
 1

Technology Guide

Intel® Deep Learning Boost - Improve
Inference Performance of BERT Base
Model from Hugging Face for Network
Security

Authors
David Lu

Shuangpeng Zhou

Jing Xu

Weizhuo Zhang

Heqing Zhu

Feng Tian

1 Introduction
Emails and SMS messages are very popular communication tools, and many people rely on
them every day. There are also cyber attackers who send massive phishing emails or SMS
messages to steal private information. There are many ways to prevent such cyberattacks.
However, since scammers use traffic engineering, it is very difficult to detect phishing emails
or SMS. With the development of deep learning technologies, it is proven to be the best way
to prevent such advanced cyberattacks. Network security companies already use different
deep-learning methods such as CNN, LSTM, and BERT in their security products. BERT
model provides the best accuracy among these models. However, it takes a longer inference
time when compared to other deep-learning models. The inference latency is one of the big
challenges to adopt BERT model into their network security products such as SASE and
NGFW.

PyTorch* is one of the widely used deep-learning frameworks. To boost the performance
under Intel® hardware, Intel provides the open-source Intel® Extension for PyTorch* (IPEX)
with latest feature optimizations. These optimizations take advantage of Intel® AVX-512
Vector Neural Network Instructions (Intel® AVX-512 VNNI) and Intel® Advanced Matrix
Extensions (Intel® AMX) on Intel® CPUs as well as Intel® Xe Matrix Extensions (Intel® XMX)
AI engines on Intel discrete GPUs.

This guide illustrates how to use PyTorch and Intel IPEX tool to boost deep-learning
inference performance on Hugging Face BERT base model (cased). The guide also shows a
gen-2-gen performance comparison between the 3rd Gen Intel® Xeon® Scalable processor
(ICX) and the 4th Gen Intel® Xeon® Scalable processor (SPR).

Customers can use this solution and associated collateral as a reference to replicate other
workloads as well.

This document is part of the Network Transformation Experience Kits.

https://networkbuilders.intel.com/intel-technologies/experience-kits

Technology Guide | Intel® Deep Learning Boost - Improve Performance of BERT Hugging Face Base Model Inference in
Network Security

 2

Table of Contents
1 Introduction.. 1

1.1 Terminology .. 3
1.2 Reference Documentation .. 3

2 Technology Overview ... 3
2.1 Intel® Deep Learning Boost Technologies .. 3
2.2 PyTorch .. 4
2.3 IPEX ... 4
2.4 Bidirectional Encoder Representations from Transformers (BERT) .. 4

3 Using Intel Deep Learning to Boost Performance .. 5
3.1 Prepare the benchmark environment .. 5
3.2 Benchmark the performance .. 5

4 Summary .. 8

 Platform Configuration ... 9

 Software Configuration .. 9

Figures
Figure 1. Workflow of BERT based phishing/SPAM emails detection ... 4
Figure 2. BERT base model performance comparison under 3rd Gen Intel Xeon Scalable processor and 4th Gen Intel Xeon

Scalable processor (See Appendix for configuration details) .. 7

Tables
Table 1. Terminology .. 3
Table 2. Reference Documents .. 3
Table 3. Result of performance testing based on Hugging Face BERT base model under 3rd Gen Intel Xeon Scalable

processor and 4th Gen Intel Xeon Scalable processor (See Appendix for configuration details) 7

Document Revision History

Revision Date Description
001 January 2023 Initial release.

Technology Guide | Intel® Deep Learning Boost - Improve Performance of BERT Hugging Face Base Model Inference in
Network Security

 3

1.1 Terminology

Table 1. Terminology

Abbreviation Description
AMX Intel® Advanced Matrix Extensions

AVX Advanced Vector Extensions

BERT Bidirectional Encoder Representations from Transformers

CLS A classification token to represent the start of sequence

CNN Convolutional Neural Network

IPEX Intel® Extension for PyTorch*

LSTM Long Short-Term Memory networks

NLP Natural Language Processing

NGFW Next Generation Firewall

oneDNN Intel® oneAPI Deep Neural Network Library

RNN Recurrent Neural Networks

SASE Secure Access Service Edge

SEP A separator token to represent a separate segment/sentence

SMS Short Message Service

Intel XMX Intel® Xe Matrix Extensions (Intel® XMX)

