11
Figure 10. Sample Policy Agent Tests .. 12
Figure 11. Test Environment Setup .. 17

Tables
Table 1. Terminology ... 3
Table 2. Reference Documents ... 4
Table 3. Groups of VNFs and Components .. 7
Table 4. Monitored Performance Indicators .. 8
Table 5. Minimal Version Requirements ... 10
Table 6. CAT Configuration: OVS/OS, High priority VMs, and Best Effort VM ... 10
Table 7. Hardware Packages .. 13
Table 8. BIOS Settings ... 13
Table 9. Kernel Parameters .. 14
Table 10. Minimal Versions Requirements ... 14
Table 11. Core Pinning ... 17

White Paper | Intel Platform Service Assurance - Platform Policy Enabling Resource Management

 3

1.1 Intended Audience
This white paper is for architects and developers who want to implement Dynamic Resource Partitioning (DRP) between high-
priority production VNFs and best effort VNFs (exhibiting noisy neighbor behavior) without affecting the performance of the
production VNFs.

1.2 Terminology
Table 1 describes the acronyms used in this white paper.

Table 1. Terminology

ABBREVIATION DESCRIPTION

ACL Access Control List

CAT Cache Allocation Technology

CBM Contention Bit Mask

CPU Central Processing Unit

CW Cache Way

DDR Double Data Rate

DPDK Data Plane Development Kit

DPI Deep Packet Inspection

DRP Dynamic Resource Partitioning

ESP Encapsulating Security Payload

HTTP Hyper Text Transmission Protocol

I/O Input/output

IPSec Internet Protocol Security

KVM Kernel Virtual Machine

LLC Last Level Cache

LPM Longest Prefix Match

NFV Network Function Virtualization

OS Operating System

OvS* Open vSwitch*

PID Process identifier

PMD Pole Mode Driver

PQoS Platform Quality of Service

QEMU Quick Emulator

SA Security Association

SD-WAN Software Defined Wide Area Network

SFP Small Form-factor Pluggable

SP Security Policy

SUT System Under Test

TCP Transmission Control Protocol

VNF Virtual Network Function

VT-d Intel® Virtualization Technology for Directed I/O

WAN Wide Area Network

XML Extensible Markup Language

White Paper | Intel Platform Service Assurance - Platform Policy Enabling Resource Management

 4

1.3 Reference Documents
Table 2 provides links to documentation related to the concepts in this white paper.

Table 2. Reference Documents

REFERENCE SOURCE

AESN-NI Multi Buffer Crypto Poll Mode Driver https://doc.dpdk.org/guides/cryptodevs/aesni_mb.html

Data Plane Development Kit (DPDK) http://dpdk.org/

DPDK IPSec Security Gateway Sample Application https://doc.dpdk.org/guides-16.04/sample_app_ug/ipsec_secgw.html

Intel® Multi-Buffer Crypto for IPsec Library https://github.com/intel/intel-ipsec-mb

Intel® RDT https://github.com/01org/intel-cmt-cat

Open vSwitch (OvS) http://openvswitch.org/

Performance Evaluation of Cache Allocation Technology for
NFV Noisy Neighbor Mitigation

https://ieeexplore.ieee.org/abstract/document/8004214

Quick Emulator (QEMU) http://www.qemu-project.org/

Processor Counter Monitor (PCM) tool https://github.com/opcm/pcm

1.4 Technologies
1.4.1 Intel® Resource Director Technology (RDT)
Intel® Resource Director Technology (Intel® RDT) brings new levels of visibility and control over how shared resources such as last-
level cache (LLC) and memory bandwidth are used by applications, virtual machines (VMs), and containers. It is the next evolutionary
leap in workload consolidation density, performance consistency, and dynamic service delivery, helping to drive efficiency and
flexibility across the data center while reducing overall total cost of ownership (TCO). As software-defined infrastructure and
advanced resource-aware orchestration technologies increasingly transform the industry, Intel® RDT is a key feature set to optimize
application performance and enhance the capabilities of orchestration and virtualization management server systems using Intel®
Xeon® processors.

Intel® RDT provides a framework with several component features for cache and memory monitoring and allocation capabilities,
including CMT, CAT, CDP, MBM, and MBA. These technologies enable tracking and control of shared resources, such as the Last
Level Cache (LLC) and main memory (DRAM) bandwidth, in use by many applications, containers or VMs running on the platform
concurrently. Intel® RDT may aid “noisy neighbor” detection and help to reduce performance interference, ensuring the
performance of key workloads in complex environments.

More information can be found at https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-
technology.html

1.4.1.1 Cache Allocation Technology (CAT)
Software-guided redistribution of cache capacity is enabled by CAT, enabling important data center VMs, containers or applications
to benefit from improved cache capacity and reduced cache contention. CAT may be used to enhance runtime determinism and
prioritize important applications such as virtual switches or Data Plane Development Kit (DPDK) packet processing apps from
resource contention across various priority classes of workloads.

