
Application Note
Intel Corporation
Data Centric Platform Engineering

NFV Demonstration Framework

Intel® Xeon® Scalable Processors

Authors

Sy Jong, Choi
Intel Corporation

Roy, Wang

Intel Corporation

Hu, Eric
Intel Corporation

Chen, Gene
Intel Corporation

Wang, Lifu

Intel Corporation

Nieh, Gorden
Intel Corporation

Liao, Charlie CL

Intel Corporation

Contents

1 Executive Summary 1
1.1 Problem Statement 1

2 Network Function Virtualization
(NFV) Demonstration Framework 2

2.1 Summary of the Demonstration
Framework .. 2

2.2 Building an NFV system 3

2.2.1 Preparation of Linux Environment.. 5

2.3 Performance Test Scenarios 6

2.4 Preparation for OpenvSwitch:- 7

2.4.1 Steps to Initialize a New OvS
Database ... 8

2.5 Traffic Generator ... 9

2.6 Data Collection .. 11

2.7 Grafana for Data Visualization 18

3 Platform Specifications 26

4 Appendix A: Abbreviations 29

5 Appendix B: Reference Documents .. 30

6 Legal Information 31

1 Executive Summary
The Network Function Virtualization (NFV) demonstration framework achieves
two primary functionalities by combining the console execution of an NFV
system with the data visualization from InfluxDB* and Grafana*. This allows for
setup to create an NFV demonstration without the use of physical equipment
units.
The NFV demonstration setup requires only an Intel® NUC mini Personal
Computer (PC) to run the demonstration playback to a client, eliminating the
need for additional equipment.
Additionally, this framework can be used as a learning platform that, given its
screen recording and publishing capabilities, allows the user to bring up an NFV
system to follow a recorded tutorial rather than a document-based user guide.
For more information on NFV which is included in the Intel Container Experience
Kits, visit Intel® Network Builders.

1.1 Problem Statement
The ETSI-based NFV reference architecture consists of the following functional
blocks:

• OSS and BSS
• EM
• VNF
• Service, VNF, and infrastructure description
• VNF manager(s)
• NFV orchestrator
• VIM(s)
• NFVI that includes hardware and virtual compute, storage, and network

resources
Various hardware and software components are required to be integrated to
create an NFV system. This creates a high complexity barrier for clients—
especially ODMs—who are focused on hardware design only and are not able to
demonstrate a boards’ full capabilities outside the traditional server
functionalities.
The known issues encountered with NFV systems include:

• Setup/integration of an NFV system
• Creation of relevant workload/use cases
• Understanding of the Intel technology
• Inability to extract workload KPIs to show the Intel platform’s benefits
• Long turnaround time to optimize the system
• Lack of experience to tune the system’s performance for a network

transformation

The NFV demonstration framework may provide a solution to solve these problems.
This document outlines how an NFV system is setup and how the KPI data are being collected/recorded with various
permutations to Intel technologies, providing a data collection methodology to record the results from an NFV system.
Additionally, the demonstration framework allows the user to save the collected data and play it back later for a
demonstration or to present an intuitive data visualization environment for users to discover the performance benefits of Intel
processors without additional equipment.
Included in this document:

• A guide to setting up an NFV system with key elements such as:
o Host system with Linux* OS
o OvS
o VM: Ubuntu* 16.04
o VNF: testpmd application

• The KPI used is the data plane performance of a physical-to-virtual-back-to-physical topology. Highlights from this
document include:

Current Demo Setup

Traffic Generator

Data collection Setup
Only need once

Demonstration Setup
Repeat as many times needed

Device Under Test

Commercial
Traffic

Generator

Intel and Third-party Trademark Description: -
Intel® Xeon® Gold
Open vSwitch* (OvS*)
Data Plane Development Kit* (DPDK*)
Trex*
InfluxDB*
Grafana*

• The demonstration framework provides:

o A methodology to collect rate from traffic (the data point) to/from the traffic generator to be used for future
playback

o A recording of the console terminal, saving it for future playback to simulate the actual run
o A playback of the two features at once (the data point collection and the console terminal) and the update to

a database for a data visualization tool to present the information to the clients, simulating the actual
execution and performance of the NFV system

• The following elements are part of the demonstration framework:
o asciinema*: a tool to record the console output to play it back later
o TRex: a tool to generate traffic and to measure the NFV KPI
o InfluxDB: a tool to store the data point of the NFV KPI
o Grafana: a tool to display the changes in performance before/after applying the Intel technology

Application Note | NFV Demonstration Framework

2

2 Network Function Virtualization (NFV) Demonstration Framework
The NFV demonstration framework is designed to show the playback of a prerecorded terminal console and the data point in
a data visualization Graphic User Interface (GUI). The objective is to allow the user to place the NFV Key Performance Indexes
(KPIs) into a simple file format to later use Python* to upload the data into an open source time series database which is then
picked up by a data visualizing front-end application.
Below is the architecture workflow:

2.1 Summary of the Demonstration Framework
To summarize how the demonstration framework works, the following scenario assumes that the sample data points are
viable. In the code sample below, there is a total of five minutes of data collected at 1-Hz frequency:
#TX bps RX bps TX pps RX pps
33499588416.0 24600565248.0 49850578.0 36607984.0
33551246400.0 24606240288.0 49927450.0 36616429.0
33651676128.0 24604982976.0 50076899.0 36614558.0
33579966336.0 24619423584.0 49970188.0 36636047.0
33529855296.0 24634791552.0 49895618.0 36658916.0
33513466560.0 24630570720.0 49871230.0 36652635.0

……….

To playback the data point, add an entry into the InfluxDB* at a 1-Hz rate:
cl = InfluxDBClient(host='127.0.0.1', port=8086)
cl.switch_database('mydb')

f = open("/home/cs2019/"+file_name, "r")
lines = f.readlines()
f.close()

i = 0

run this forever
while True:
 line = lines[i]
 i += 1

 if i == len(lines):
 # restart from beginning again, when reach last line
 i = 0

 # breaks line into list
 line = line.split('\n')
 data_points = line[0].split(' ')

 entry = [{"measurement" : 'performance', "fields" :
 {file_name+"_tx_bps" : float(data_points[0]),
 file_name+"_rx_bps" : float(data_points[1]),
 file_name+"_tx_pps" : float(data_points[2]),
 file_name+"_rx_pps" : float(data_points[3])}}]
 # write data point into database
 cl.write_points(entry)
 # wait for 1 second for 1Hz frequency
 sleep(1)

PY

Application Note | NFV Demonstration Framework

3

Then, by configuring Grafana*’s dashboard and panel, the user can create a real time graph of data rate forwarded by an NFV
system.

The next sections and subchapters in this document explain the entire process from creating an NFV system to creating an
offline demonstration.

2.2 Building an NFV system
An NFV system as defined by ETSI are specify by the diagram below:-

Application Note | NFV Demonstration Framework

4

An simplify NFV test environment used by this document specified by the diagram below:-

Computing
Hardware

Storage
Hardware

Network
Hardware

Hardware resources

Virtualisation Layer
Virtualised

Infrastructure
Manager(s)

VNF
Manager(s)

VNF 2

OSS/BSS

NFVI

VNF 3 VNF 1

Virtual
Computing

Virtual Storage Virtual Network

EMS 2 EMS 3 EMS 1

Service, VNF and Infrastructure
Description

Nf-Vi

Orchestrator

Acronym Descriptions:
Operations Support System (OSS)
Business Support System (BSS)
Virtualize Network Function (VNF)
Element Management (EM)
NFV Infrastructure (NFVI)

Application Note | NFV Demonstration Framework

5

This simplest form of an NFV environment consists of preparing a Linux* system (refer to the Ubuntu* or Fedora* websites to
prepare a Linux host system).

2.2.1 Preparation of Linux Environment

For the Red Hat Enterprise Linux* (RHEL*)/Fedora systems, install the following required software packages by executing the
following commands:
$ dnf groupinstall "Development Tools"
$ yum install "kernel-devel-uname-r == $(uname -r)"
$ yum install python-six autoconf automake

For the Ubuntu/Debian* systems, install the following required software packages by executing the following commands:
$ apt install build-essential
$ apt install linux-headers-$(uname -r)
$ apt-get install python-six autoconf automake

Software Versions Needed for an NFV Environment:-

Software Needed for NFV Environment Version

DPDK dpdk-stable-17.11.4

OpenvSwitch openvswitch-2.10.1

Qemu qemu-2.12.1

Trex Trex v2.35

The following commands are used to compile each software:

ovs

VM
Testpmd

dpdk

Fedora 29

Traffic Gen

https://ubuntu.com/tutorials/tutorial-install-ubuntu-desktop#1-overview
https://docs.fedoraproject.org/en-US/fedora/rawhide/install-guide/install/Preparing_for_Installation/

Application Note | NFV Demonstration Framework

6

• Compile DPDK
$ cd /<dpdk_source_code>
$ make install T=x86_64-native-linuxapp-gcc DESTDIR=install
$ cd x86_64-native-linuxapp-gcc
$ EXTRA_CFLAGS="-Ofast" make -j3

• Compile OpenvSwitch
$ cd /<path_of_openvswitch_source_code>
$./boot.sh
$./configure --with-dpdk=/<dpdk_source_code>/x86_64-native-linuxapp-gcc CFLAGS="-Ofast" --disable-ssl
$ make CFLAGS="-Ofast -march=native" -j3

• Compile Qemu
cd /<qemu_source_code>
apt-get install -y libglib2.0-dev libfdt-dev libpixman-1-dev zlib1g-dev
./configure --target-list=x86_64-softmmu
make -j10

2.3 Performance Test Scenarios
The NFV KPI performance test scenarios are designed to demonstrate the data plane forwarding capability of the host virtual
switch moving data packets from the host physical ports to the Virtual Machine (VM).