1.2 Reference Documentation

Table 2. Reference Documents

Reference Source
Spam Detection Using BERT https://arxiv.org/ftp/arxiv/papers/2206/2206.02443.pdf

Intel® Deep Learning Boost (Intel® DL Boost) https://www.intel.com/content/www/us/en/artificial-intelligence/deep-
learning-boost.html

Intel® oneAPI Deep Neural Network Library https://github.com/oneapi-src/oneDNN

Intel® Extension for PyTorch https://github.com/intel/intel-extension-for-pytorch

Bert Base model (cased) https://huggingface.co/bert-base-cased

2 Technology Overview
2.1 Intel® Deep Learning Boost Technologies

• Intel Deep Learning Boost (Intel DL boost): Intel DL Boost was first introduced in the 2nd Gen Intel® Xeon® Scalable
processors by adding Intel AVX512 VNNI, an extension to the Intel AVX-512 instruction set. It brings accelerated
performance to demanding AI workloads without discrete add-on accelerators. It can significantly improve
performance for common AI inferencing and training workload. Intel DL Boost includes some Intel AVX-512
instructions and Intel Advanced Matrix Extensions.

• Intel® Advanced Matrix Extensions (Intel® AMX): Intel AMX was introduced in the 4th Gen Intel® Xeon® Scalable
processor. This built-in accelerator is dedicated to the matrix multiplication at the heart of deep learning workloads. Intel
AMX combines a new instruction set that turns large matrices into a single operation with two-dimensional register files
that store larger chunks of data for each core.

• Intel Advanced Vector Extensions 512 (Intel AVX-512): A 512-bit instruction set that can accelerate performance for
demanding workloads and usages like AI inferencing. This specialized instruction set combines three operations into
one Vector Neural Network Instructions (VNNI) set, thereby reducing the number of operations per clock cycle. Intel
DL Boost also accelerates deep learning workloads using INT8 precision.

https://arxiv.org/ftp/arxiv/papers/2206/2206.02443.pdf
https://www.intel.com/content/www/us/en/artificial-intelligence/deep-learning-boost.html
https://www.intel.com/content/www/us/en/artificial-intelligence/deep-learning-boost.html
https://github.com/oneapi-src/oneDNN
https://github.com/intel/intel-extension-for-pytorch
https://huggingface.co/bert-base-cased

Technology Guide | Intel® Deep Learning Boost - Improve Performance of BERT Hugging Face Base Model Inference in
Network Security

 4

2.2 PyTorch

PyTorch is a widely used open-source machine learning framework based on the Torch library. As one of the most popular deep-
learning frameworks, PyTorch is easy to learn and has been used in many applications, including natural language processing
(NLP). With the latest release of PyTorch, the framework provides graph-based execution, distributed training, mobile
deployment, and quantization.

2.3 IPEX

Intel® Extension for PyTorch*(IPEX) extends PyTorch with up-to-date feature optimizations for an extra performance boost on
Intel hardware. Optimizations take advantage of Intel AVX-512 VNNI and Intel AMX on Intel CPUs as well as Intel XMX AI
engines on Intel discrete GPUs. IPEX provides optimizations for both eager mode and graph mode. Compared to eager mode,
graph mode in PyTorch yields better performance from optimization techniques, such as operation fusion. IPEX amplifies them
with more comprehensive graph optimizations. Therefore, it is recommended that you take advantage of IPEX with TorchScript
whenever your workload supports it. You could choose to run with torch.jit.trace() function or torch.jit.script()
function, but based on our evaluation, torch.jit.trace() supports more workloads, which is recommended as the first
choice.

2.4 Bidirectional Encoder Representations from Transformers (BERT)

BERT is an open-source machine learning technique for natural language processing developed by Google*. It can help
computers understand the meaning of ambiguous language in text by using surrounding text to establish context. BERT is
based on transformer model with a variable number of encoder layers and self-attention heads. The original BERT has two
models BERT BASE with 12 encoders with 12 bidirectional self-attention heads and BERT LARGE with 24 encoders with 16
bidirectional self-attention heads. Both models are pre-trained and can be fine-tuned.