1.4.1.2 Memory Bandwidth Monitoring (MBM)
Multiple VMs or applications can be tracked independently via Memory Bandwidth Monitoring (MBM), which provides memory
bandwidth monitoring for each running thread simultaneously. Benefits include detection of noisy neighbors, characterization and
debugging of performance for bandwidth-sensitive applications, and more effective non-uniform memory access (NUMA)-aware
scheduling.

1.4.2 Platform Quality of Service (PQoS) Toolkit
The PQoS toolkit contains software library package and command line tools that allow easy access to Intel® RDT on Linux* and
FreeBSD* operating systems. This software is available through Linux packaging systems like ‘dnf’ or ‘apt-get’ and directly from the
GitHub* project web site: https://github.com/intel/intel-cmt-cat. Part of the package is a “pqos” tool that allows you to monitor and
manage resources at run time and it works across wide range of Linux kernel versions including those that don’t have native Intel®
RDT support.

1.4.3 Platform Policy Agent
The Platform Policy Agent is a software component that allows Dynamic Resource Partitioning (DRP) between a high-priority
production VNFs’ group and a Best Effort VNFs’ group. The high-priority group should be optimized for best performance with no

https://doc.dpdk.org/guides/cryptodevs/aesni_mb.html
http://dpdk.org/
https://doc.dpdk.org/guides-16.04/sample_app_ug/ipsec_secgw.html
https://github.com/intel/intel-ipsec-mb
https://github.com/01org/intel-cmt-cat
http://openvswitch.org/
https://ieeexplore.ieee.org/abstract/document/8004214
http://www.qemu-project.org/
https://github.com/opcm/pcm
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://github.com/intel/intel-cmt-cat

White Paper | Intel Platform Service Assurance - Platform Policy Enabling Resource Management

 5

impact from cache and memory hungry applications (noisy neighbor type) in the best effort group. In the case of a low load on a
high-priority group, unused cache resources should be reallocated to the best effort group. Examples of such agents are Open Day
Light Honey Comb or Nova Compute in OpenStack*.

2 Platform Policy Enabling Use Case
To demonstrate the usage of Intel® RDT technologies in this document, we used an SD-WAN application to simulate a real-world
use case. SD-WAN is an acronym for software-defined networking in a wide area network (WAN). SD-WAN simplifies the
management and operation of a WAN by decoupling (separating) the networking hardware from its control mechanism.

The SD-WAN used in our example is composed of an IPSEC gateway combined with a Deep packet inspection component,
representing an SD-WAN solution composed of a firewall and routing functions. This function combination would be typically used
at the edge of customer premises.

2.1 SD-WAN and Best Effort VNFs Overview
An SD-WAN is a specific application of software-defined networking technology applied to a Wide Area Network (WAN). The SD-
WAN connects enterprise networks that include branch offices and data centers over large geographic distances as shown in
Figure 1.

Figure 1. SD-WAN High-Level Overview

2.1.1 System Under Test (SUT) for SD-WAN Replication
Figure 2 shows a high-level view of the System Under Test (SUT) described in this white paper that replicates an SD-WAN. There are
two instances of the platform, each on their own physical and identical machines. Each instance is a mirror of the other. Traffic flow
is as follows:

• On the uplink, viewing from left to right, the pipeline includes a Deep Packet Inspection (DPI) Virtual Machine (VM) and an
Internet Protocol Security (IPSec) VM. In this pipeline, packets are inspected in the DPI VM and passed to the IPSec VM for
encryption.

• On the downlink, packets only pass through the IPSec VM for decryption. There is no need for DPI because the packets have
already been inspected in the DPI VM on the uplink.

A virtual switch, called an Open Virtual Switch (OvS), connects the VMs and the IXIA Traffic Generator provides traffic for the tests
that we describe later.

Internet
LTE

Cloud/
SaaS

SD-WAN
Controller

Corporate
Office

Branch
Office

Control Channel

Data Channel

Data Channel
MLPS

Firewall
DHCP

Switch
SBC

ROUTING
DPI IPSec

Control Channel

White Paper | Intel Platform Service Assurance - Platform Policy Enabling Resource Management

 6

Figure 2. SUT (SD-WAN) Setup

This setup helps determine if a best effort VNF, or noisy neighbor (introduced in the next section), causes a performance decrease
for high-priority production VNFs and if the Reliability Agent can restore or protect them.

2.1.2 SUT (SD-WAN) with Best Effort VNF Introduced
Figure 3 introduces a Best Effort (or Noisy Neighbor) VNF into the SUT setup. Running a process that is cache- and memory-
intensive in the Best Effort VNF causes a performance decrease and packet loss in the overall SD-WAN. This is verifiable by
examining the packet loss rate reported by the OvS and the IXIA Traffic Generator.

nDPI

VM

IPSec

VM

Switch

Host OS

Platform 1

IPSec

VM

nDPI

VM

Switch

Host OS

Platform 2

IXIA Traffic Generator

Legend: Traffic 1 Traffic 2 Bi-directional Traffic

White Paper | Intel Platform Service Assurance - Platform Policy Enabling Resource Management

 7

Figure 3. SUT (SD-WAN) with Best Effort (Noisy Neighbor) VNF Setup

The system configuration details can be found in Section A.6.

