

Document Number: 834790

Intel® AI Edge Systems Verified Reference
Blueprint – Scalable Performance Edge AI on
Intel® Xeon® Scalable with Intel® GPU for
Computer Vision, and GEN AI

Reference Architecture

Revision 1.2
March 2025

Authors
Yuan Kuok Nee
Shin Wei Lim
Abhijit Sinha

Key Contributors
Timothy Miskell,
Jessie Ritchey
Edel Curley

2 Reference Architecture

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product
specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Intel® Corporation. All rights reserved. Intel, the Intel logo, Xeon, FlexRAN, Select Solution and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance
with Intel's standard warranty but reserves the right to make changes to any products and services at any time without notice.

Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except
as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any
published information and before placing orders for products or services.

Performance varies by use, configuration and other factors. Learn more on the Performance Index site.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup
for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

*Other names and brands may be claimed as the property of others.

Copyright © 2024, Intel Corporation. All rights reserved.

Reference Architecture 3

Contents
1 Introduction .. 6
2 Design Compliance Requirements .. 8

2.1 Hardware Requirements ... 8
2.2 BIOS Settings .. 9
2.3 Solution Architecture ... 9
2.4 Platform Technology Requirements .. 11
2.5 Platform Security ... 12
2.6 Side Channel Mitigation .. 12

3 Platform Tuning and GPU Driver Setup .. 13
3.1.1 Install Docker .. 13
3.1.2 Install Datacenter GPU Drivers ... 13

3.1.2.1 Reboot the server for the changes to take place in the OS 13
3.1.3 Configure permissions on the OS groups for GPU as rendering device 13
3.1.4 Verify the installation to check if the GPU device is working with i915 driver

 .. 13
4 Performance Verification .. 15

4.1 Memory Latency Checker (MLC) ... 15
4.2 Vision AI ... 16
4.3 GEN AI ... 18
4.4 Network Security AI: MalConv and BERT .. 27

4.4.1 MalConv for Malicious portable executable (PE) detection 27
5 Summary .. 30

5.1 Vision AI Performance Summary ... 30
5.2 GEN AI Performance Summary .. 30

Appendix A Appendix ... 32
A.1 Automated Self-Checkout Test Methodology .. 32
A.2 Generative AI Test Methodology .. 34

A.2.1 IPEX-LLM Testing Methodology on CPU .. 34
A.2.2 IPEX-LLM Testing Methodology on GPU .. 34
A.2.3 Running IPEX-LLM Benchmarking Scripts ..35

A.2.3.1 Running IPEX-LLM on CPU ...35
A.2.3.2 Running IPEX-LLM on Single GPU ...36
A.2.3.3 Running vLLM-IPEX-LLM on CPU .. 37

A.3 Network Security AI Test Methodology .. 38
A.3.1 MalConv AI Test Methodology ... 38
A.3.2 Bert AI Test Methodology .. 38

4 Reference Architecture

Figures

Figure 1. Architecture of the Intel® AI Edge Systems Verified Reference Blueprint ..10
Figure 2. Test Methodology for the Intel® Automated Self-Checkout Pipeline ..10
Figure 3. Vision AI Video Analytics Pipeline ... 16
Figure 4. Vision AI Plus Configuration Performance Graph on Xeon® Gold 6538N Processor and Intel®

Flex 170 .. 17
Figure 5. Performance for GPT-NEOX-20B model on CPU (Xeon® Scalable Platinum SKU (8571N)) ... 19
Figure 6. Performance for Llama 3 8B Model on CPU(Xeon® Scalable Gold SKU (6538N)). 20
Figure 7. Performance for Llama 3 8B Model on Intel® Flex 170 .. 21
Figure 8. Performance for Phi-3-4k Mini Model on CPU (Xeon® Scalable Gold SKU (6538N)). 22
Figure 9. Performance for Phi-3-4k-Mini Model on Intel® Flex 170 .. 23
Figure 10. Performance on TinyLlama Model on CPU(Xeon® Scalable Gold SKU (6538N)). 24
Figure 11. vLLM-IPEX-LLM Performance with Llama 3 8B Model on CPU(Xeon® Scalable Gold SKU

(6538N)). .. 25
Figure 12. vLLM-IPEX-LLM Performance with Llama 3 8B Model on 2 x Flex 170 (1024 Output Token

Size) ... 25
Figure 13. Llama 3 8B Performance on 2 x Flex 170 with Pipeline Parallel Configuration 26
Figure 14. MalConv AI Entry Platform Performance Graph ... 28
Figure 15. BERTAI Performance on VRC for Intel® AI System – Medium Entry Configuration Graph 29
Figure 16. Test Methodology for the Automated Self-Checkout Proxy Workload ... 32
Figure 17. Detailed Test Methodology for Retail Self-Checkout Pipeline ...33

Tables

Table 1. Platform Plus Configuration .. 8
Table 2. Platform Base Configuration .. 8
Table 3. SW Configuration .. 11
Table 4. Platform Technology Requirements ... 11
Table 5. Memory Latency Checker ... 15
Table 6. Peak Injection Memory Bandwidth (1 MB/sec) Using All Threads ... 15
Table 7. Vision AI Workload Configuration ... 17
Table 8. Vison AI Plus Configuration Performance ... 17
Table 9. MalConv AI Workload Configuration ... 27
Table 10. BERT AI Workload Configuration .. 28
Table 11. Performance of Various Large Language Models on CPU: ... 30
Table 12. Performance of Various Large Language Models on Intel® Data Center Flex GPU: 30

Reference Architecture 5

Revision History

Document
Number

Revision
Number Description Revision Date

834790 1.2 Adapted to New Nomenclature March 2025

834790 1.0 Initial release October 2024

§

Introduction

Document Number: 834790

1 Introduction
Intel® AI Edge Systems are a range of optimized commercial AI systems delivered and sold
through OEM/ODM in the Intel® ecosystem. They are commercial platforms verified-
configured, tuned, and benchmarked using Intel’s reference AI software application on Intel®
hardware to deliver optimal performance for Edge workloads.

Intel® AI Edge Systems offers a balance between computing and AI acceleration to deliver
optimal TCO, scalability, and security. AI systems enable our partners to jumpstart
development through a hardened system foundation verified by Intel® and to increase the
trust in their system performance. AI systems enable the ability to add AI functionality through
continuous integration into business applications for better business outcomes and
streamlined implementation efforts.

To support the development of these Edge AI systems, Intel® is offering reference design and
verified reference configuration blueprints with Edge AI system configurations that are tuned
and benchmarked for different AI System types that support EdgeAI use cases. Verified
reference blueprints (VRB) include hardware BOM, foundation software configuration (OS,
Firmware, Drivers) tested and verified with supported Software stack (software framework,
libraries, orchestration management).

This document describes a verified reference blueprint architecture using the 5th Gen Intel®
Xeon® Scalable processor family, and Intel® Data Center GPU Flex 170 or Intel® Arc A750/Arc
A770.

When end customers choose an Intel® AI Edge System Verified Reference Blueprint, they
should be able to deploy the AI workload more securely and efficiently than ever before. End
users spend less time, effort, and expense evaluating hardware and software options. Intel® AI
Edge System Verified Reference Blueprint helps end users simplify design choices by
bundling hardware and software pieces together while making the high performance more
predictable.