Figure 1. Workflow of BERT based phishing/SPAM emails detection

Based on the Hugging Face Tokenizer, BERT base model, a dense layer is added for phishing/spam emails/SMS detection, as
shown in Figure 1. Here is the basic workflow:

1. The content of input email will be tokenized into chunks of tokens with Hugging Face tokenizer.

2. A special token CLS is added at the beginning and another special token SEP is added at the end.

3. The tokens will be padded to the maximum BERT input size (default is 512).

4. The total input tokens will be converted to input IDs, which will be fed to the BERT model.

5. The dense layer takes the last hidden state for CLS token as input, to decide whether the input email is phishing/spam or
HAM.

Emails/SMS
BERT
Base

Model

Dense
Layer

Phishing/Spam

HAM

Hugging
Face

Tokenizer

Technology Guide | Intel® Deep Learning Boost - Improve Performance of BERT Hugging Face Base Model Inference in
Network Security

 5

3 Using Intel Deep Learning to Boost Performance
This technical solution shows step by step instruction on how to boost the performance based on Hugging Face BERT base
model (cased)(https://huggingface.co/bert-base-cased) under 3rd Gen Intel Xeon Scalable processor and 4th Gen Intel Xeon
Scalable processor.

3.1 Prepare the benchmark environment

1. Create a stand-alone Python virtual environment for benchmarking with the following commands:

python3 -m venv bert
source bert/bin/activate
pip3 install --upgrade pip3
pip3 install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cpu

The requirements.txt file enumerates dependent packages, with the following content:

cat requirements.txt
torch==1.13.0
transformers
intel_extension_for_pytorch==1.13.0

3.2 Benchmark the performance

1. Run the sample code provide below on the 3rd Gen Intel Xeon Scalable processor server under PyTorch and take the
mean inference time as the baseline. For this testing purpose, these tests were run with different cores to demonstrate
the scalability.

2. Use the Intel IPEX to perform post-training quantization. Like PyTorch post-training quantization, Intel IPEX also
provides two post-training quantization methods: dynamic quantization and static quantization. For this testing
purpose, the Intel IPEX post-training static quantization was used in the performance benchmark since it provides the
best performance.

cat test.py

import time

import torch

import numpy as np

import intel_extension_for_pytorch as ipex

from intel_extension_for_pytorch.quantization import prepare, convert

from torch.ao.quantization import MinMaxObserver, PerChannelMinMaxObserver, QConfig

from transformers import AutoConfig, AutoTokenizer, AutoModelForSequenceClassification

define dummy input tensor to use for the model's forward call

to record operations in the model for tracing

N, max_length = 1, 512

dummy_tensor = torch.ones((N, max_length), dtype=torch.long)

url = 'this is the test email'

tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')

encoding = tokenizer.encode_plus(url, return_tensors='pt', padding='max_length',
truncation=True)

example_inputs = (dummy_tensor, dummy_tensor, dummy_tensor)

global_infer_time = []

def convert_to_traced_model(model):

 with torch.no_grad():

 traced_model = torch.jit.trace(model, example_inputs, strict=False)

 traced_model = torch.jit.freeze(traced_model)

https://huggingface.co/bert-base-cased
https://download.pytorch.org/whl/cpu

Technology Guide | Intel® Deep Learning Boost - Improve Performance of BERT Hugging Face Base Model Inference in
Network Security

 6

 return traced_model

def benchmark(model, tag):

 with torch.no_grad():

 for _ in range(50):

 model(**encoding)

 infer_time = []

 for _ in range(500):

 start = time.time()

 model(**encoding)

 elapsed = 1000 * (time.time() - start)

 infer_time.append(elapsed)

 print(f'[{tag}] infer_time: mean={np.mean(infer_time)} min={np.min(infer_time)}
max={np.max(infer_time)} std={np.std(infer_time)}')

####################### Evaluate performance under PyTorch #############################

user_model = AutoModelForSequenceClassification.from_pretrained('bert-base-cased')

user_model.eval()

benchmark(user_model, 'Performance under PyTorch')