3 Sample Platform Policy Agent
The sample platform policy agent described here is a prototype sample software that emulates a fully functional agent.

3.1 Groups of VNFs and Components
For effective use of the available cache, VNFs and system components are grouped as shown in Table 3.

Table 3. Groups of VNFs and Components

Group Type

System Static

High-priority Dynamic

Best Effort Dynamic

The sample policy agent does not modify system group resource allocation. However, it balances resource allocation between high
priority and best effort groups depending on the load and resources required by the former group.

System Group
LLC Allocation: 0xc00

OS

CPUs: 0, 8

Polled Mode Drivers

CPUs: 7, 15

High Priority Group
Min LLC Allocation: 0x380

Packet Processing Fingerprint:

(0.9, 655), (0.3, 769)

IPSec VM

CPUs: 4, 5, 13

nDPI VM

CPUs: 2, 3, 11

Best Effort Group
Min LLC Allocation: 0x003

Compute Fingerprint: 0.3

Stress-NG

CPUs: 1, 6

Figure 4. Group Configuration with CPU Assignment

LLC allocation is expressed as a contiguous bitmask, which is the standard way of expressing LLC allocation with Intel® RDT.

A fingerprint is a way of characterizing the workload, which may vary depending on its nature.

nDPI

VM

IPSec

VM

Switch

Host OS

Platform 1

IPSec

VM

nDPI

VM

Switch

Host OS

Platform 2

IXIA Traffic Generator

Legend: Traffic 1 Traffic 2 Bi-directional Traffic

Noisy
Neighbor

VM

White Paper | Intel Platform Service Assurance - Platform Policy Enabling Resource Management

 8

A packet processing fingerprint includes pairs of numbers that provide a linear approximation of a more complicated curve. This
approach simplifies the implementation with a minimal loss of precision. The first number in a pair is the memory bandwidth to
packet throughput ratio. The second number in a pair is the packet throughout.

A compute intensive group is characterized by a compute fingerprint that is expressed as memory bandwidth to retired instructions
ratio.

Finding values for the fingerprints requires a series of tests and experimentation.
Note: While a low minimum LLC allocation value allows the Best Effort group to benefit more when High-priority is idle, it may

cause significant packet drops on a sudden traffic rate increase. This is related to the Platform Policy Agent sampling
interval. It is possible that for one full sampling interval, for example, the High-priority group is fully loaded with 12.5%
traffic, but has only one CW allocated, which causes significant packet drops.

3.2 Sample Platform Policy Agent Details
The Platform Policy Agent is a software component that allows Dynamic Resource Partitioning (DRP) between a high-priority
production VNFs’ group and a best effort VNFs’ group. The agent observes both high-priority and best effort VNFs’ groups memory
bandwidth utilization and external performance indicators (for example, throughput and frame loss rate, and retired instructions).
Based on those observations, the agent attempts to apply a partitioning scheme that guarantees the optimal VNFs’ groups
performance. The agent continuously monitors performance indicators so that it can react to changing VNF cache demands.

3.2.1 Monitored Performance Indicators
A VNF’s condition is evaluated periodically by analyzing statistics retrieved form the Linux kernel perf (per PID) or from the OvS
(per OvS interface). Table 4 gives the monitored performance indicators.

Table 4. Monitored Performance Indicators

Indicator Source Comment

Memory Bandwidth Utilization perf intel_cqm/total_bytes

Retired Instructions perf PERF_COUNT_HW_INSTRUCTIONS

RX and TX Throughputs ovs Calculated from:
• tx bytes
• rx bytes
• duration

Packet Drops ovs tx drop

3.2.2 Algorithm
Figure 5 shows the algorithm used by the Platform Policy Agent. The Platform Policy Agent starts by allocating the maximum
possible number of CWs to the high-priority group and flushing the cache of the best effort group using pid_cache_flush and
the PIDs provided in the configuration file. Then the agent decreases the number of CWs allocated to the high-priority group (which
changes high-priority and best effort CWs ratio) until an equilibrium is reached.

When minor packet drops are observed, the number of CWs allocated to the high-priority group is increased by one and cache for
the best effort group is flushed.

In the equilibrium state, the agent observes performance indicators. If one of those indicates changes by more than a defined
amount or goes out of the expected range, the agent leaves the equilibrium state and starts from the beginning.

The equilibrium state is reached in the following cases:
• The high-priority group’s performance indicator, based on memory bandwidth utilization and throughput, reaches the

configured threshold.
• The best effort group’s performance indicator, based on memory bandwidth utilization and retired instructions count, reaches

the configured threshold.