Intel® AI Edge Systems Verified Reference Blueprints –for Computer Vision and GEN AI are
based on a single-node architecture, that provides an environment to execute multiple AI
workloads that are common to be deployed at the edge, such as the “Intel® Automated Self-
Checkout Reference Package” and “GEN AI”

All Intel® AI Edge Systems Verified Reference Blueprint Configurations feature a workload-
optimized stack tuned to take full advantage of an Intel® Architecture (IA) foundation. To
meet the requirements, OEM/ODM systems must meet a performance threshold that
represents a premium customer experience.

There are two configurations for Intel® AI Edge Systems Verified Reference Blueprint –
Scalable Performance Edge AI on Intel® Xeon® with Intel® GPU for Computer Vision, and GEN
AI covering a base and plus configuration:

• Intel® AI Edge Systems Verified Reference Blueprint – Scalable Performance Edge AI on
Intel® Xeon® Scalable with Intel® GPU Plus for Computer Vision, and GEN AI Plus
configuration is defined with at least a 52-core 5th Generation Intel® Xeon® Scalable
processor and high-performance network, with storage and integrated platform
acceleration products from Intel® for maximum virtual machine density.

Introduction

Reference Architecture 7

• Intel® AI Edge Systems Verified Reference Blueprint – Scalable Performance Edge AI on
Intel® Xeon® Scalable with Intel® GPU for Computer Vision, and GEN AI Base configuration
is defined with a 32-core or higher 5th Generation Intel® Xeon® Scalable processor and
network, with storage and add-in platform acceleration products from Intel® targeting for
optimized value and performance-based solutions.

Bill of Materials (BOM) requirement details for the configurations are provided in Chapter 2 of
this document.

Intel® AI Edge Systems Verified Reference Blueprint is defined in collaboration with end users
and our ecosystem partners to demonstrate the value of the solution for AI Inference use
cases. The solution leverages the hardened hardware, firmware, and software to allow
customers to integrate on top of this known good foundation.

Intel® AI Edge Systems Verified Reference Blueprint provides numerous benefits to ensure
end users have excellent performance for their AI Inference applications. Some of the key
benefits of the Reference Configuration based on the 5th Generation Intel® Xeon® Scalable
Processor Family processor and Intel Data Center GPU Flex 170 or Intel Arc A750/Arc A770:

• High core counts and per-core performance

• Compact, power-efficient system-on-chip platform

• Streamlined path to cloud-native operations

• Accelerated AI inference on CPU using Intel® AMX and Intel® DL Boost

• Multiple discrete GPU support to accelerate for AI inference workload

• The Xe kernel of Intel® Arc™ GPU integrates Extended Vector Engine (XVE) and Extended
Matrix Engine (XMX), which accelerate AI workflow and provide powerful and real-time
computing power support for AI inference at the edge.

• Intel’s Flex Series graphic processors has up to 32 Intel Xe cores and ray tracing units, up to
four Intel Xe Media Engines, AI acceleration with Intel Xe Matrix Extensions (XMX)

• Accelerated encryption and compression

• Platform-level security enhancements

§

Design Compliance Requirements

8 Reference Architecture

2 Design Compliance Requirements
This chapter focuses on the design requirements for Intel® AI Edge Systems Verified
Reference Blueprint – Scalable Performance Edge AI on Intel® Xeon® Scalable with Intel®
GPU for Computer Vision and GEN AI.

2.1 Hardware Requirements

The checklists in this chapter are a guide for assessing the platform’s conformance to Intel® AI
Edge Systems Verified Reference Blueprint – Scalable Performance Edge AI on Intel® Xeon®
Scalable with Intel® GPU for Computer Vision and GEN AI. The hardware requirements for the
Plus Configuration and Base Configuration are detailed below.

Table 1. Platform Plus Configuration

Ingredient Requirement Required/
Recommended Quantity

Processor
Intel® Xeon® Platinum 8571N Processor at
2.4GHz, 52C/104T,300W or higher
number SKU

Required 1

Memory

Option 1: DRAM only configuration: 256
GB (16x 16 GB DDR5, 4800 MHz)

Required

16

Option 2: DRAM only configuration: 512
GB (32x 16 GB DDR5, 4800 MHz)

32

Storage
(Boot Drive)

480 GB or equivalent boot drive Required 1

Storage
(Capacity) Minimum 1 TB or equivalent drive Recommended 1

Graphics

1 x Flex 170 or 2 x Flex 170

1 x Arc A750 or 1 x Arc A770

Required up to 2

LAN on
Motherboard
(LOM)

10 Gbps or 25 Gbps port for video
streaming Recommended 1

1/10 Gbps port for Management Network
Interface Controller (NIC) Required 1

Table 2. Platform Base Configuration

Ingredient Requirement Required/
Recommended

Quantity

Processor
Intel® Xeon® Gold 6538N processor at 2.1
GHz, 32C/64T, 205W or higher number
SKU

Required 1

Memory
DRAM only configuration: 256 GB
(16x 16 GB DDR5, 4800 MHz)

Required 16

Design Compliance Requirements

Reference Architecture 9

Ingredient Requirement Required/
Recommended

Quantity

Graphics

1 x Flex 170 or 2 x Flex 170

1 x Arc A750 or 1 x Arc A770

Required

Up to 2

Storage (Boot
Drive)

480 GB or equivalent boot drive Required 1

Storage
(Capacity)

Minimum 1 TB or equivalent drive Recommended 1

LAN on
Motherboard
(LOM)

10 Gbps or 25 Gbps port for PXE/OAM Recommended 1

1/10 Gbps port for Management NIC Required 1

2.2 BIOS Settings

To meet the performance requirements for an Intel® AI Edge Systems Verified Reference
Blueprint – Scalable Performance Edge AI on Intel® Xeon® Scalable with Intel® GPU for
Computer Vision and GEN AI, Intel® recommends using the BIOS settings to enable processor
p-state and c-state with Intel® Turbo Boost Technology (“turbo mode”) enabled.
Hyperthreading is recommended to provide higher thread density. For this solution Intel®
recommends using the NFVI profile BIOS settings for on-demand Performance with power
consideration.

The NFVI profile for BIOS settings is documented in Chapter 3 of BIOS Settings for Intel®
Wireline, Cable, Wireless, and Converged Access Platform (#747130).

Note: BIOS settings differ from vendor to vendor. Please contact your Intel® Representative for
NFVI BIOS Profile Doc# 747130 or if you have difficulty configuring the exact setting in your system
BIOS.

2.3 Solution Architecture

Figure 1 shows the architecture diagram of Intel® AI Edge Systems Verified Reference
Blueprint – Scalable Performance Edge AI on Intel® Xeon® with Intel® GPU for Computer
Vision, and GEN AI. The software stack consists of three categories of AI software:

1. Vision AI

2. Generative AI

3. Network Security AI

All three applications are containerized using docker.

For the Vision AI use case, we are using the Intel® Automated Self-Checkout application,
which measures stream density in terms of the number of supported cameras at the target
FPS, accounting for all stages within the processing pipeline. The video data is ingested and
pre-processed before each inferencing step. The inference is performed using two models:
YOLOv5 and EfficientNet. The YOLOv5 model does object detection, and the EfficientNet
model performs Object Classification. For additional information refer to Appendix A.1 .

Design Compliance Requirements

10 Reference Architecture

For the Generative AI use case, we are using large language models (LLMs) and Intel®
Extension of PyTorch (IPEX) framework to perform LLM inference on Intel® CPU and Intel®
GPU.