The VM will also be running a simplified Virtualized Network Function (VNF) that forwards data packets, back and forth, from
the virtio interface to the virtual switch.

The data path of this test goes from the physical port to the vswitch; after which, the virtio interface in the VM is forwarded by
the VNF from another virtio interface. The vswitch then forwards the virtio interface to the physical port to complete the route.

The following software applications are used as the applications under test in the scenario above:
• The testpmd DPDK user-mode application: the DPDK is a set of libraries providing a programming framework to

enable high speed data packet networking applications. The applications using DPDK libraries and interfaces run in
user mode and directly interface with the Network Interface Card (NIC) functions, skipping slow, and kernel layer
components to boost the packet processing performance and throughput. These applications process raw network
packets without relying on the protocol stack functionality provided by kernel. For more information on the DPDK, go
to http://www.dpdk.org.

• The OvS is an open-source implementation of a distributed virtual multilayer switch. The main purpose of the OvS is
to provide a switching stack for hardware virtualization environments while supporting multiple protocols and
standards used in computer networks. It is optimized with DPDK libraries to deliver an improved performance in
comparison with the kernel-based data plane.

Application Note | NFV Demonstration Framework

7

When the required software components are compiled, launch the applications.

2.4 Preparation for OpenvSwitch:-
export DPDK_DIR=/<dpdk_source_code>
export DPDK_BUILD=$DPDK_DIR/x86_64-native-linuxapp-gcc
export OVS_DIR=/<openvsiwtch_source_code>

echo 32 > /sys/devices/system/node/node0/hugepages/hugepages-1048576kB/nr_hugepages
echo 32 > /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages

umount /dev/hugepages
mount -t hugetlbfs nodev /dev/hugepages -o pagesize=1GB

rmmod i40e
rmmod igb_uio
rmmod cuse
rmmod fuse
rmmod openvswitch
rmmod uio
rmmod eventfd_link
rmmod ioeventfd
rm -rf /dev/vhost-net

modprobe uio
insmod $DPDK_BUILD/kmod/igb_uio.ko

python $DPDK_DIR/usertools/dpdk-devbind.py --bind=igb_uio <NIC1_B:D:F>
python $DPDK_DIR/usertools/dpdk-devbind.py --bind=igb_uio <NIC2_B:D:F>
terminate OVS

pkill -9 ovs
rm -rf /usr/local/var/run/openvswitch

ovs

VM - vCPUs

testpmd

pmd pmd

vhost vhost

virtio virtio

Acronym Descriptions:
Virtual Machine (VM)
Virtual Central Processing Unit (vCPU)
Virtual Host (vHost)
Poll Mode Driver (PMD)

Third-party Trademark Description:
Open VSwitch * (OvS*)

Application Note | NFV Demonstration Framework

8

rm -rf /usr/local/etc/openvswitch/
rm -rf /usr/local/var/log/openvswitch
rm -f /tmp/conf.db

mkdir -p /usr/local/etc/openvswitch
mkdir -p /usr/local/var/run/openvswitch
mkdir -p /usr/local/var/log/openvswitch

2.4.1 Steps to Initialize a New OvS Database
1. Before launching the OvS daemon “ovs-vswitchd,” it is necessary to initialize the OvS database and start the ovsdb-

server. The following commands show how to clear and create a new OvS database and an ovsdb-server instance:
cd $OVS_DIR
./ovsdb/ovsdb-tool create /usr/local/etc/openvswitch/conf.db ./vswitchd/vswitch.ovsschema

Starting OpenvSwitch database server:-
./ovsdb/ovsdb-server --remote=punix:/usr/local/var/run/openvswitch/db.sock \
 --remote=db:Open_vSwitch,Open_vSwitch,manager_options \
 --pidfile --detach

Initialize OpenvSwitch database:-
./utilities/ovs-vsctl --no-wait init

2. Start the OvS portion using 1 GB:

export DB_SOCK=/usr/local/var/run/openvswitch/db.sock

#Edit this section for the ovs-vswitchd to be on Core 1 (in socket0) or core X (in remote socket).
By default it is set to core 1 (local socket0)
./utilities/ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-init=true other_config:dpdk-
lcore-mask=<Core_Mask> other_config:dpdk-socket-mem="2048,2048"

