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1 Introduction 
Emails and SMS messages are very popular communication tools, and many people rely on 
them every day. There are also cyber attackers who send massive phishing emails or SMS 
messages to steal private information. There are many ways to prevent such cyberattacks. 
However, since scammers use traffic engineering, it is very difficult to detect phishing emails 
or SMS. With the development of deep learning technologies, it is proven to be the best way 
to prevent such advanced cyberattacks. Network security companies already use different 
deep-learning methods such as CNN, LSTM, and BERT in their security products. BERT 
model provides the best accuracy among these models. However, it takes a longer inference 
time when compared to other deep-learning models. The inference latency is one of the big 
challenges to adopt BERT model into their network security products such as SASE and 
NGFW. 

PyTorch* is one of the widely used deep-learning frameworks. To boost the performance 
under Intel® hardware, Intel provides the open-source Intel® Extension for PyTorch* (IPEX) 
with latest feature optimizations. These optimizations take advantage of Intel® AVX-512 
Vector Neural Network Instructions (Intel® AVX-512 VNNI) and Intel® Advanced Matrix 
Extensions (Intel® AMX) on Intel® CPUs as well as Intel® Xe Matrix Extensions (Intel® XMX) 
AI engines on Intel discrete GPUs.  

This guide illustrates how to use PyTorch and Intel IPEX tool to boost deep-learning 
inference performance on Hugging Face BERT base model (cased). The guide also shows a 
gen-2-gen performance comparison between the 3rd Gen Intel® Xeon® Scalable processor 
(ICX) and the 4th Gen Intel® Xeon® Scalable processor (SPR). 

Customers can use this solution and associated collateral as a reference to replicate other 
workloads as well. 

This document is part of the Network Transformation Experience Kits. 

 

https://networkbuilders.intel.com/intel-technologies/experience-kits
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1.1 Terminology 

Table 1. Terminology 

Abbreviation Description 
AMX Intel® Advanced Matrix Extensions 

AVX Advanced Vector Extensions 

BERT Bidirectional Encoder Representations from Transformers 

CLS A classification token to represent the start of sequence 

CNN Convolutional Neural Network 

IPEX Intel® Extension for PyTorch* 

LSTM Long Short-Term Memory networks 

NLP Natural Language Processing 

NGFW Next Generation Firewall 

oneDNN Intel® oneAPI Deep Neural Network Library 

RNN Recurrent Neural Networks 

SASE Secure Access Service Edge 

SEP A separator token to represent a separate segment/sentence 

SMS Short Message Service 

Intel XMX Intel® Xe Matrix Extensions (Intel® XMX) 

1.2 Reference Documentation 

Table 2. Reference Documents 

Reference Source 
Spam Detection Using BERT https://arxiv.org/ftp/arxiv/papers/2206/2206.02443.pdf  

Intel® Deep Learning Boost (Intel® DL Boost) https://www.intel.com/content/www/us/en/artificial-intelligence/deep-
learning-boost.html  

Intel® oneAPI Deep Neural Network Library https://github.com/oneapi-src/oneDNN  

Intel® Extension for PyTorch https://github.com/intel/intel-extension-for-pytorch  

Bert Base model (cased) https://huggingface.co/bert-base-cased  

2 Technology Overview 
2.1 Intel® Deep Learning Boost Technologies  

• Intel Deep Learning Boost (Intel DL boost): Intel DL Boost was first introduced in the 2nd Gen Intel® Xeon® Scalable 
processors by adding Intel AVX512 VNNI, an extension to the Intel AVX-512 instruction set. It brings accelerated 
performance to demanding AI workloads without discrete add-on accelerators. It can significantly improve 
performance for common AI inferencing and training workload. Intel DL Boost includes some Intel AVX-512 
instructions and Intel Advanced Matrix Extensions.  

• Intel® Advanced Matrix Extensions (Intel® AMX): Intel AMX was introduced in the 4th Gen Intel® Xeon® Scalable 
processor. This built-in accelerator is dedicated to the matrix multiplication at the heart of deep learning workloads. Intel 
AMX combines a new instruction set that turns large matrices into a single operation with two-dimensional register files 
that store larger chunks of data for each core. 

• Intel Advanced Vector Extensions 512 (Intel AVX-512): A 512-bit instruction set that can accelerate performance for 
demanding workloads and usages like AI inferencing. This specialized instruction set combines three operations into 
one Vector Neural Network Instructions (VNNI) set, thereby reducing the number of operations per clock cycle. Intel 
DL Boost also accelerates deep learning workloads using INT8 precision.  