For Network Security AI, we are using Malconv and finetuned BERT-base-cased for malicious
portable executable (PE) file detection and email phishing detection respectively.

Figure 1. Architecture of the Intel® AI Edge Systems Verified Reference Blueprint

Figure 2 shows the architecture diagram for the Intel® Automated Self-Checkout application,
which, in this case, is deployed containerized via Docker. The Vision AI use case measures
stream density in terms of the number of supported cameras at the target FPS, accounting for
all stages within the processing pipeline. The video data is ingested and pre-processed before
each inference stage. The inference is performed using two models: YOLOv5 and
EfficientNet. The YOLOv5 model performs object detection while the EfficientNet model
performs object classification. For additional information refer to the Appendix.

Figure 2. Test Methodology for the Intel® Automated Self-Checkout Pipeline

INGESTION PRE-PROCESSING INFERENCING PRE-PROCESSING INFERENCING POST-PROCESSING

Decrypt

Decoder

Frame
splitting

Encode

Object
Detection Crop & Scale

Encode

Product
Classification

Inference
Metadata

Bounding
Box Display

Crop & Scale yolov5 efficientnet

...

Raw Frame
@15 FPS

Resolution

Design Compliance Requirements

Reference Architecture 11

The table below is a guide for assessing the conformance to the software requirements of the
Intel® AI Edge Systems Verified Reference Blueprint. Ensure that the platform meets the
requirements listed in the table below.

Table 3. SW Configuration

Ingredient SW Version Details

OS Ubuntu 22.04.4 Desktop LTS1

Kernel 6.5 (in-tree generic)

OpenVINO 2024.0.1

Docker Engine 27.1.0

Docker Compose 2.29

Intel® Level Zero for GPU 1.3.29735.27

Intel® Graphics Driver for GPU (i915) 24.3.23

Media Driver VAAPI 2024.1.5

Intel® OneVPL 2023.4.0.0-799

Mesa 23.2.0.20230712.1-2073

OpenCV 4.8.0

DLStreamer 2024.0.1

FFmpeg 2023.3.0

2.4 Platform Technology Requirements

This section lists the requirements for Intel’s advanced platform technologies.

This blueprint requires Intel® AVX (Advance Vector Extensions) or AMX (Intel® Advance
Matrix Extensions) to be enabled to reap the benefits of hardware-accelerated convolution.

Table 4. Platform Technology Requirements

Platform Technologies Enable/Disable Required/Recommended

Intel® AMX Intel® Advanced Matrix
Extension

Enable Required

Intel® TXT Intel® Trusted Execution
Technology

Enable Optional

1 Desktop based OS selected as this kernel version includes native in-tree i915 driver support
for Intel® Xe based discrete GPUs.

Design Compliance Requirements

12 Reference Architecture

2.5 Platform Security

For Intel® AI Edge Systems Verified Reference Blueprint, it is recommended that Intel® Boot
Guard Technology to be enabled so that the platform firmware is verified suitable during the
boot phase.

In addition to protecting against known attacks, all Intel® Accelerated Solutions recommend
installing the Trusted Platform Module (TPM). The TPM enables administrators to secure
platforms for a trusted (measured) boot with known trustworthy (measured) firmware and OS.
This allows local and remote verification by third parties to advertise known safe conditions for
these platforms through the implementation of Intel® Trusted Execution Technology (Intel®
TXT).

2.6 Side Channel Mitigation

Intel® recommends checking your system’s exposure to the “Spectre” and “Meltdown”
exploits. This reference implementation has been verified with Spectre and Meltdown
exposure using the latest Spectre and Meltdown Mitigation Detection Tool, which confirms
the effectiveness of firmware and operating system updates against known attacks

The spectre-meltdown-checker tool is available for download at
https://github.com/speed47/spectre-meltdown-checker.

§

https://github.com/speed47/spectre-meltdown-checker

Platform Tuning and GPU Driver Setup

Reference Architecture 13

3 Platform Tuning and GPU Driver
Setup

3.1.1 Install Docker

Follow the instructions at https://docs.docker.com/engine/install/Ubuntu*/ to install Docker
Engine on Ubuntu*.

3.1.2 Install Datacenter GPU Drivers

Refer to the following for instructions on installing the GPU driver: https://dgpu-
docs.intel.com/driver/installation.html#ubuntu. Refer to Table 8 for a list of the installed
software versions.

3.1.2.1 Reboot the server for the changes to take place in the OS
$ sudo reboot

3.1.3 Configure permissions on the OS groups for GPU as rendering device
$ sudo gpasswd -a ${USER} render
$ newgrp render

Verify if the render group is added as shown below:

3.1.4 Verify the installation to check if the GPU device is working with i915
driver
$ sudo apt-get install -y hwinfo
$ hwinfo --display

Verify if the i915 driver is active:

https://docs.docker.com/engine/install/ubuntu/
https://dgpu-docs.intel.com/driver/installation.html#ubuntu
https://dgpu-docs.intel.com/driver/installation.html#ubuntu

Platform Tuning and GPU Driver Setup

14 Reference Architecture

Verify the GPU devices using xpu manager:

$ xpu-smi discovery

 §

Performance Verification

Reference Architecture 15

4 Performance Verification
This chapter aims to verify the performance metrics for the Intel® AI Edge Systems Verified
Reference Blueprint to ensure that there is no anomaly seen. Refer to the information in this
chapter to ensure that the performance baseline for the platform is as expected.

The solution was tested on August 06, 2024, with the following hardware and software
configurations:

• 1 NUMA node

• 1 x Intel® Xeon® Gold 6538N processors or 1 x Intel® Xeon® Platinum 8571N processors

• Total Memory: 128 GB, 8 slots/16 GB/4800 MT/s DDR5 RDIMM

• Hyperthreading: Enable

• Turbo: Enable

• C-State: Enable

• Storage: 1x 1TB INTEL® SSDPE2KX010T8

• Network devices: 2x Dual port Intel® Ethernet Network Adapter E810-2CQDA2

• Network speed: 50 GbE

• BIOS: American Megatrends International, LLC. 3B05.TEL4P1

• Microcode: 0x21000161

• OS/Software: Ubuntu Desktop 22.04 LTS (kernel 6.5.0-44-generic)

4.1 Memory Latency Checker (MLC)

The Memory Latency Checker which can be downloaded from
https://www.Intel®.com/content/www/us/en/developer/articles/tool/Intel®r-memory-
latency-checker.html. Download the latest version, unzip the tarball package, go into the
Linux* folder, and execute ./mlc. Table 5 and Table 6 below should be used as a reference for
verifying the validity of the system setup.

Table 5. Memory Latency Checker

Key Performance Metric Local Socket (Plus)

Idle Latency (ns) 150.3

Memory Bandwidths between nodes within the system
(using read-only traffic type) (MB/s)

260425

Table 6. Peak Injection Memory Bandwidth (1 MB/sec) Using All Threads

Peak Injection Memory Bandwidth (1 MB/sec) using all threads Plus Solution

All Reads 255504

https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html

Performance Verification

16 Reference Architecture

Peak Injection Memory Bandwidth (1 MB/sec) using all threads Plus Solution

3:1 Reads-Writes 211857

2:1 Reads-Writes 202797

1:1 Reads-Writes 186870

STREAM-Triad 206753

Loaded Latencies using Read-only traffic type with Delay=0
(ns)

183.11

L2-L2 HIT latency (ns) 73.6

L2-L2 HITM latency (ns) 74.7

Note: If the latency performance and memory bandwidth performance are outside the range, please
verify the validity of the Platform components, BIOS settings, kernel power performance profile used,
and other software components.