3. Locate the OvS log file at /usr/local/var/log/openvswitch/ovs-vswitchd.log:

./vswitchd/ovs-vswitchd unix:$DB_SOCK --pidfile --detach --log-
file=/usr/local/var/log/openvswitch/ovs-vswitchd.log

$ OVS_DIR/utilities/ovs-vsctl set Open_vSwitch . other_config:pmd-cpu-mask=<Core Mask>
$ OVS_DIR/utilities/ovs-vsctl set Open_vSwitch . other_config:max-idle=30000

4. The following steps create a bridge with two physical ports and two back-end Virtual Hosts (vHosts) to support two

virtio interfaces in the VM:
./utilities/ovs-vsctl add-br br0 -- set bridge br0 datapath_type=netdev
ifconfig br0 0 up
./utilities/ovs-vsctl add-port br0 dpdk0 -- set Interface dpdk0 type=dpdk options:dpdk-
devargs=<NIC1_B:D:F> ofport_request=1
sleep 8
./utilities/ovs-vsctl add-port br0 dpdk1 -- set Interface dpdk1 type=dpdk options:dpdk-
devargs=<NIC2_B:D:F> ofport_request=2
sleep 8

#Create vhost-user interfaces
./utilities/ovs-vsctl add-port br0 vhost-user0 -- set Interface vhost-user0 type=dpdkvhostuser
ofport_request=3
./utilities/ovs-vsctl add-port br0 vhost-user1 -- set Interface vhost-user1 type=dpdkvhostuser

Application Note | NFV Demonstration Framework

9

ofport_request=4

./utilities/ovs-vsctl show

5. Once OvS is running, the next step is to start the VM:

<qemu_source_code>/x86_64-softmmu/qemu-system-x86_64 -m 4G -smp 3,cores=3,threads=1,sockets=1 -cpu
host -drive format=raw,file="+main_path+"vm-images/ubuntu-16.04-testpmd.img -boot c -enable-kvm -
name VNF -object memory-backend-file,id=mem,size=4G,mem-path=/dev/hugepages,share=on -numa
node,memdev=mem -mem-prealloc -netdev user,id=nttsip,hostfwd=tcp::2024-:22 -device
e1000,netdev=nttsip -chardev socket,id=char1,path=/usr/local/var/run/openvswitch/vhost-user0 -
netdev type=vhost-user,id=net1,chardev=char1,vhostforce -device virtio-net-
pci,netdev=net1,mac=00:01:00:00:00:01,csum=off,gso=off,guest_tso4=off,guest_tso6=off,guest_ecn=off,
mrg_rxbuf=off -chardev socket,id=char2,path=/usr/local/var/run/openvswitch/vhost-user1 -netdev
type=vhost-user,id=net2,chardev=char2,vhostforce -device virtio-net-
pci,netdev=net2,mac=00:02:00:00:00:02,csum=off,gso=off,guest_tso4=off,guest_tso6=off,guest_ecn=off,
mrg_rxbuf=off -vnc :1 -daemonize

6. With the VM powered on, the last step is to start the testpmd application to forward packets between two virtio

interfaces:
First logging to the VM via ssh root@localhost -p 2024
#export DPDK_DIR=/root/dpdk-stable-17.05.1; rmmod igb_uio; modprobe uio; insmod $DPDK_DIR/x86_64-
native-linuxapp-gcc/kmod/igb_uio.ko

$DPDK_DIR/usertools/dpdk-devbind.py -b igb_uio 00:04.0
$DPDK_DIR/usertools/dpdk-devbind.py -b igb_uio 00:05.0
#DPDK_DIR/x86_64-native-linuxapp-gcc/app/testpmd -c 0x6 -n 4 -- --burst=64 --txd=2048 --rxd=2048 --
txqflags=0xf00 --disable-hw-vlan

With the steps completed, an NFV system with a simple VNF is now ready.

2.5 Traffic Generator
In this configuration, the traffic generator runs on another CPU socket to avoid it from interfering with the NFV system, and
the VNF runs across the Intel® Ultra Path Interconnect (Intel® UPI) on the opposing socket. To get the TRex traffic generator
up and running, follow the next instructions:

• Download Trex software package
wget --no-check-certificate http://trex-tgn.cisco.com/trex/release/v2.35.tar.gz

• Extract and setup Trex
tar xzvf v2.35.tar.gz
cd v2.35
vi config.yaml
Config file generated by dpdk_setup_ports.py ###

- port_limit: 2

 version: 2

 interfaces: ['<NIC1_B:D:F>', '<NIC2_B:D:F>']

 limit_memory : 2048

 rx_desc : 4096

 tx_desc : 4096

 prefix: trex

 port_info:

 - dest_mac: 00:01:02:03:04:05 # MAC OF LOOPBACK TO IT'S DUAL INTERFACE

 src_mac: 00:11:22:33:44:55

 - dest_mac: 00:11:22:33:44:55 # MAC OF LOOPBACK TO IT'S DUAL INTERFACE

 src_mac: 00:01:02:03:04:05

http://trex-tgn.cisco.com/trex/release/v2.35.tar.gz

Application Note | NFV Demonstration Framework

10

 platform:

 master_thread_id: 1

 latency_thread_id: 2

 dual_if:

 - socket: 0

 threads: [<Provide 8 CORES ID>]

• To run TRex: -
./t-rex-64 --cfg config.yaml -i -c 8

Traffic Generator Workflow:-

Another key component to this framework is to use a traffic generator with a Python Application Programming Interface (API)
which is convenient for controlling the traffic and packet rates that can be collected from the traffic generator at a fixed
interval.
By executing the steps from A to H, as shown in the following figure, the traffic will be flowing across the virtual switch to the
VNF in the VM and backout through another port.
Traffic Flow Steps:-

T-Rex
Traffic Generator

DPDK
ovs

VM - vCPUs

testpm
d

OS OS

pmd pmd

vhost

Acronym Descriptions:
Virtual Machine (VM)
Virtual Central Processing Unit (vCPU)
Virtual Host (vHost)
Poll Mode Driver (PMD)

Intel and Third-party Trademark Description:
Data Plane Development Kit* (DPDK*)
Open VSwitch * (OvS*)
Trex*

Application Note | NFV Demonstration Framework

11

2.6 Data Collection
There are two parts in the data collection to complete the framework:

1. The screen capture of the execution of the traffic generator and VM VNF.
2. The data needed to be collected here are Packets per Second (PPS) to measure the data forwarding rate of an NFV

system and a VNF.

Integration of Data Collection Components: -

ovs

VM
Testpmd

dpdk

Traffic Gen InfluxDB

Grafana Data Collect

Fedora 29

Acronym Descriptions:
Virtual Machine (VM)
Central Processing Unit (CPU)
Double Data Rate (DDR)
Channel (CH)

Intel and Third-party Trademark Descriptions:
Data Plane Development Kit* (DPDk*)
Open vSwitch* (OvS*)
PCIe*
Intel® Xeon® Processor Scalable Family
Intel® Ultra Path Interconnect (Intel® UPI)

Application Note | NFV Demonstration Framework

12

This document uses InfluxDB to store the NFV KPI. InfluxDB is the database and purpose-built storage engine to handle time
series data; it is a metric store for multiple data sources to help you avoid a siloed approach.

#Fedora: -
cat <<EOF | sudo tee /etc/yum.repos.d/InfluxDB.repo
[InfluxDB]
name = InfluxDB Repository - RHEL
baseurl = https://repos.influxdata.com/rhel/7/x86_64/stable/
enabled = 1
gpgcheck = 1
gpgkey = https://repos.influxdata.com/InfluxDB.key
EOF
dnf -y install InfluxDB

#Ubuntu: -
curl -sL https://repos.influxdata.com/InfluxDB.key | sudo apt-key add -
source /etc/lsb-release
echo "deb https://repos.influxdata.com/${DISTRIB_ID,,} ${DISTRIB_CODENAME} stable" | sudo tee
/etc/apt/sources.list.d/InfluxDB.list
sudo apt-get update && sudo apt-get install InfluxDB

To display the data points, this document uses Grafana; it is an open source analytics and monitoring solution for every
database. Grafana allows the user to query, visualize, alert on and understand the NFV KPI metrics wherever they are stored.
To install Grafana, run the following commands:

#Ferdora:-
yum install initscripts urw-fonts
wget https://dl.grafana.com/oss/release/grafana-5.4.2-1.x86_64.rpm
sudo yum localinstall grafana-5.4.2-1.x86_64.rpm

#Ubuntu: -
wget https://dl.grafana.com/oss/release/grafana_5.4.2_amd64.deb
sudo dpkg -i grafana_5.4.2_amd64.deb

Application Note | NFV Demonstration Framework

13

The following figures show a created console providing the live data feed of core utilization, traffic generator, and testpmd’s
packet rates:

Main control windows

Application Note | NFV Demonstration Framework

14

Trex statistic window:-

Testpmd PPS window

Application Note | NFV Demonstration Framework

15

CPU utilization window:-

For screen capture, this process uses asciinema* as the tool to record and share the terminal sessions; it is lightweight, text-
based approach to terminal recording and allows the console execution to be played back as if it was the real execution of the
application.
The method consists of splitting the recording into two parts; start by recording the setup until the traffic starts flowing and
then stop the recording.
Next, record the console screen for the continuous flow of packets across the OvS and the VM’s testpmd for a fix duration (for
example, five minutes).
The recording should also collect the same amount of data points to match the screen recording (for example, five minutes).
As a result, start collecting the NFV KPI data (for example, packets per second) for every second interval at 1-Hz frequency.