############# Evaluate performance with IPEX static quantization #################

user_model = AutoModelForSequenceClassification.from_pretrained('bert-base-cased')

user_model.eval()

qconfig = QConfig(activation=MinMaxObserver.with_args(qscheme=torch.per_tensor_affine,
dtype=torch.quint8),

 weight=PerChannelMinMaxObserver.with_args(dtype=torch.qint8,
qscheme=torch.per_channel_symmetric))

prepared_model = prepare(user_model, qconfig, example_inputs=example_inputs, inplace=False)

prepared_model(**encoding)

converted_model = convert(prepared_model)

traced_model = convert_to_traced_model(converted_model)

benchmark(traced_model, 'Performance with IPEX static quantization')

3. Run the following commands under 3rd Gen Intel Xeon Scalable processor and 4th Gen Intel Xeon Scalable processor
servers to get the mean inference time for different cores.

numactl -C core_range python test.py

4. You should get similar results as shown in Table 3.

Technology Guide | Intel® Deep Learning Boost - Improve Performance of BERT Hugging Face Base Model Inference in
Network Security

 7

Table 3. Result of performance testing based on Hugging Face BERT base model under 3rd Gen Intel Xeon Scalable
processor and 4th Gen Intel Xeon Scalable processor (See Appendix for configuration details)

Mean inference time
(ms)

max_seq_length = 512
Batch size = 1

PyTorch V1.13
FP32

PyTorch V1.13 with IPEX
(Static Quantization) INT8

Performance Boost
4th Gen Intel Xeon Scalable
processor @1.8GHz vs 3rd

Gen Intel Xeon Scalable
processor @2.2GHz under

PyTorch

3rd Gen Intel Xeon
Scalable processor

@2.2GHz

3rd Gen Intel Xeon
Scalable processor

@2.2GHz

4th Gen Intel Xeon
Scalable processor

@1.8GHz

 1 core 1134.52 254.34 136.47 8.31 X

 2 cores 627.61 130.21 75.09 8.36 X

 4 cores 341.13 68.47 42.78 7.97 X

 8 cores 196.95 37.34 25.06 7.86 X

32 cores 81.15 16.75 11.43 7.10 X

Figure 2. BERT base model performance comparison under 3rd Gen Intel Xeon Scalable processor and 4th Gen Intel Xeon
Scalable processor (See Appendix for configuration details)

1 core 2 cores 4 cores 8 cores 32 cores
PyTorch V1.13 FP32 3rd Gen Intel Xeon

Scalable processor @2.2GHz 1134.52 627.61 341.13 196.95 81.15

PyTorch V1.13 with IPEX(Static Quantization)
INT8 3rd Gen Intel Xeon Scalable processor

@2.2GHz
254.34 130.21 68.47 37.34 16.75

PyTorch V1.13 with IPEX(Static Quantization)
INT8 4th Gen Intel Xeon Scalable processor

@1.8GHz
136.47 75.09 42.78 25.06 11.43

1134.52

627.61

341.13

196.95

81.15

254.34

130.21
68.47

37.34 16.75

136.47
75.09

42.78 25.06 11.43

0

200

400

600

800

1000

1200

M
ea

n
in

fe
re

nc
e

tim
e

(m
s)

BERT Base Model Performance Comparison under 3rd Gen Intel Xeon Scalable
processor and 4th Gen Intel Xeon Scalable processor Bare Metal Systems

Mean Inference Time Lower is better

Technology Guide | Intel® Deep Learning Boost - Improve Performance of BERT Hugging Face Base Model Inference in
Network Security

 8

From the above results, the following conclusions are made:

• Intel IPEX static quantization can dramatically improve the performance of BERT base model (cased) on both 3rd Gen
Intel Xeon Scalable processor (See Intel® Xeon® Gold 6338N CPU in Appendix A) and 4th Gen Intel Xeon Scalable
processor (See Intel® Xeon® Gold 6428N CPU in Appendix A) platforms.