4.2 Vision AI

Intel® Automated Self-Checkout application (previously known as Retail Checkout) provides
critical components to build and deploy a self-checkout use case using Intel® hardware,
software, and other open-source software such as OpenVINOTM. For instance, in this case all
the models in the pipeline are converted into OpenVINO format. In addition, this proxy
workload makes use of both GStreamer for media processing and DLStreamer for inferencing,
which includes detection and classification. This reference implementation provides a pre-
configured automated self-checkout pipeline optimized for Intel® hardware.

The video stream is cropped and resized to enable the inference engine to run the associated
models. The object detection and product classification features identify the SKUs during
checkout. The bar code detection, text detection, and recognition feature further verify and
increase the accuracy of the detected SKUs. The inference details are then aggregated and
pushed to the enterprise service bus or MQTT to process the combined results further. This
proxy workload supports either running directly on the CPU or fully offloading to the GPU,
including encoding/decoding, along with inferencing.

Figure 3. Vision AI Video Analytics Pipeline

Intel® AI Edge Systems Verified Reference Blueprint – Scalable Performance Edge AI on
Intel® Xeon® with Intel® GPU for Computer Vision, and GEN AI configuration, the platform
CPU with AMX should be able to process up to 23 of streams at 4K @ 14.95FPS with HEVC
codec, and up to 26 of streams when equipped with Intel® Flex 170 GPU.

Performance Verification

Reference Architecture 17

Table 7. Vision AI Workload Configuration

Ingredient Software Version Details

OpenVINO 2024.0.1

DLStreamer 2024.0.1

FFMPEG 2023.3.0

VPL 2023.4.0.0-799

Python 3.8+

Table 8. Vison AI Plus Configuration Performance

Configuration1 Intel® CPU Xeon® 6538N Intel® Flex 170 2 x Intel® Flex 170

Plus Configuration (# of
streams)

23 26 50

Figure 4. Vision AI Plus Configuration Performance Graph on Xeon® Gold 6538N Processor and Intel®
Flex 170

0
10
20
30
40
50
60
70
80
90
100

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16 18 20 22 24 1 3 5 7 9 11 13 15 17 19 21 23 25 27

1x Intel® 5th Generation Xeon®
Gold 6538N

1x Flex170

%

Cu
m

ul
at

iv
e

Th
ro

ug
hp

ut
 (F

PS
)

Number of Streams

Retail Self-Checkout, yolov5s, efficientnet-b0, INT8
OpenCV 4.7.0, DLStreamer 1.7.0, Gstreamer 1.20.3

Batch Size: 1, Target FPS: 14.95

1 - Cumulative Throughput 1 - Average CPU Utilization

26 x 14.95 FPS
23 x 14.95 FPS

Performance Verification

18 Reference Architecture

4.3 GEN AI

The Large Language Model(LLM) proxy workload highlights the Gen AI processing
capabilities of the Intel® AI Edge Systems Verified Reference Blueprint – Scalable
Performance Edge AI on Intel® Xeon® with Intel® GPU such as GPT-NEOX-20B, Llama 3 8B,
Phi3, and TinyLlama. all the LLM models are downloaded from the Hugging Face repository.

To ensure GEN AI is running on Intel® hardware with optimal performance, we use IPEX-LLM
framework as inference workload. IPEX-LLM is optimized with Intel® AMX technology, as well
as Intel® GPUs with precision from FP32 to INT4. Incrementing batch size also provides better
throughput performance with latency trade-offs.

The benchmarking was conducted on CPU only AND on GPU only. The GPT-NEOX-20B was
benchmarked on the Xeon® Scalable Platinum SKU (8571N). Other models were
benchmarked on the Xeon® Scalable Gold SKU (6538N).

On LLM serving front, vLLM also has been integrated with IPEX-LLM, and provides excellent
throughput by employing continuous batching, especially the LLM serving framework is
optimized with underlying Intel® hardware enhancements such as AMX/AVX512 and AVX2.

For the Intel® AI Edge Systems Verified Reference Blueprint—Scalable Performance Edge AI
on Intel® Xeon® with Intel® GPU for Computer Vision and GEN AI configuration, the system
should be able to deliver results as shown in the graphs below, which serve as a baseline for this
solution's expected performance.

0
10
20
30
40
50
60
70
80
90
100

0
100
200
300
400
500
600
700
800
900

0 3 6 9 12 15 18 21 24 2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50

1x Intel® 5th Generation
Xeon® Gold 6538N

2x Flex170s

%

Cu
m

ul
at

iv
e

Th
ro

ug
hp

ut
 (F

PS
)

Number of Streams

Retail Self-Checkout, yolov5s, efficientnet-b0, INT8
OpenCV 4.7.0, DLStreamer 1.7.0, Gstreamer 1.20.3

Batch Size: 1, Target FPS: 14.95

1 - Cumulative Throughput 1 - Average CPU Utilization

23 x 14.95 FPS

50 x 14.95 FPS

Performance Verification

Reference Architecture 19

Figure 5. Performance for GPT-NEOX-20B model on CPU (Xeon® Scalable Platinum SKU (8571N))

70 75 89 12
1 20

8

10
6

11
4

12
6 15
3 25

2

72 78 94

13
4 23

5

10
8

11
6

13
2 16

5

28
4

77 88 11
4 17

5

32
0

11
4

12
6 15
3 21

1

36
1

98 11
8 15

5 24
9

43
3

13
5

15
5 19

6 28
4

47
3

1 2 4 8 1 6 1 2 4 8 1 6

I N T 4 I N T 8

AV
ER

AG
E

N
EX

T
TO

KE
N

 LA
TE

N
CY

(M

S)

AVERAGE NEXT TOKEN LATENCY (MS)
32 256 1024 2048

14

27

45

66

76

9

17

32

52

63

14

25

41

58

65

9

17

29

46

53

13

21

32

41 44

9 15

24

33 37

10 16

23 27 31

7 12 17 22 26

1 2 4 8 1 6 1 2 4 8 1 6

I N T 4 I N T 8

TO
KE

N
S/

S

AVERAGE TOKENS/S
32 256 1024 2048

72 77 91 12
4 21

5

10
9

11
7

13
0 15

7

26
0

74 81 99

14
2

25
1

11
2

12
0

13
9 17

7

30
7

82 96 12
7 20

1

37
1

12
0

13
8 17

4 25
0

43
7

10
7 13
2 18

2

30
0

53
5

14
7 17

6 23
5

37
6

62
8

1 2 4 8 1 6 1 2 4 8 1 6

I N T 4 I N T 8

IN
FE

RE
N

CE
 T

IM
E

(S
)

INFERENCE TIME (SEC)
32 256 1024 2048

Performance Verification

20 Reference Architecture

Figure 6. Performance for Llama 3 8B Model on CPU(Xeon® Scalable Gold SKU (6538N)).