White Paper | Intel Platform Service Assurance - Platform Policy Enabling Resource Management

 9

Figure 5. Platform Policy Agent Algorithm

3.2.3 Cache Ways Partitioning Scheme
The Platform Policy Agent implements dynamic cache partitioning with a guaranteed minimum. A high-priority group has priority
access to shared CWs, as shown in Figure 6. Groups can use shared CWs, but a groups’ CWs stay isolated. The agent changes the
high-priority to best effort CWs ratio. When increasing the high-priority CWs’ number, it flushes the best effort cache to evict the
best effort group from the CWs that are now allocated to a high-priority group.

Figure 6. Cache Ways Partitioning Scheme

3.2.4 External Dependencies
Table 5 shows the minimum version of key software packages used in the setup described in this white paper.

1 2 3 4 5 6 7 8 9 10 11 12

OS/OSV Vendor, HP 3
rd

BE

White Paper | Intel Platform Service Assurance - Platform Policy Enabling Resource Management

 10

Table 5. Minimal Version Requirements

Software Packages Version Comments

Linux kernel/perf 4.10
 perf (monitoring) and pqos (CAT configuration) interoperability

pqos 1.0

pid_cache_flush - Internally developed LLC flush kernel module that can flush LLC
content belonging to selected PID. This is helpful to make LLC
allocation changes take prompt effect.

OvS Supporting OpenFlow1.3 or 1.4 Requires a duration field to be reported by the ovs-ofctl command
per port, to calculate throughput.

3.2.5 CAT Configuration
CAT configuration is set and controlled by the Platform Policy Agent. VNFs and system components are categorized in three groups
to use the available cache effectively. The minimum number of CWs per group are set in a configuration file. The system and static
group’s CAT configuration is statically configured at startup. Depending on the current dynamic groups of VNFs’ demand and
condition, the Platform Policy Agent changes the High-priority/Best Effort Groups’ CWs ratio accordingly.

Table 6 lists possible Contention Bit Mask (CBM) values for the CAT configuration per group.

Table 6. CAT Configuration: OVS/OS, High priority VMs, and Best Effort VM

Group of Components CBM Cache Ways Allocated

Static, System (OS, OVS, PMD) 0xC00 2

Dynamic, High Priority VMs (nDPI, IPsec) 0x380 – 0x3FC 3 - 8

Dynamic, Best Effort VM (stress-ng) 0x003 – 0x07F 2 - 7

3.2.6 Cache Sensitivity and Changing Cache Demand
The SD-WAN setup consists of two groups of VNFs:
• High Priority with nDPI and IPSec (packet processing) VNFs
• Best Effort with (computing intensive) VM running stress-ng

3.2.6.1 High-Priority Packet Processing Cache Sensitivity
While investigating the packet processing groups’ cache sensitivity and cache demand, we limited the number of available CWs to
find the minimal number of CWs needed (without incurring frame loss). See Figure 7.

Figure 7. Minimal CWs Needed vs. Line Rate for the High-Priority VNFs Group

The lower the line rate, the smaller the number of CWs needed for the High-priority VNFs group to process packets without frame
loss.

3.2.6.2 Best Effort Computing Intensive Cache Sensitivity
While investigating the best effort computing intensive groups’ cache sensitivity, we limited the number of available CWs and
observed the number of retired instructions.

HP, Min. CWs Needed Vs. Line Rate

Line Rate

CW
s

2.5% 5.0% 7.5% 10.0% 12.5% 15.0%
0

1

2

3

4

5

White Paper | Intel Platform Service Assurance - Platform Policy Enabling Resource Management

 11

Figure 8. Retired Instruction vs. Allocated CWs for the Best Effort VMs Group

The higher the number of allocated CWs, the better the Best Effort VMs group performance, with more retired instructions reported
per second.

3.2.6.3 Evaluation
There seems to be a clear correlation between the line rate being processed by the high-priority VNFs group and its cache demand.
Also, there is a correlation between the number of available CWs and the Best Effort VNFs group’s performance. By taking both
correlations into account when setting up cache partitioning, the high-priority groups’ cache demand and the best effort group’s
cache sensitivity data can enable the protection of the high-priority groups’ performance, while allowing the best effort group to
gain performance when possible.

It would be convenient and resource-effective if resource partitioning could be done dynamically, depending on actual cache
demand. The idea is to monitor a group’s memory bandwidth utilization and external performance indicators (for example,
throughput, frame loss rate, and retired instructions depending on the type of workload). Then, choose the best partitioning scheme
that guarantees optimal VNF performance and cache use. It is crucial to continuously monitor performance indicators to react to
changing VNFs’ cache demand. This approach enables the effective distribution of available resources between VNFs to guarantee
optimal performance at any given time, protecting high-priority group performance while allowing the best effort group to gain
performance at the same time.

Figure 9 shows the theoretical best effort group’s performance gain if cache is dynamically partitioned while considering high-
priority cache demand depending on the line rate. For static partitioning, cache is partition in a fixed way, to allow the high-
performance group to handle the maximum line rate of 12.5%. See Section 3.3 for the measured results.