 

https://arxiv.org/ftp/arxiv/papers/2206/2206.02443.pdf
https://www.intel.com/content/www/us/en/artificial-intelligence/deep-learning-boost.html
https://www.intel.com/content/www/us/en/artificial-intelligence/deep-learning-boost.html
https://github.com/oneapi-src/oneDNN
https://github.com/intel/intel-extension-for-pytorch
https://huggingface.co/bert-base-cased
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2.2 PyTorch 

PyTorch is a widely used open-source machine learning framework based on the Torch library. As one of the most popular deep-
learning frameworks, PyTorch is easy to learn and has been used in many applications, including natural language processing 
(NLP). With the latest release of PyTorch, the framework provides graph-based execution, distributed training, mobile 
deployment, and quantization. 

2.3 IPEX 

Intel® Extension for PyTorch*(IPEX) extends PyTorch with up-to-date feature optimizations for an extra performance boost on 
Intel hardware. Optimizations take advantage of Intel AVX-512 VNNI and Intel AMX on Intel CPUs as well as Intel XMX AI 
engines on Intel discrete GPUs. IPEX provides optimizations for both eager mode and graph mode. Compared to eager mode, 
graph mode in PyTorch yields better performance from optimization techniques, such as operation fusion. IPEX amplifies them 
with more comprehensive graph optimizations. Therefore, it is recommended that you take advantage of IPEX with TorchScript 
whenever your workload supports it. You could choose to run with torch.jit.trace() function or torch.jit.script() 
function, but based on our evaluation, torch.jit.trace() supports more workloads, which is recommended as the first 
choice. 

2.4 Bidirectional Encoder Representations from Transformers (BERT) 

BERT is an open-source machine learning technique for natural language processing developed by Google*. It can help 
computers understand the meaning of ambiguous language in text by using surrounding text to establish context. BERT is 
based on transformer model with a variable number of encoder layers and self-attention heads. The original BERT has two 
models BERT BASE with 12 encoders with 12 bidirectional self-attention heads and BERT LARGE with 24 encoders with 16 
bidirectional self-attention heads. Both models are pre-trained and can be fine-tuned.  

 

 

 

 

 

 

Figure 1. Workflow of BERT based phishing/SPAM emails detection 

Based on the Hugging Face Tokenizer, BERT base model, a dense layer is added for phishing/spam emails/SMS detection, as 
shown in Figure 1. Here is the basic workflow: 

1. The content of input email will be tokenized into chunks of tokens with Hugging Face tokenizer. 

2. A special token CLS is added at the beginning and another special token SEP is added at the end. 

3. The tokens will be padded to the maximum BERT input size (default is 512). 

4. The total input tokens will be converted to input IDs, which will be fed to the BERT model. 

5. The dense layer takes the last hidden state for CLS token as input, to decide whether the input email is phishing/spam or 
HAM. 
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3 Using Intel Deep Learning to Boost Performance 
This technical solution shows step by step instruction on how to boost the performance based on Hugging Face BERT base 
model (cased)( https://huggingface.co/bert-base-cased) under 3rd Gen Intel Xeon Scalable processor and 4th Gen Intel Xeon 
Scalable processor. 

3.1 Prepare the benchmark environment 

1. Create a stand-alone Python virtual environment for benchmarking with the following commands:   

# python3 -m venv bert 
# source bert/bin/activate 
# pip3 install --upgrade pip3 
# pip3 install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cpu 

The requirements.txt file enumerates dependent packages, with the following content: 

# cat requirements.txt 
torch==1.13.0 
transformers 
intel_extension_for_pytorch==1.13.0 

 

3.2 Benchmark the performance 

1. Run the sample code provide below on the 3rd Gen Intel Xeon Scalable processor server under PyTorch and take the 
mean inference time as the baseline. For this testing purpose, these tests were run with different cores to demonstrate 
the scalability. 

2. Use the Intel IPEX to perform post-training quantization. Like PyTorch post-training quantization, Intel IPEX also 
provides two post-training quantization methods: dynamic quantization and static quantization. For this testing 
purpose, the Intel IPEX post-training static quantization was used in the performance benchmark since it provides the 
best performance. 