27 29 33

46

78

39 42 47

57

95

68 69 73 79

99

27 30 35

50

87

40 43 48

62

10
5

68 71 75 83

10
6

28 33

42

66

11
6

41 46

55

77

13
2

69 73 80

95

12
6

30 38

51

82

14
2

43 51

64

98

16
0

72 77

88

11
3

15
5

1 2 4 8 1 6 1 2 4 8 1 6 1 2 4 8 1 6

I N T 4 I N T 8 B F 1 6AV
ER

AG
E

N
EX

T
TO

KE
N

 L
AT

EN
CY

 (M
S)

AVERAGE NEXT TOKEN LATENCY (MS)
32 256 1024 2048

37

69

11
9

17
1 20

3

25

48

85

14
0 16

8

15 29

55

10
1

16
1

37

66

11
1

15
5 17

6

25

46

81

12
3 14

0

15 28

53

94

14
5

34

56

81

10
1 11

6

23

40

62

86

10
0

14 27

48

76

11
0

28

43

61 75 87

21 33

49 63 76

14 24

40

60

84

1 2 4 8 1 6 1 2 4 8 1 6 1 2 4 8 1 6

I N T 4 I N T 8 B F 1 6

TO
KE

N
S/

S

AVERAGE TOKENS/S
32 256 1024 2048

27 30 34 48

81

40 43 48 59

98

69 71 75 81

10
2

28 31 37 53

93

41 45 51 66

11
7

70 73 77 87

11
3

30 36 50

81

14
2

44 51 66

96

16
3

72 77 85

10
8 14

8

37 48

67

11
0

18
8

50 62

84

13
1

21
6

76 85 10
2 13

6

19
4

1 2 4 8 1 6 1 2 4 8 1 6 1 2 4 8 1 6

I N T 4 I N T 8 B F 1 6

IN
FE

RE
N

CE
 L

AT
EN

CY
 (S

)

INFERENCE LATENCY (S)
32 256 1024 2048

Performance Verification

Reference Architecture 21

Figure 7. Performance for Llama 3 8B Model on Intel® Flex 170

17

23

28

37

29 30 32

41

17

23

28

38

29 30 32

43

18

25

29 30 31

19

26

1 2 4 8 1 2 4 8

I N T 4 I N T 8

AV
ER

AG
E

N
EX

T
TO

KE
N

 LA
TE

N
CY

 (M
S)

AVERAGE NEXT TOKEN LATENCY (MS)

32 256 1024 2048
60

87

14
5

21
5

34

66

12
6

19
4

58

86

14
1

21
0

34

67

12
4

18
8

55

81

13
7

33

6452

78

1 2 4 8 1 2 4 8

I N T 4 I N T 8

TO
KE

N
S/

S

AVERAGE TOKENS/S
32 256 1024 2048

17

24

28

38

30 31 33

42

18

24

30

40

30 31 34

45

19

26

32 32 33

21

28

1 2 4 8 1 2 4 8

I N T 4 I N T 8

IN
FE

RE
N

CE
 T

IM
E

(S
)

INFERENCE LATENCY (SEC)
32 256 1024 2048

Performance Verification

22 Reference Architecture

Figure 8. Performance for Phi-3-4k Mini Model on CPU (Xeon® Scalable Gold SKU (6538N)).

34 38 45 58

87 64 67 74 85

11
3 14

3

13
9

14
2

14
5 16

2

35 41 51 70

11
2

64 70 81 96

13
3

13
8

14
5

15
3

16
6 18

6

38 51 72

11
7

20
6

69 82 10
5 13

7

23
3

14
6

15
8 18

1 21
9

31
1

46 65

10
5

17
8

35
7

78 97

14
1

20
9

35
5

15
4 17

5 21
7

29
2

45
1

1 2 4 8 1 6 1 2 4 8 1 6 1 2 4 8 1 6

I N T 4 I N T 8 B F 1 6

AV
ER

AG
E

N
EX

T
TO

KE
N

 L
AT

EN
CY

 (M
S) AVERAGE NEXT TOKEN LATENCY (MS)

32 256 1024 2048
37

69

11
9

17
1 20

3

25

48

85

14
0 16

8

15 29

55

10
1

16
1

37

66

11
1

15
5 17

6

25

46

81

12
3 14

0

15 28

53

94

14
5

34

56

81

10
1 11

6

23

40

62

86 10
0

14 27

48

76

11
0

28 43

61 75 87

21 33

49 63 76

14 24

40

60

84

1 2 4 8 1 6 1 2 4 8 1 6 1 2 4 8 1 6

I N T 4 I N T 8 B F 1 6

TO
KE

N
S/

S

AVERAGE TOKENS/S
32 256 1024 2048

27 30 34 48

81

40 43 48 59

98

69 71 75 81

10
2

28 31 37

53

93

41 45 51

66

11
7

70 73 77 87

11
3

30 36 50

81

14
2

44 51

66

96

16
3

72 77 85

10
8

14
8

37 48

67

11
0

18
8

50 62

84

13
1

21
6

76 85

10
2 13

6

19
4

1 2 4 8 1 6 1 2 4 8 1 6 1 2 4 8 1 6

I N T 4 I N T 8 B F 1 6

IN
FE

RE
N

CE
 L

AT
EN

CY
 (S

)

INFERENCE LATENCY (S)
32 256 1024 2048

Performance Verification

Reference Architecture 23

Figure 9. Performance for Phi-3-4k-Mini Model on Intel® Flex 170

13 13 16

23

17 18 20

26 29 32 32

38

12 13 17

25

18 19 20

27 29 33 34

13 15 19

28

20 19 23

31 31 34

39

17 17

22 22 21

25

32

37

1 2 4 8 1 2 4 8 1 2 4 8

I N T 4 I N T 8 F P 1 6

AV
ER

AG
E

N
EX

T
TO

KE
N

 LA
TE

N
CY

 (M
S)

VARYING BATCH SIZES AND MODEL PRECISION

AVERAGE NEXT TOKEN LATENCY (MS)

32 256 1024 2048
79

15
3

24
6

34
6

57

11
2

19
9

31
2

34

63

12
3

21
2

81

14
8

23
5

32
4

56

10
8

19
7

29
5

34

61

11
8

75

13
0

21
0

28
2

50

10
6

17
6

25
7

32

58

10
3

60

11
6 18

0

45

95

15
7

31 55
1 2 4 8 1 2 4 8 1 2 4 8

I N T 4 I N T 8 F P 1 6

TO
TA

L
TO

KE
N

/S

VARYING BATCH SIZES AND MODEL PRECISION

AVERAGE TOKENS/S
32 256 1024 2048

13 13 17

24

18 18 21

26 30 32 33

39

13 14

18

26

19 19 21

28 30 33 35

14 17

21

32

21 20

25

35 32 36

41

18 20

27 24 24

30 33

39

1 2 4 8 1 2 4 8 1 2 4 8

I N T 4 I N T 8 F P 1 6

IN
FE

RE
N

CE
 T

IM
E

(S
)

VARYING BATCH SIZES AND MODEL PRECISION

INFERENCE TIME (SEC)
32 256 1024 2048

Performance Verification

24 Reference Architecture

Figure 10. Performance on TinyLlama Model on CPU(Xeon® Scalable Gold SKU (6538N)).