Figure 9. Dynamic Resource Allocation, Theoretical Best Effort VMs Group Performance Gain

Note: Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to
any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. For more information go to www.intel.com/benchmarks.
Performance results are based on testing as of October 2017 and may not reflect all publicly available security updates. See configuration disclosure for details. No
product or component can be absolutely secure.
§ Configuration: Host Kernel, 4.11.12-100.fc24.x86_64; Host OS, Fedora* Core 24; OvS, 2.7.90; QEMU, qemu-2.6.2-6.fc24; Guest Kernel, 4.4.13-200.fc22.x86_64; Guest
OS, Fedora Core 22; DPDK, 16.11; IPSec, Ipsec-secgw from DPDK; nDPI, l2fwd-ndpi; Memtester, 4.3.0; Virsh, 1.3.3.2; pqos 1.1 and pid_cache_flush,
https://github.com/01org/intel-cmt-cat/wiki.

BE, Retired Instructions Vs. CWs

CWs Re
tir

ed
 In

st
ru

ct
io

ns
 P

er
 S

ec
on

d
N

or
m

al
ize

d

1 2 3 4 5 6 7 8 9 10

1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0

Dynamic Resource Allocation
Theoretical BE Performance Gain

HP Rate Line

BE
 N

or
m

al
ize

d

Pe
rf

or
m

an
ce

2.5% 5.0% 7.5% 10.0% 12.5%

1.40
1.30
1.20
1.10
1.00

1.37 1.37

1.24 1.24

1.00

http://www.intel.com/benchmarks
https://github.com/01org/intel-cmt-cat/wiki

White Paper | Intel Platform Service Assurance - Platform Policy Enabling Resource Management

 12

3.3 Sample Policy Agent Dynamic Resource Partitioning Results
Figure 10 maps the test results to the system states.

Figure 10. Sample Policy Agent Tests

Reading tested system states on Figure 10 from left to right.

Out of the Box Configuration

In the initial configuration, no resource allocation is in place and High-Priority VNFs achieve 12.5% of the line rate with no packet
drops.

In the next step, 3rd party, Best Effort VNF is added, which consumes some of the resources previously used by SD-WAN VNFs and
packet drops are observed.

Dynamic Resource Partitioning

Initial State

Next, the sample platform policy agent is engaged with the default configuration. After the new configuration is applied, packet
drops are eliminated, High Priority VNFs are allocated 8 out of 12 LLC cache ways, and best effort group gets only 2 cache ways.

Optimal Configuration

Over time, the policy agent optimizes the configuration so that High Priority VNFs are allocated only 5 LLC cache ways and 5 ways
are allocated to Best Effort group. No packet drops are observed in the production group and these VNFs achieve 12.5% of the line
rate despite extra workload running next to it. Thanks to the cache ways increasing from 2 to 5, the best effort group is operating at
15% better performance level.

Traffic Rate Drop

Finally, the packet rate at traffic generator is reduced from 12.5% to 8% of the line rate. The policy agent reacted to the change and
reduced the number of required cache ways for the High Priority VNFs from 5 to 3. There are no packet drops observed and the
Best Effort group gets 2 extra cache ways, which further improves its performance by 18%.

4 Conclusion
In a virtualized environment, shared resource contention can have a severe impact on performance. We see this in Section 3.3
where the introduction of a busy Best Effort (Noisy Neighbor) decreases performance (for example, as a result of packet drops). By
using CAT, we can statically partition the cache resources, allowing the high-priority VNFs’ group to utilize as much resources as it
needs to operate optimally and efficiently.

An earlier paper, Performance evaluation of cache allocation technology for NFV noisy neighbor mitigation, describes Static
Resource Partitioning, but this solution cannot react to dynamically changing cache resource demands.

White Paper | Intel Platform Service Assurance - Platform Policy Enabling Resource Management

 13

Using a Platform Policy Agent that implements the concept of Dynamic Resource Allocation, it is possible to react to changing VNFs’
groups cache demand to not only to protect high-priority group performance, but also allow the best effort group to gain
performance, as described in Section 3.3.

At the beginning of this white paper, we set a goal:
Implement a Platform Policy Agent to allow Dynamic Resource partitioning between high-priority production VNFs and best
effort (with noisy neighbor behavior) VNFs without affecting the performance of production VNFs.

From various tests and results gathered here, you can see that the goal has been achieved. We were able to implement a Platform
Policy Agent that is monitoring two groups of VNFs, high-priority and best effort, reallocating cache resources as needed, and
protecting high-priority group performance while allowing the best effort group to gain performance when possible.

 Platform and Software Details
This appendix provides test environment configuration information including hardware components, BIOS settings, kernel
parameter values, and software packages.

 Hardware Packages
Table 7 lists all hardware used.