Ensure that the backend TRex is running in the background to create traffic streams; this demonstration uses the TRex
Python API to configure and start the transmission of the traffic.
connect to trex backend

trex_client = STLClient(username = "root", server="127.0.0.1")

trex_client.connect()

prepare

trex_client.reset(ports=[0,1])

trex_client.clear_stats()

trex_client.set_port_attr(ports = [0,1], promiscuous=True)

Create a packet contents, based on scapy python api

base_pkt =
Ether(dst='00:02:00:00:00:02')/IP(src="10.2.2.22",dst="10.1.1.11")/UDP(dport=5201,sport=1025)

 pad = max(0, pkt_size - len(base_pkt)) * 'x'

Create a stream, with attribute of base_pkt, inter stream gap, and statistic collection

s0 = STLStream(isg = 0.0, name='S0', packet = STLPktBuilder(pkt = base_pkt/pad), mode = STLTXCont(
percentage = 100), flow_stats = STLFlowStats(pg_id = 0))

add both streams to the desire port

trex_client.add_streams(s0, ports = [0])

clear the stats before injecting

trex_client.clear_stats()

Application Note | NFV Demonstration Framework

16

start transmission of the traffic

trex_client.start(ports = [0], mult = "100%", duration = -1, core_mask = STLClient.CORE_MASK_PIN)

The next sample code is to collect the statistics from TRex and save the results as data points:
Connect to trex backend

trex_client = STLClient(username = "root", server="127.0.0.1")

trex_client.connect()

the flow stats is state at pgids = 1

fs = trex_client.get_pgid_stats()

tx_bps_l1 = fs['flow_stats'][fs_pgids[1]]['tx_bps_l1']['total']

tx_pps = fs['flow_stats'][fs_pgids[1]]['tx_pps']['total']

rx_pps = fs['flow_stats'][fs_pgids[1]]['rx_pps']['total']

final formatting the data

tx_bps_l1 = float(tx_bps_l1)

tx_pps = float(tx_pps)

rx_pps = float(rx_pps)

need to calculate this value due do trex value not correct

rx_bps_l1 = float(rx_pps * (pkt_size + 24) * 8)

a single line in the text file is 1 second of data.

data_points = str(tx_bps_l1) + ' ' + str(rx_bps_l1) + ' ' + str(tx_pps) + ' ' + str(rx_pps) + '\n'

write data point into a file.

f = open(path_download+"/result.txt", "w")

f.write(data_points)

f.close()

Interaction between the asciinema Recording and the Data Point Playback :-

Setup
Cast

Run Once

Loop
infinitely

Traffic
Cast

KPI
Data

Simultaneous
As background
Thread

Loop
infinitely

Application Note | NFV Demonstration Framework

17

This scenario assumes that the following sample data points are viable. In the following code sample, there is a total of five
minutes of data collected at 1-Hz frequency:
#TX bps RX bps TX pps RX pps

33499588416.0 24600565248.0 49850578.0 36607984.0

33551246400.0 24606240288.0 49927450.0 36616429.0

33651676128.0 24604982976.0 50076899.0 36614558.0

33579966336.0 24619423584.0 49970188.0 36636047.0

33529855296.0 24634791552.0 49895618.0 36658916.0

33513466560.0 24630570720.0 49871230.0 36652635.0

……….

To play the screen playback, run the python code below:
os.system("asciinema play -s 1 /<your_recording_path>/setup.cast")

run this forever

while True:

 os.system('clear')

 os.system("asciinema play -s 1 /<your_recording_path>/traffic.cast")

 time.sleep(1)

To playback the data point, , run the python code below:-
cl = InfluxDBClient(host='127.0.0.1', port=8086)

cl.switch_database('mydb')

f = open("/home/cs2019/"+file_name, "r")

lines = f.readlines()

f.close()

i = 0

run this forever

while True:

 line = lines[i]

 i += 1

 if i == len(lines):

 # restart from beginning again, when reach last line

 i = 0

 # breaks line into list

 line = line.split('\n')

 data_points = line[0].split(' ')

 entry = [{"measurement" : 'performance', "fields" :

 {file_name+"_tx_bps" : float(data_points[0]),

 file_name+"_rx_bps" : float(data_points[1]),

 file_name+"_tx_pps" : float(data_points[2]),

 file_name+"_rx_pps" : float(data_points[3])}}]

 # write data point into database

 cl.write_points(entry)

 # wait for 1 second for 1Hz frequency

 sleep(1)