# cat test.py 

import time 

import torch 

import numpy as np 

import intel_extension_for_pytorch as ipex 

from intel_extension_for_pytorch.quantization import prepare, convert 

from torch.ao.quantization import MinMaxObserver, PerChannelMinMaxObserver, QConfig 

from transformers import AutoConfig, AutoTokenizer, AutoModelForSequenceClassification 

 

# define dummy input tensor to use for the model's forward call 

# to record operations in the model for tracing 

N, max_length = 1, 512 

dummy_tensor = torch.ones((N, max_length), dtype=torch.long) 

  

url = 'this is the test email' 

tokenizer = AutoTokenizer.from_pretrained('bert-base-cased') 

encoding = tokenizer.encode_plus(url, return_tensors='pt', padding='max_length', 
truncation=True) 

  

example_inputs = (dummy_tensor, dummy_tensor, dummy_tensor) 

 

global_infer_time = [] 

  

def convert_to_traced_model(model): 

    with torch.no_grad(): 

        traced_model = torch.jit.trace(model, example_inputs, strict=False) 

        traced_model = torch.jit.freeze(traced_model) 

https://huggingface.co/bert-base-cased
https://download.pytorch.org/whl/cpu
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    return traced_model 

  

def benchmark(model, tag): 

    with torch.no_grad(): 

        for _ in range(50): 

            model(**encoding) 

  

        infer_time = [] 

        for _ in range(500): 

            start = time.time() 

            model(**encoding) 

            elapsed = 1000 * (time.time() - start) 

            infer_time.append(elapsed) 

 

    print(f'[{tag}] infer_time: mean={np.mean(infer_time)} min={np.min(infer_time)} 
max={np.max(infer_time)} std={np.std(infer_time)}') 

 

####################### Evaluate performance under PyTorch ############################# 

user_model = AutoModelForSequenceClassification.from_pretrained('bert-base-cased') 

user_model.eval() 

benchmark(user_model, 'Performance under PyTorch') 

 

############# Evaluate performance with IPEX static quantization ################# 

user_model = AutoModelForSequenceClassification.from_pretrained('bert-base-cased') 

user_model.eval() 

  

qconfig = QConfig(activation=MinMaxObserver.with_args(qscheme=torch.per_tensor_affine, 
dtype=torch.quint8), 

         weight=PerChannelMinMaxObserver.with_args(dtype=torch.qint8, 
qscheme=torch.per_channel_symmetric)) 

prepared_model = prepare(user_model, qconfig, example_inputs=example_inputs, inplace=False) 

prepared_model(**encoding) 

converted_model = convert(prepared_model) 

  

traced_model = convert_to_traced_model(converted_model) 

benchmark(traced_model, 'Performance with IPEX static quantization') 

3. Run the following commands under 3rd Gen Intel Xeon Scalable processor and 4th Gen Intel Xeon Scalable processor 
servers to get the mean inference time for different cores.  

# numactl -C core_range python test.py                

4. You should get similar results as shown in Table 3.  
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Table 3. Result of performance testing based on Hugging Face BERT base model under 3rd Gen Intel Xeon Scalable 
processor and 4th Gen Intel Xeon Scalable processor (See Appendix for configuration details) 

Mean inference time 
(ms) 

max_seq_length = 512 
Batch size = 1 

PyTorch V1.13 
FP32 

PyTorch V1.13 with IPEX 
(Static Quantization) INT8 

Performance Boost  
4th Gen Intel Xeon Scalable 
processor @1.8GHz vs 3rd 

Gen Intel Xeon Scalable 
processor @2.2GHz under 

PyTorch 

3rd Gen Intel Xeon 
Scalable processor 

@2.2GHz 

3rd Gen Intel Xeon 
Scalable processor 

@2.2GHz 

4th Gen Intel Xeon 
Scalable processor 

@1.8GHz 

 1 core  1134.52 254.34 136.47 8.31 X 

  2 cores 627.61 130.21 75.09 8.36 X 

 4 cores 341.13 68.47 42.78 7.97 X 

 8 cores 196.95 37.34 25.06 7.86 X 

32 cores 81.15 16.75 11.43 7.10 X 

  

 

 

Figure 2. BERT base model performance comparison under 3rd Gen Intel Xeon Scalable processor and 4th Gen Intel Xeon 
Scalable processor (See Appendix for configuration details) 

  

1 core 2 cores 4 cores 8 cores 32 cores
PyTorch V1.13  FP32 3rd Gen Intel Xeon

Scalable processor @2.2GHz 1134.52 627.61 341.13 196.95 81.15

PyTorch V1.13 with IPEX(Static Quantization)
INT8 3rd Gen Intel Xeon Scalable processor

@2.2GHz
254.34 130.21 68.47 37.34 16.75

PyTorch V1.13 with IPEX(Static Quantization)
INT8 4th Gen Intel Xeon Scalable processor