Table 7. Hardware Packages

Hardware Component Version Links Comments

SuperMicro Supermicro motherboard-X10
Series

 CPU Model Name:
Intel® Xeon® CPU D-1540 @
2.00GHz

Ethernet Transceivers Intel 10 Gb Small Form-factor
Pluggable (SFP) +

http://www.intel.com/content/www/us/en/ether
net-products/optics-cables/ethernet-sfp-optics-
brief.html

Memory 32 GB DDR4 2133 MHz (x2) BankLocator:
P0_Node0_Channel0_Dimm0 &
P0_Node0_Channel01_Dimm0

Traffic Generator IXIA XG12 IxNetworks V 7.50 https://www.ixiacom.com/products/ixnetwork

 BIOS Settings
Table 8 shows all BIOS settings used.

Table 8. BIOS Settings

Setting State

Hyper Threading ENABLED

Intel® Virtualization Technology for Directed I/O (Intel® VT-d) ENABLED

Intel® Virtualization Technology ENABLED

P-States DISABLED

C-States DISABLED

Package C-State Limit C0/C1 State

CPU C3 Report DISABLED

CPU C6 Report DISABLED

Autonomous C states DISABLED

 List of Kernel Parameters
Table 9 shows Kernel Parameter values used.

http://www.intel.com/content/www/us/en/ethernet-products/optics-cables/ethernet-sfp-optics-brief.html
http://www.intel.com/content/www/us/en/ethernet-products/optics-cables/ethernet-sfp-optics-brief.html
http://www.intel.com/content/www/us/en/ethernet-products/optics-cables/ethernet-sfp-optics-brief.html
https://www.ixiacom.com/products/ixnetwork

White Paper | Intel Platform Service Assurance - Platform Policy Enabling Resource Management

 14

Table 9. Kernel Parameters

Host OS Guest OS

audit=0 audit=0

rhgb quiet rd.lvm.lv=fedora/root

rcu_nocbs=1-7,9-15 rd.lvm.lv=fedora/swap

isolcpus=1-7,9-15 isolcpus=1

default_hugepagesz=1G default_hugepagesz=2M

hugepages=8 hugepages=512

hugepagesz=1G hugepagesz=2M

idle=poll idle=poll

intel_pstate=disable intel_pstate=disable

mce=ignore_ce console=ttyS0,115200n8

nohz_full=1-7,9-15 nohz_full=1

intel_iommu=off nohz=on

nosoftlockup nosoftlockup

processor.max_cstate=1 rcu_nocb_poll

intel_idle.max_cstate=0 rcu_nocbs=1

selinux=0

 Software Packages
Table 10 lists all software packages that were used.

Table 10. Minimal Versions Requirements

Software Packages Version Links Comments

Host Kernel 4.11.12-
100.fc24.x86_64

Host OS Fedora* Core 24

OvS 2.7.90 http://openvswitch.org/

QEMU qemu-2.6.2-6.fc24

Guest Kernel 4.4.13-
200.fc22.x86_64

Guest OS Fedora Core 22

DPDK 16.11 http://dpdk.org/

IPSec Ipsec-secgw from
DPDK

https://doc.dpdk.org/guides-
16.04/sample_app_ug/ipsec_secgw.html

Patched on top of DPDK 16.11 (add support for 1
thread per port and support for 2000 flows)

nDPI l2fwd-ndpi Patched on top of DPDK 16.11

Memtester 4.3.0

Virsh 1.3.3.2

pqos 1.1 https://github.com/01org/intel-cmt-
cat/wiki

PQoS tool from the Intel® RDT Software Package

pid_cache_flush - Internally developed Linux kernel module that
can remove data from LLC belonging to selected
PID. This is helpful to make LLC allocation
changes take prompt effect.

 Software Configuration
A.5.1 Open vSwitch
We used Open vSwitch (OvS) with the Data Plane Development Kit (DPDK) in both SUT configurations because of the greater
throughput that we could achieve over the standard OvS approach.

http://openvswitch.org/
http://dpdk.org/
https://doc.dpdk.org/guides-16.04/sample_app_ug/ipsec_secgw.html
https://doc.dpdk.org/guides-16.04/sample_app_ug/ipsec_secgw.html
https://github.com/01org/intel-cmt-cat/wiki
https://github.com/01org/intel-cmt-cat/wiki

White Paper | Intel Platform Service Assurance - Platform Policy Enabling Resource Management

 15

The data plane configuration type is a userspace bridge. We used two vhost-user ports for nDPI and two vhost-user ports for
IPSec. Two physical ports were added from the Ethernet controller (X710-DA4) as DPDK-type ports. We developed flows to handle
the various packet flow scenarios.

A.5.2 IPSec Security Gateway
The DPDK IPSec Security Gateway is an application that uses the cryptodev framework. The application demonstrates the
implementation of a security gateway using the DPDK based on RFC4301, RFC4303, RFC3602 and RFC2404. Internet Key Exchange
(IKE) is not implemented, therefore only the manual setting of Security Policies (SPs) and Security Associations (SAs) is supported.
The SPs are implemented as Access Control List (ACL) rules, and the SAs are stored in a table with routing implemented using
Longest Prefix Match (LPM).