11 12 13 17

25

18 18 19 22

29

35 36 36 36 38

12 12 14

19

29

18 19 20 24

33 36 36 36 38 42

12 14 18

25

43

19 20 23

31

47

37 38 40

45

56

17 19

25

41

64

24 26

31

45

73

43 44 48

60

78

1 2 4 8 1 6 1 2 4 8 1 6 1 2 4 8 1 6

I N T 4 I N T 8 B F 1 6

AV
ER

AG
E

N
EX

T
TO

KE
N

 L
AT

EN
CY

 (M
S)

AVERAGE NEXT TOKEN LATENCY (MS)
32 256 1024 2048

89

16
8

30
1

47
1

64
8

56

10
9 20

6

36
1

55
7

28 56

11
2 22

4

41
7

86

16
0

27
9

42
3 53

4

56

10
7 19

8

32
7

46
9

28 55

11
0 21

1

37
5

80

13
9 21

6 29
9 34

0

52

96

16
6 24

5 31
5

27 52

99

17
3 26

8

58 99

14
8 17
8 21

9

41 74

11
9 16

0 19
5

23 45 80

12
5 18

5

1 2 4 8 1 6 1 2 4 8 1 6 1 2 4 8 1 6

I N T 4 I N T 8 B F 1 6

TO
KE

N
S/

S

AVERAGE TOKENS/S
32 256 1024 2048

12 12 14 17

25

18 19 20 23

29

36 36 37 37 39

12 13 15 19

31

18 19 21 25

35 37 37 37 39 44

13 15 19

27

48

20 21 25

33

52

38 39 41

47

61

18 21

28

46

75

25 28

34

51

84

44 46 51

66

89

1 2 4 8 1 6 1 2 4 8 1 6 1 2 4 8 1 6

I N T 4 I N T 8 B F 1 6

IN
FE

RE
N

CE
 T

IM
E

(S
)

INFERENCE LATENCY (S)
32 256 1024 2048

Performance Verification

Reference Architecture 25

Figure 11. vLLM-IPEX-LLM Performance with Llama 3 8B Model on CPU(Xeon® Scalable Gold SKU
(6538N)).

Figure 12. vLLM-IPEX-LLM Performance with Llama 3 8B Model on 2 x Flex 170 (1024 Output Token

Size)

218.48

292.55

384.17 393.77 398.27 397.74 401.5 391.75

22.3 23.3 27.6 31.5
40.4

53.2

85.6

119

0

20

40

60

80

100

120

140

0
50

100
150
200
250
300
350
400
450

1 2 4 8 16 32 64 96

M
em

or
y

U
sa

ge
 (G

B)

Av
er

ag
e

To
ke

ns
/s

KV Cache (GB)

Llama3 -8B, Average Tokens/Second and Memory
Usage vs KV Cache

Sum of Average tokens/s Sum of Memory Usage (GB)

Performance Verification

26 Reference Architecture

Figure 13. Llama 3 8B Performance on 2 x Flex 170 with Pipeline Parallel Configuration

18 21 25

33

53

29 29 30 34

56 53 54 56 57

90

17 22 25

33

55

29 30 31 35

57 53 54 56 58

93

18 22 26

36

30 30 32

55 55 57

19 24 28 30 31

56 56

1 2 4 8 1 6 1 2 4 8 1 6 1 2 4 8 1 6

I N T 4 I N T 8 F P 1 6

AV
ER

AG
E

N
EX

T
TO

KE
N

 LA
TE

N
CY

 (M
S)

AVERAGE NEXT TOKEN LATENCY (MS)
32 256 1024 2048

56

94

16
3

24
6

30
5

35

69

13
2

23
2 28

6

19 37

72

14
0 17

8

58

92

16
2

24
2 29

3

35

67

12
9

23
0 28

0

19 37

72

13
7 17

1

57

89

15
3

22
3

34

66

12
6

18 36

7054

85

14
4

33

64

18 36

1 2 4 8 1 6 1 2 4 8 1 6 1 2 4 8 1 6

I N T 4 I N T 8 F P 1 6

TO
KE

N
S/

S

AVERAGE TOKENS/S
32 256 1024 2048

18 22 25 34

54

30 30 31 35

57 54 55 57 59

92

18 22 26 35

57

30 31 32 36

60 55 56 58 60

97

19 24 28

39 31 32 34

57 57 61

20 26 32 32 34

59 60

1 2 4 8 1 6 1 2 4 8 1 6 1 2 4 8 1 6

I N T 4 I N T 8 F P 1 6

IN
FE

RE
N

CE
 T

IM
E

(S
)

INFERENCE TIME (SEC)
32 256 1024 2048

Performance Verification

Reference Architecture 27

4.4 Network Security AI: MalConv and BERT

4.4.1 MalConv for Malicious portable executable (PE) detection

AI inference is used in network/security to help prevent advanced cyber-attacks. To improve
the latency associated with this application, the Intel® Xeon® Scalable Processor contains
technologies to accelerate AI inference such as AVX-512, Advanced Matric Extensions
(AMX), and Vector Neural Network Instructions. The MalConv AI workload utilizes the
TensorFlow deep-learning framework, Intel® oneAPI Deep Neural Network Library (oneDNN),
AMX, and Intel® Neural Compressor to improve the performance of the AI inference model.

The starting model for the MalConv AI workload is an open-source deep-learning model called
MalConv which is given as a pre-trained Keras H5 format file. This model is used to detect
malware by reading the raw execution bytes of files. An Intel® optimized version of this h5
model is used for this workload, and the testing dataset is about a 32GB subset of the dataset
from https://github.com/sophos/SOREL-20M. The performance of the model can be
improved by various procedures including conversion to a floating-point frozen model and
using the Intel® Neural Compressor for post-training quantization to acquire BF16, INT8, and
ONNX INT8 precision models.

Ensure that the test results follow the expected results, as shown in the following tables, to
baseline the platform's performance. Table 9 shows the software used for the testing, while
Figure 14 shows a graph of the mean inference time for each model. With 2 cores per instance,
the INT8 model with AVX512_CORE_AMX enabled reached a performance of less than 10 ms.

Note: Refer to https://hub.docker.com/r/Intel®/malconv-model-base for the Intel® Optimized
MalConv Model.

Table 9. MalConv AI Workload Configuration

Ingredient Software Version Details

TensorFlow 2.13.0

Intel® Extension for Tensorflow 2.13.0.1

oneDNN 2024.2.0

Python 3.11.7

Intel® Neural Compressor 2.6

ONNX 1.16.1

https://hub.docker.com/r/intel/malconv-model-base

Performance Verification

28 Reference Architecture

Figure 14. MalConv AI Entry Platform Performance Graph

BERT is a pre-trained language representation model developed by Google AI Language
researchers in 2018, which consists of transformer blocks with a variable number of encoder
layers and a self-attention head. The model used in the testing is a fine-tuned version of the
Hugging Face BERT base model.

To detect phishing emails, the input email is first tokenized into chunks of words using the
Hugging Face tokenizer, with a special CLS token was added at the beginning. The tokens are
then padded to the maximum BERT input size, which by default is 512. The total input tokens
are converted to integer IDs and fed to the BERT model. A dense layer is added for email
classification, which takes the last hidden state for the CLS token as input.

Ensure that the results of the tests follow the expected results as shown in the following graph
to baseline the performance of the platform. Table 12 shows the software used for the testing,
while Figure 16 shows a graph of the results for the INT8 and FP32 BERT models. With 8 cores
per instance, the mean latency of the INT8 model reaches below 20ms.

Note: Refer to https://huggingface.co/bert-base-cased for the original Hugging Face BERT base
model.