@1.8GHz
136.47 75.09 42.78 25.06 11.43

1134.52

627.61

341.13

196.95

81.15

254.34

130.21
68.47

37.34 16.75

136.47
75.09

42.78 25.06 11.43

0

200

400

600

800

1000

1200

M
ea

n 
in

fe
re

nc
e 

tim
e 

(m
s)

BERT Base Model Performance Comparison under 3rd Gen Intel Xeon Scalable 
processor and 4th Gen Intel Xeon Scalable processor Bare Metal Systems

Mean Inference Time Lower is better



Technology Guide | Intel® Deep Learning Boost - Improve Performance of BERT Hugging Face Base Model Inference in 
Network Security 

  8 

From the above results, the following conclusions are made: 

• Intel IPEX static quantization can dramatically improve the performance of BERT base model (cased) on both 3rd Gen 
Intel Xeon Scalable processor (See Intel® Xeon® Gold 6338N CPU in Appendix A) and 4th Gen Intel Xeon Scalable 
processor (See Intel® Xeon® Gold 6428N CPU in Appendix A) platforms. 

• With the help of Intel AVX512 VNNI instruction set, the inference performance of the BERT base model (cased) under 
the 3rd Gen Intel Xeon Scalable processor (See Intel® Xeon® Gold 6338N CPU in Appendix A) with IPEX static post-
training quantization can be 4.46 X  to 5.27 X faster than under PyTorch without quantization. 

• With the help of Intel AMX instruction set, the inference performance of the BERT base model (cased) under the 4th 
Gen Intel Xeon Scalable processor (See Intel® Xeon® Gold 6428N CPU in Appendix A) with IPEX static post-training 
quantization can be 7.09 X to 8.36 X to faster than the 3rd Gen Intel Xeon Scalable processor (See Intel® Xeon® Gold 
6338N CPU in Appendix A) under PyTorch without quantization. 

4 Summary 
From all above benchmark tests, it is concluded that the performance of BERT base model can significantly improve under 
PyTorch by applying IPEX static post-training quantization with minimal code changes. With the IPEX optimization, the 4th Gen 
Intel Xeon Scalable processor (See Intel® Xeon® Gold 6428N CPU in Appendix A) can get 7.09 X ~ 8.36 X performance 
improvement comparing the 3rd Gen Intel Xeon Scalable processor (See Intel® Xeon® Gold 6338N CPU in Appendix A). This 
solution also shows that it is very easy and straightforward to boost deep learning models with the help of Intel IPEX library. 
Moreover, Intel DL Boost including Intel AVX512 VNNI and Intel AMX instructions, as the contributor to the performance 
improvement, is a standard and universally available feature in the 3rd and 4th Gen Intel Xeon Scalable processors, which means 
there is no need to attach any auxiliary hardware accelerators. 
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 Platform Configuration 
New: Gold 6428N: 1-node, 1x Intel Xeon Gold 6428N processor on Eagle Stream with 256 GB (8 slots/ 32GB/ 4800) total DDR5 
memory, ucode 0x2b000111, HT on, Turbo off, Ubuntu 22.10, 5.19.0-23-generic, 1x SSDSC2KB240G8, huggingface.co/bert-
base-cased, AI Framework PyTorch 1.13.0 and IPEX 1.13.0, run_type: AI inference mean time, Test by Intel as of 11/29/22. 
 
Baseline: Gold 6338N: 1-node, 1x Intel Xeon Gold 6338N processor on Coyote Pass with 128 GB (8 slots/ 16GB/ 3200) total 
DDR4 memory, ucode 0xd000375, 0x2b000111, HT on, Turbo off, Ubuntu 22.10, 5.19.0-23-generic, 1x SSDSC2KB240G8 
huggingface.co/bert-base-cased, AI Framework PyTorch 1.13.0 and IPEX 1.13.0, run_type: AI inference mean time, Test by Intel 
as of 11/29/22. 

 

 Software Configuration 
Software Configuration Config 1 (PyTorch for baseline) Config 2 (PyTorch with IPEX) 

Framework /Toolkit incl version PyTorch 1.13.0 
PyTorch 1.13.0 
IPEX 1.13.0 

Framework URL  https://pytorch.org/     https://pytorch.org/    

Topology or ML algorithm (include link)  https://huggingface.co/bert-base-cased   https://huggingface.co/bert-base-cased   

Precision (FP32, INT8., BF16)  FP32  INT8 

NUMACTL  NUMACTL –c   NUMACTL –c  

Command Line Used  python test.py  python test.py 
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