The IPSec Security Gateway application classifies the ports as Protected and Unprotected. Therefore, traffic received on an
Unprotected or Protected port is consider Inbound or Outbound respectively.

The process for IPSec Inbound traffic is:
• Read packets from the port.
• Classify packets between IPv4 and Encapsulating Security Payload (ESP).
• Perform an Inbound SA lookup for ESP packets based on their SPI.
• Perform Verification/Decryption.
• Remove the ESP and outer IP header.
• Perform an Inbound SP check using the ACL of decrypted packets and any other IPv4 packets.
• Do routing.
• Write the packet to the port.

The process for the IPSec Outbound traffic is:
• Read packets from the port.
• Perform an Outbound SP check using the ACL of all IPv4 traffic.
• Perform an Outbound SA lookup for packets that need IPSec protection.
• Add an ESP and outer IP header.
• Perform Encryption/Digest.
• Do routing.
• Write the packet to port.

A.5.2.1 Source Code Modifications
To fulfill the requirements of the setup, we modified the source code of the ipsec-secgw application as follows:
• Added support for 2000 flows (the original maximum was 1000).
• Added support for using one thread per port (normally, one core handles both incoming and outgoing traffic, but this can lead

to poor performance).

These changes are available as patches that must be applied to the DPDK.

A.5.2.2 Command Line Parameters
The ipsec-secgw application was configured with 2000 flows and 200 IPSec tunnels. The IPSec control-plane is not used and the
tunnels are statically configured using generated configuration files.

As an encryption engine, the Intel® Multi-Buffer Crypto for IPSec library and the AESN-NI Multi Buffer Crytpo Poll Mode Driver
(crypto_aesni_mb) are used.

The following snippet shows the ipsec-secgw command options used in the setup:

ipsec-secgw -c 0x6 -l 1,2 -n 4 \
--vdev="crypto_aesni_mb" \
-w 00:07.0 -w 00:08.0 -- \
-p 0x3 -P -u 0x2 \
--config="(0,0,1),(1,0,2)" \
-f ~/configs/con2003QATEP1.cfg

A.5.3 Deep Packet Inspection
For forwarding packets with Deep Packet Inspection (DPI), we used a tool called l2fwd-ndpi. This tool is not included in the DPDK
by default. Special patches must be applied to the DPDK. The l2fwd-ndpi tool uses the libndpi library for deep packet
inspection. DPI is performed on 100 packets for every 2000 packets to simulate changing flows.

DPI is done on unclassified uplink traffic only.

White Paper | Intel Platform Service Assurance - Platform Policy Enabling Resource Management

 16

A.5.3.1 l2fwd-ndpi Command Line Parameters
Use the following command to start the l2fwd-ndpi tool:

l2fwd-ndpi -n 4 -c 0x6 \
-w 0000:00:06.0 -w 0000:00:07.0 -- \
-p 0x3 \
-x 100 -y 2000 \
-i -n 0x1

A.5.4 Best Effort VM
To simulate cache and memory bandwidth-bound workload, we used the stress-ng tool’s standard matrix multiplication stressor.
In our case, it multiplies a floating-point matrix by a scalar. We chose a matrix size of 768 by 768 as it shows the best response (the
largest difference in number of retired instructions per second) to changes in the number of allocated Cache Ways (CWs).

A.5.4.1 stress-ng Command Line Parameters
Start two stress-ng instances, pinned to cores 0 and 1, using the following commands:

taskset -c 0 stress-ng --matrix 1 --matrix-method mult \
--matrix-size 768 -t 2y
taskset -c 1 stress-ng --matrix 1 --matrix-method mult \
--matrix-size 768 -t 2y

A.5.4.2 CPU Idle Linux Kernel Parameter
To have a number of retired instructions that is greater than 0 observed by the Reliability Agent (using perf) for the idle Best Effort
VM, it is necessary to force the use of a polling idle loop for CPU idle (idle=poll).

The Best Effort VNF’s kernel parameters are as follows:

BOOT_IMAGE=/vmlinuz-4.4.13-200.fc22.x86_64 root=/dev/mapper/fedora-root ro rd.lvm.lv=fedora/swap
rd.lvm.lv=fedora/root console=ttyS0,115200n8 hugepagesz=2M hugepages=512 default_hugepagesz=2M
audit=0 idle=poll

A.5.5 Cache Flush per PID Kernel Module
To flush the cache per PID, the pid_cache_flush Linux* kernel module was developed internally. The kernel module invalidates
cache lines belonging to specific PIDs from all levels of the processor cache hierarchy. This is helpful to make LLC allocation
changes take prompt effect.

 System Configuration
A.6.1 Isolated Cores
To ensure that VMs, the OvS, and the host Operating System (OS) have their own cores for their own processing requirements, and
to keep them outside the control of the general scheduler, they are allocated to isolated cores.

In this setup, the isolated cores are 1-7, 9-15 (HT). This is done using grub command line arguments and is set at each boot up.