• With the help of Intel AVX512 VNNI instruction set, the inference performance of the BERT base model (cased) under
the 3rd Gen Intel Xeon Scalable processor (See Intel® Xeon® Gold 6338N CPU in Appendix A) with IPEX static post-
training quantization can be 4.46 X to 5.27 X faster than under PyTorch without quantization.

• With the help of Intel AMX instruction set, the inference performance of the BERT base model (cased) under the 4th
Gen Intel Xeon Scalable processor (See Intel® Xeon® Gold 6428N CPU in Appendix A) with IPEX static post-training
quantization can be 7.09 X to 8.36 X to faster than the 3rd Gen Intel Xeon Scalable processor (See Intel® Xeon® Gold
6338N CPU in Appendix A) under PyTorch without quantization.

4 Summary
From all above benchmark tests, it is concluded that the performance of BERT base model can significantly improve under
PyTorch by applying IPEX static post-training quantization with minimal code changes. With the IPEX optimization, the 4th Gen
Intel Xeon Scalable processor (See Intel® Xeon® Gold 6428N CPU in Appendix A) can get 7.09 X ~ 8.36 X performance
improvement comparing the 3rd Gen Intel Xeon Scalable processor (See Intel® Xeon® Gold 6338N CPU in Appendix A). This
solution also shows that it is very easy and straightforward to boost deep learning models with the help of Intel IPEX library.
Moreover, Intel DL Boost including Intel AVX512 VNNI and Intel AMX instructions, as the contributor to the performance
improvement, is a standard and universally available feature in the 3rd and 4th Gen Intel Xeon Scalable processors, which means
there is no need to attach any auxiliary hardware accelerators.

Technology Guide | Intel® Deep Learning Boost - Improve Performance of BERT Hugging Face Base Model Inference in
Network Security

 9

 Platform Configuration
New: Gold 6428N: 1-node, 1x Intel Xeon Gold 6428N processor on Eagle Stream with 256 GB (8 slots/ 32GB/ 4800) total DDR5
memory, ucode 0x2b000111, HT on, Turbo off, Ubuntu 22.10, 5.19.0-23-generic, 1x SSDSC2KB240G8, huggingface.co/bert-
base-cased, AI Framework PyTorch 1.13.0 and IPEX 1.13.0, run_type: AI inference mean time, Test by Intel as of 11/29/22.

Baseline: Gold 6338N: 1-node, 1x Intel Xeon Gold 6338N processor on Coyote Pass with 128 GB (8 slots/ 16GB/ 3200) total
DDR4 memory, ucode 0xd000375, 0x2b000111, HT on, Turbo off, Ubuntu 22.10, 5.19.0-23-generic, 1x SSDSC2KB240G8
huggingface.co/bert-base-cased, AI Framework PyTorch 1.13.0 and IPEX 1.13.0, run_type: AI inference mean time, Test by Intel
as of 11/29/22.

 Software Configuration
Software Configuration Config 1 (PyTorch for baseline) Config 2 (PyTorch with IPEX)

Framework /Toolkit incl version PyTorch 1.13.0
PyTorch 1.13.0
IPEX 1.13.0

Framework URL https://pytorch.org/ https://pytorch.org/

Topology or ML algorithm (include link) https://huggingface.co/bert-base-cased https://huggingface.co/bert-base-cased

Precision (FP32, INT8., BF16) FP32 INT8

NUMACTL NUMACTL –c NUMACTL –c

Command Line Used python test.py python test.py

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details.

No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

 0123/DN/WIT/PDF 764388-001US

https://pytorch.org/
https://pytorch.org/
https://huggingface.co/bert-base-cased
https://huggingface.co/bert-base-cased
http://www.intel.com/PerformanceIndex

	1 Introduction
	1.1 Terminology
	1.2 Reference Documentation

	2 Technology Overview
	2.1 Intel® Deep Learning Boost Technologies
	2.2 PyTorch
	2.3 IPEX
	2.4 Bidirectional Encoder Representations from Transformers (BERT)

	3 Using Intel Deep Learning to Boost Performance
	3.1 Prepare the benchmark environment
	3.2 Benchmark the performance

	4 Summary
	Appendix A Platform Configuration
	Appendix B Software Configuration