Application Note | NFV Demonstration Framework

18

Or to combine the play back screen recording and the data point update to the database, create a function based on the code
above (for example, a function name as “start_update_db”):
os.system("asciinema play -s 1 /<your_recording_path>/setup.cast")

right after setup playback is done, start updating database

t = threading.Thread(target=start_update_db,args=[<your_data_point_file>])

t.start()

threads.append(t)

run this forever

while True:

 os.system('clear')

 os.system("asciinema play -s 1 /home/cs2019/traffic_"+sys.argv[2]+".cast")

 time.sleep(1)

2.7 Grafana for Data Visualization
Grafana is used to query, to visualize, and to store data points in InfluxDB.
With a built-in function, this demonstration creates a time-based graph to visualize the incoming NFV KPIs since the function
automatically queries the new entries in the InfluxDB.
The following guide shows how to create a graph to show the latest performance of the NFV system.
1. First, access Grafana via an Internet browser by using the following link sample: http://<your system ip address>:3000

Application Note | NFV Demonstration Framework

19

2. In the first access to the system, the user is required to add a data source; in this case, select the InfluxDB.

3. The user must update the Uniform Resource Locator (URL) of InfluxDB (this document uses http://localhost:8086

because both InfluxDB and Grafana reside on the same system) so that Grafana is able to connect to it and to provide
the database name.

Application Note | NFV Demonstration Framework

20

4. Press “Save & Test” and make sure that Grafana prompts back the message “Data source is working.”

Application Note | NFV Demonstration Framework

21

5. Click the “+” button and create a new dashboard.

6. In the new dashboard, select the option “Add” and choose “Graph” as the new panel.

Application Note | NFV Demonstration Framework

22

7. After doing this, a mock-up graph panel shows up.

Application Note | NFV Demonstration Framework

23

8. Click on the panel title and select “Edit.”

9. Update the graph to read the InfluxDB database by setting the following values: in “Data Source,” choose “testing;” in

“FROM,” set the measurement to “performance;” and in “SELECT,” enter the data point “rx_bps.” The user can also
provide a name for “rx_bps” in the “ALIAS BY” field. Finally, change the time interval to two seconds.

Application Note | NFV Demonstration Framework

24

10. Next, give the “data_rate” > “bits/sec” unit to “rx_bps.”

11. At the upper right corner, the user can change the time frame and the refresh rate of Grafana. Finally, the graph should

look as in the figure below; the user is allowed to create other panels (follow Grafana’s documentation for more
details).

Application Note | NFV Demonstration Framework

25

12. Finally, the graph should look as in the figure below; the user is allowed to create other panels (follow Grafana’s

documentation for more details).

Application Note | NFV Demonstration Framework

26

3 Platform Specifications
The following tables list the hardware and software components used by the Network Function Virtualization (NFV) system and by
the demonstration system.
Table 3-1 Hardware Ingredients for the NFV System Used in the Performance Tests

Item Description Notes
Platform Intel Server Board S2600WFQ Intel Xeon processor-based dual- processor server

board with 2 x 10 GbE integrated LAN ports

Processor 2 x Intel Xeon Gold Processor At least 10 cores are require, with 2 processors and
hyperthread, 20 cores with 40 threads

Memory 192GB Total; Micron* MTA36ASF2G72PZ 12x16GB DDR4 2133MHz

16GB per channel, 6 Channels per socket

NIC 3 x Intel Ethernet Network Adapter XXV710-DA2
(2x25G)

6 x 1/10/25 GbE ports, only 4 will be use.

Firmware version 5.50

Storage Intel DC P3700 SSDPE2MD800G4 SSDPE2MD800G4 800 GB SSD 2.5in
NVMe/PCIe

BIOS Intel Corporation

SE5C620.86B.0X.01.0007.060920171037

Release Date: 06/09/2017

Hyper-Threading - Enable

Boot performance Mode – Max Performance

Energy Efficient Turbo – Disabled Turbo

Mode - Disabled

C State - Disabled P State -

Disabled Intel VT-x Enabled

Intel VT-d Enabled

Table 3-2 Software Ingredients for the NFV System Used in the Performance Tests

Software Component Description References

Host Operating
System

Ubuntu 18.04 x86_64 (Server)

Fedora 29

https://www.ubuntu.com/download/server
https://getfedora.org/en/server/download/

DPDK dpdk-stable-17.11.4 https://fast.dpdk.org/rel/dpdk-17.11.4.tar.xz

OpenvSwitch openvswitch-2.10.1 https://www.openvswitch.org/releases/openv
switch-2.10.1.tar.gz