Note: The phishing email test dataset can be found at https://github.com/IBM/nlc-email-
phishing/tree/master/data

Table 10. BERT AI Workload Configuration

Ingredient Software Version Details

Torch 2.1.2

0 0 0 0 0 0 0

81
.7

17
.6

13
.1

23
.2

9.
3 11

.6

23
.3

69
.8

12
.7

13
.5 18

.3

9.
6 10

.8 16
.4

67
.7

10
.3 12
.0

12
.5

9.
0

9.
4 14

.1

59
.7

6.
9 8.
7

8.
7

6.
3

6.
6 12

.1

55
.3

3.
8 5.
3

5.
7

4.
0

3.
7

10
.2

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0

10

20

30

40

50

60

70

80

90

Keras h5 FP32 BF16 with AMX BF16 with BF16 INT8 with AMX INT8 with VNNI ONNX INT8

M
ea

n
In

fe
re

nc
e

Ti
m

e
(m

s)

Model

MalConv, 6538N (1 Socket)

1 Core 2 Cores 4 Cores 8 Cores

16 Cores 32 Cores ROC AUC Accuracy

Lower is better Higher is

https://huggingface.co/bert-base-cased
https://github.com/IBM/nlc-email-phishing/tree/master/data
https://github.com/IBM/nlc-email-phishing/tree/master/data

Performance Verification

Reference Architecture 29

Ingredient Software Version Details

Intel® Extension for PyTorch 2.1.100

oneDNN 2024.2.0

Python 3.11.7

Intel® Neural Compressor 2.6

Figure 15. BERTAI Performance on VRC for Intel® AI System – Medium Entry Configuration Graph

Performance Summary

The following presents the range of performance achievable for the Intel® AI Edge Systems
Verified Reference Blueprint – Medium configuration across each of the Vision AI, Generative
AI, and Network Security AI workloads.

§

114.2

1018.5

58.0

523.7

31.4

279.6

18.6
153.4

13.0
94.8

9.3 63.0

0.97
0.98

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

INT8 FP32

M
ea

n
La

te
nc

y
(m

s)

Model

BERT, 6538N (1 Socket)
1 Core 2 Cores 4 Cores 8 Cores

16 Cores 32 Cores F1 Score

Lower is better Higher is better

Summary

30 Reference Architecture

5 Summary
The Intel® AI Edge Systems Verified Reference Blueprint – Scalable Performance for
Computer Vision, and GEN AI defined on single socket 5th Gen Intel® Xeon® Scalable
processors with multiple Intel® Data Center Flex GPUs addresses the capabilities for AI
Inference offering the following value proposition:

5.1 Vision AI Performance Summary
• Up to 23 IP camera streams of Vision AI use case

• Up to 26 IP camera streams of Vision AI use case on 1x Flex 170 GPU

• Up to 50 IP camera streams of Vision AI use on 2x Flex 170 GPU

5.2 GEN AI Performance Summary

A summary of the GEN AI performance is shown in the tables below.

Table 11. Performance of Various Large Language Models on CPU:

Models Precision Input
Tokens

Batch Size Throughput
(tokens/s)

Inference
time

GPT-NEOX-20B* INT4 32 1 14 < 72s

Llama-3-8B INT4 32-1024 4 81-119 < 60s

Phi3-4k-mini INT4 32-256 8 179-208 < 60s

TinyLlama INT4 32-1024 16 321-695 < 60s

vLLM Llama 3 8B BF16 Variable Variable 393 N/A

*This model was benchmarked on the 8571N Platinum Processor SKU.

Table 12. Performance of Various Large Language Models on Intel® Data Center Flex GPU:

Models GPU Precision Input
Tokens

Batch
Size

Throughput
(tokens/s)

Inference
time

Phi-3-mini Flex 170 INT4-8 32-256 8 257-346 < 60s

Llama 3 8B Flex 170 INT4-8 32-256 8 188-215 < 60s

Llama 3 8B 2 x Flex 170 INT8-
FP16

32-256 8 230-246 < 60s

Llama 3 8B 2 x Flex 170 FP8 Variable Variable 748 N/A

Summary

Reference Architecture 31

This Configuration combined with architectural improvements, feature enhancements, and
integrated Accelerators with high memory and IO bandwidth, provides a significant
performance and scalability advantage in support for today’s AI workload.

§

Appendix

32 Reference Architecture

Appendix A Appendix
The following section provides detailed instructions for benchmarking a platform with each of
the proxy workloads for Vision AI, Gen AI, along with Network Security AI. The benchmarking
process leveraged the tools and scripts provided as part of the Intel® AI Edge Systems
Verified Reference Blueprint will be available later, please reach out to your Intel® Field
Representative for access.

A.1 Automated Self-Checkout Test Methodology
Figure 16. Test Methodology for the Automated Self-Checkout Proxy Workload

Per Frame Processing Pipeline

Camera
Source Camera Sink

DLStreamer

Streaming Video Content
Original Resolution: 1920 X 1080

Draw
Bounding

Box

Object
Detection
(YOLOv5s)

Tracking
Crop

Detected
Object

Text
Detection

Crop
Detected

Text

Text
Recognition

(OCR)

Classification
(efficient-

netb0)

Resolution:
412 X 412

The Intel® Automated Self-Checkout Reference Package provides critical components
required to build and deploy a self-checkout use case using Intel® hardware, software, and
other open-source software. Vision workloads are large and complex and need to go through
many stages. For instance, in the pipeline shown within the figure below, the video data is
ingested, pre-processed before each inferencing stage, inferenced using two models -
YOLOv5 and EfficientNet, and post-processed to generate metadata along with drawing the
bounding boxes for each frame. The camera source plays back pre-recorded video content,
which is then processed by the media analytics pipeline. The video stream input is decoded
within the CPU pipeline using software-based decodebin API calls, while for the GPU pipeline
the decoding is offloaded using vaapidecodebin API calls. The video content is freely available
from https://www.pexels.com .

The Intel® Automated Self-Checkout Reference makes use of Intel® Deep Learning Streamer
(Intel® DL Streamer), which leverages the open-source media framework GStreamer to
provide optimized media operations along with the Deep Learning Inference Engine from the
OpenVINO™ Toolkit to provide optimized inference. DLStreamer accelerates the media
analytics pipeline for the Vision AI use case and allows for offloading to the underlying Intel®
ARCTM and Intel® Data Center Flex GPUs.

The media analytics pipeline for Vision AI utilizes DLStreamer to performs object classification
on the Region(s) of Interest (ROI) detected by gvadetect using the gvaclassify element and
Intermediate Representation (IR) formatted object classification model. The models used for

https://www.pexels.com/
https://dlstreamer.github.io/

Appendix

Reference Architecture 33

detection are in OpenVINO Intermediate Representation format, which is optimized for Intel®
CPUs and GPUs. One advantage for the OpenVINO IR format is that the models can be used
as-is without the need for retraining to leverage Intel® CPUs and GPUs. The Vision AI pipeline
also uses object tracking for reducing the frequency of object detection and classification,
thereby increasing the throughput, using gvatrack. The pipeline publishes the detection and
classification results within a JSON file, which is then parsed, and the final results are reported
in a log file.

Note: The GStreamer multi-media framework is used to stream video content by the frame source
and the frame sink endpoints. The current release does not make use of the underlying media engines,
offloading to the media engines is planned for future releases of the Intel® Automated Self-Checkout
Reference.

Figure 17. Detailed Test Methodology for Retail Self-Checkout Pipeline

GPU PIpeline
...

CPU Pipeline
...