A.6.2 Core Pinning
Table 11 shows the cores to which each VM and component are pinned.

White Paper | Intel Platform Service Assurance - Platform Policy Enabling Resource Management

 17

Table 11. Core Pinning

VM/Component Core Pinning

Host OS 0, 8

Hypervisor (KVM/QEMU) 0, 8

OvS 0, 8

DPDK PMD 7, 15

DPI VM 2, 3, 11

IPSec VM 4, 5, 13

Best Effort VM 1, 6

The virtual shell utility virsh is used to set CPU pinning /affinity using an Extensible Markup Language (XML) file.

The Host OS, Hypervisor, and OvS (excluding the Poll Mode Driver [PMD]) are pinned to two Intel® Hyper-Threading Technology
(Intel® HT Technology) threads belonging to one physical core. Best Effort VM virtual CPUs (vCPUs) are pinned to two Intel® HT
Technology threads belonging to two separate physical cores (for increased memory bandwidth utilization). The Best Effort VM is
running on one machine only.

 Test Environment Setup
Figure 11 shows a high-level view of the test environment setup.

Figure 11. Test Environment Setup

 IXIA Traffic Generator
Configuration settings:
• Packet Size: 256B
• Traffic Type: IPv4, Transmission Control Protocol (TCP), Hypertext Transfer Protocol (HTTP) “GET” requests, Bi-directional

traffic
• Line Rate: 12.5%, 8%
• Flows: 2000 (1000 in each direction)

 SUT Components
System Under Test (SUT) components include:
• Group of High-priority VMs (nDPI, IPSec)
• Best Effort VM (single VM running stress-ng)
• OvS
• Cache Flush per PID kernel module
• Sample Platform Policy Agent

SUT
Host 1

AUX
Host 2

IXIA Traffic Generator

P1 P2 P1 P2

P1 P2

White Paper | Intel Platform Service Assurance - Platform Policy Enabling Resource Management

 18

Disclaimers and Notices
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests,
such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to
any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

For more information go to www.intel.com/benchmarks

Performance results are based on testing as of October 2017 and may not reflect all publicly available security updates. See configuration
disclosure for details. No product or component can be absolutely secure.

§ Configurations: Intel performed the tests with the configuration given in Appendix A. See also footnote to Figure 9.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice Revision #20110804

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change
without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications.
Current characterized errata are available on request. No product or component can be absolutely secure.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting
www.intel.com/design/literature.htm.

Intel, the Intel logo, and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

© 2019 Intel Corporation 1019/DN/PTI/PDF 341172-001US

http://www.intel.com/benchmarks
http://www.intel.com/design/literature.htm

	1 Introduction
	1.1 Intended Audience
	1.2 Terminology
	1.3 Reference Documents
	1.4 Technologies
	1.4.1 Intel® Resource Director Technology (RDT)
	1.4.1.1 Cache Allocation Technology (CAT)
	1.4.1.2 Memory Bandwidth Monitoring (MBM)

	1.4.2 Platform Quality of Service (PQoS) Toolkit
	1.4.3 Platform Policy Agent

	2 Platform Policy Enabling Use Case
	2.1 SD-WAN and Best Effort VNFs Overview
	2.1.1 System Under Test (SUT) for SD-WAN Replication
	2.1.2 SUT (SD-WAN) with Best Effort VNF Introduced

	3 Sample Platform Policy Agent
	3.1 Groups of VNFs and Components
	3.2 Sample Platform Policy Agent Details
	3.2.1 Monitored Performance Indicators
	3.2.2 Algorithm
	3.2.3 Cache Ways Partitioning Scheme
	3.2.4 External Dependencies
	3.2.5 CAT Configuration
	3.2.6 Cache Sensitivity and Changing Cache Demand
	3.2.6.1 High-Priority Packet Processing Cache Sensitivity
	3.2.6.2 Best Effort Computing Intensive Cache Sensitivity
	3.2.6.3 Evaluation

	3.3 Sample Policy Agent Dynamic Resource Partitioning Results

	4 Conclusion
	Appendix A Platform and Software Details
	A.1 Hardware Packages
	A.2 BIOS Settings
	A.3 List of Kernel Parameters
	A.4 Software Packages
	A.5 Software Configuration
	A.5.1 Open vSwitch
	A.5.2 IPSec Security Gateway
	A.5.2.1 Source Code Modifications
	A.5.2.2 Command Line Parameters

	A.5.3 Deep Packet Inspection
	A.5.3.1 l2fwd-ndpi Command Line Parameters

	A.5.4 Best Effort VM
	A.5.4.1 stress-ng Command Line Parameters
	A.5.4.2 CPU Idle Linux Kernel Parameter

	A.5.5 Cache Flush per PID Kernel Module

	A.6 System Configuration
	A.6.1 Isolated Cores
	A.6.2 Core Pinning

	A.7 Test Environment Setup
	A.8 IXIA Traffic Generator
	A.9 SUT Components