Qemu qemu-2.12.1 https://download.qemu.org/qemu-
2.12.1.tar.xz

Trex V2.35 https://github.com/cisco-system-traffic-
generator/trex-core/releases/tag/v2.35

https://www.ubuntu.com/download/server
https://getfedora.org/en/server/download/
https://fast.dpdk.org/rel/dpdk-17.11.4.tar.xz
https://www.openvswitch.org/releases/openvswitch-2.10.1.tar.gz
https://www.openvswitch.org/releases/openvswitch-2.10.1.tar.gz
https://download.qemu.org/qemu-2.12.1.tar.xz
https://download.qemu.org/qemu-2.12.1.tar.xz
https://github.com/cisco-system-traffic-generator/trex-core/releases/tag/v2.35
https://github.com/cisco-system-traffic-generator/trex-core/releases/tag/v2.35

Application Note | NFV Demonstration Framework

27

Table 3-3 Hardware Ingredients for the Demonstration System Used in the Performance Tests

Item Description Notes
Platform INTEL® NUC KIT NUC6i7KYK Intel® NUC 7 Mini PC

Processor Core i7 6770HQ Skylake Base Frequency 2.60Ghz, 4 cores 8 threads

Memory 16 GB 2x8GB DDR4 2133MHz

8GB per channel, 2 Channels

NIC Intel® Ethernet Connection I219-LM 10/100/1G Ethernet

Storage M.2 SSD Intel SSDSCKKW 512GB SSD 2.5in

Table 3-4 Software Ingredients for the Demonstration System Used in the Performance Tests

Software Component Description References
Host Operating
System

Linux OS Distribution: Fedora or Ubuntu

Kernel: 4.4.0-62-generic

https://www.ubuntu.com/download/server

Database InfluxDB From OS repository

Data Visualization Grafana https://dl.grafana.com/oss/release/grafana_5
.4.2_amd64.deb

https://www.ubuntu.com/download/server
https://dl.grafana.com/oss/release/grafana_5.4.2_amd64.deb
https://dl.grafana.com/oss/release/grafana_5.4.2_amd64.deb

Application Note | NFV Demonstration Framework

29

4 Appendix A: Abbreviations

Abbreviation Description
CPU Central Processing Unit

DPDK Data Plane Development Kit

DUT Device Under Test

KPI Key Performance Index

NFV Network Functions Virtualization

NUC Next Unit Computing

OVS OpenvSwitch

PMD DPDK Poll Mode Driver

SKU Stock Keeping Unit

SLA Service Level Agreement

SUT System Under Test

VM Virtual Machine

VNF Virtual Network Function

Application Note | NFV Demonstration Framework

30

5 Appendix B: Reference Documents

Title Reference
1 Intel Ethernet Converged Network

Adapter X710-DA2
http://ark.intel.com/products/83964/Intel-Ethernet-Converged-Network-
Adapter-X710-DA2

2 RFC 2544 Benchmarking
Methodology

https://tools.ietf.org/html/rfc2544

3 TRex https://trex-tgn.cisco.com/

4 InfluxDB https://www.influxdata.com/

5 Grafana https://grafana.com/

6 ETSI https://www.etsi.org/technologies/nfv/nfv

http://ark.intel.com/products/83964/Intel-Ethernet-Converged-Network-Adapter-X710-DA2
http://ark.intel.com/products/83964/Intel-Ethernet-Converged-Network-Adapter-X710-DA2
https://tools.ietf.org/html/rfc2544
https://trex-tgn.cisco.com/
https://www.influxdata.com/
https://grafana.com/

Application Note | NFV Demonstration Framework

6 Legal Information
By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-

exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSO-

EVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifi cations. Current characterized
errata are available on request. Contact your local Intel sales once or your distributor to obtain the latest specifications and before placing your product order.

Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer or retailer. Tests document performance of components on
a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you
consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

All products, computer systems, dates and gestures specified are preliminary based on current expectations, and are subject to change without notice. Results have been estimated or simulated
using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may
affect your actual performance.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses.
Intel does not control or audit third-party websites referenced in this document. You should visit the referenced website and confirm whether referenced data are accurate.
Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of

documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual
property rights.

Intel, the Intel logo, Intel vPro, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

© Intel Corporation . All rights reserved. Printed in USA Please Recycle 0319/SJC//PDF 342792 -001US

http://www.intel.com/performance

	1 Executive Summary
	1.1 Problem Statement

	2 Network Function Virtualization (NFV) Demonstration Framework
	2.1 Summary of the Demonstration Framework
	2.2 Building an NFV system
	2.2.1 Preparation of Linux Environment

	2.3 Performance Test Scenarios
	2.4 Preparation for OpenvSwitch:-
	2.4.1 Steps to Initialize a New OvS Database

	2.5 Traffic Generator
	2.6 Data Collection
	2.7 Grafana for Data Visualization

	3 Platform Specifications
	4
	4.0
	4.1
	5

	4 Appendix A: Abbreviations
	5 Appendix B: Reference Documents
	6 Legal Information