CPU Pipeline

Extract
H.264

from RTSP
gst-launch-

1.0

Video
Decode

decodebin
force-sw-

decoders=1

Tracking

gvatrack

Crop
Detected

Object

Crop
Detected

Text

Text
Detection

GPU Pipeline

efficientnet
(OpenVINO IR)

Text
Recognition

(OCR)

Classification

gvaclassify
device=CPU

Resolution:
416 x 416

Resolution:
224 x 224

yolov5s
(OpenVINO

IR)Object
Detection

gvadetect
device=CP

U

Resolution:
1920 x 1080

Extract
H.264

from RTSP
gst-launch-

1.0

Video
Decode

vaapidecod
ebin

Tracking

gvatrack

Crop
Detected

Object

Crop
Detected

Text

Text
Detection

efficientnet
(OpenVINO IR)

Text
Recognition

(OCR)

Classification

gvaclassify
device=GPU

yolov5s
(OpenVINO

IR)Object
Detection

gvadetect
device=GP

U

Frame
Source

...

Legend

Gstreamer

DLStreamer

Not Included

Frame Sink

fpsdisplaysink
Frame Sink

fpsdisplaysink
Frame Sink

fpsdisplaysink

The test methodology implements the following to measure the maximum number of streams
that the system can sustain:

• Detection Model: Yolov5s

• Classification Model: efficient net-b0

• OpenVino 2024.0.1.

• DLStreamer 2024.0.1

• FFmpeg 2023.3.0

• VPL 2023.4.0.0-799

The test measures the number of streams that the server can sustain at the target FPS. For
each test iteration, the number of camera streams is monotonically increased until the
currently measured FPS value falls below the target FPS value. The number of streams is then
monotonically decremented until the target FPS is met. Upon test completion the results are
captured for the average FPS, the cumulative FPS, along with the peak number of streams
achieved at the target FPS.

Appendix

34 Reference Architecture

Quick Setup:

Download videos, models, docker images and build containers.
$ git clone https://github.com/Intel®-retail/automated-self-checkout.git
$ git checkout tags/3.0.0
#make run-demo

Issue and Workaround

Issue #1: Binary 'ffmpeg" does not exist in OpenVINO container.

Workaround:

1. Create a Dockerfile named Dockerfile.OV.

2. Build the OpenVINO image.
$ docker build --build-arg HTTPS_PROXY=${HTTPS_PROXY} --build-arg
HTTP_PROXY=${HTTP_PROXY} -t openvino/Ubuntu*20_data_runtime:2021.4.2 -f
src/Dockerfile.OV .

A.2 Generative AI Test Methodology

A.2.1 IPEX-LLM Testing Methodology on CPU
The Generative AI benchmark on Intel® CPU was performed using Intel® Extension of PyTorch
(IPEX) for LLM. All cores are being used and sustained at 100% CPU utilization throughout the
inference process.

Please refer to the link below for more information on the configuration

https://www.Intel®.com/content/www/us/en/developer/articles/technical/accelerate-meta-
llama3-with-Intel®-ai-solutions.html

A.2.2 IPEX-LLM Testing Methodology on GPU
Pull and start the container.
$ export DOCKER_IMAGE=Intel®analytics/ipex-llm-serving-xpu:2.1.0-SNAPSHOT
$ export CONTAINER_NAME=ipex-llm-serving-xpu
$ export MODEL_PATH=<YOUR PATH TO THE MODEL WEIGHTS>
$ docker pull Intel®analytics/ipex-llm-serving-xpu:2.1.0-SNAPSHOT
$ docker run -itd I am running a few minutes late; my previous meeting is
running over.
 --net=host \
 --device=/dev/dri \
 --memory="64G" \
 --name=$CONTAINER_NAME \

https://github.com/intel-retail/automated-self-checkout.git
https://www.intel.com/content/www/us/en/developer/articles/technical/accelerate-meta-llama3-with-intel-ai-solutions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/accelerate-meta-llama3-with-intel-ai-solutions.html

Appendix

Reference Architecture 35

 --shm-size="16g" \
 -v $MODEL_PATH:/llm/models \
 $DOCKER_IMAGE

Note: Ensure that you have assign enough memory via the --memory tag as the model(s) will be
loaded to the container memory before moving to the GPUs.

Enter the container via bash terminal:
$ docker exec -it ipex-llm-serving-xpu bash

Enter the predefined benchmark script directory:
$ cd /benchmark/all-in-one

A.2.3 Running IPEX-LLM Benchmarking Scripts

A.2.3.1 Running IPEX-LLM on CPU

Running IPEX-LLM on CPU Follow the steps to setup the IPEX-CPU test and benchmark on
Single socket Intel® Xeon® Scalable Processor. The user is expected to have privileged rights.

1. Install the baseline dependencies:
sudo apt update
sudo apt install -y make git numactl
sudo apt install -y python3
sudo pip install –upgrade pip

2. Clone the IPEX project:
git clone https://github.com/Intel®/Intel®-extension-for-pytorch.git
cd Intel®-extension-for-pytorch
git checkout v2.3.100+cpu
git submodule sync
git submodule update --init --recursive

3. Build the IPEX docker image:
DOCKER_BUILDKIT=1 docker build --build-arg HTTPS_PROXY=${HTTPS_PROXY} -
-build-arg HTTP_PROXY=${HTTP_PROXY} -f
examples/cpu/inference/python/llm/Dockerfile --build-arg COMPILE=ON -t
ipex-cpu:2.3.100 .

Note: The ipex-cpu container build takes approx. 30 mins

4. Verify the IPEX container is built
docker images | grep ipex
REPOSITORY TAG IMAGE ID CREATED SIZE
ipex-cpu 2.3.100 d5ce81fe66f8 3 hours ago 4.61GB

5. Download the LLM models from HuggingFace:
huggingface-cli download <model_card> --local-dir ~/<local_model_path>
--token <your_huggingface_token>

6. Start the ipex-cpu docker container
export DOCKER_IMAGE=ipex-cpu:2.3.100
export CONTAINER_NAME=ipex-cpu
export MODEL_PATH=<CHANGE TO PATH TO THE MODEL DIRECTORY>

docker run --rm -it --privileged --memory="256G" --shm-size="128G" --
name=$CONTAINER_NAME -v $MODEL_PATH:/llm/models $DOCKER_IMAGE bash

Appendix

36 Reference Architecture

Note: It’s recommended to use shard_model before running distributed inference to save time
during model inference.

7. Shard model for Distributed inference inside the ipex-cpu docker container
cd ./llm/utils
create_shard_model.py -m /llm/models/<MODEL_ID> --save-path
/llm/models/<SHARD-MODEL-DIRECTORY>

8. Copy the benchmark_cpu_ds.sh and extract_kpis.py script to the container:
docker cp ~/applications.platform.Intel®-select-for-
network/enterprise_ai/common/ipex-llm-cpu/benchmark_cpu_ds.sh ipex-
cpu://home/Ubuntu*/llm/

docker cp ~/applications.platform.Intel®-select-for-
network/enterprise_ai/common/ipex-llm-cpu/extract_kpis.py ipex-
cpu://home/Ubuntu*/llm/

9. Change the user:group of the scripts inside the container:
sudo chown Ubuntu*:Ubuntu* benchmark_cpu.sh
sudo chown Ubuntu*:Ubuntu* extract_kpis.py

10. Edit the shard model path and model name in the benchmark_cpu_ds.sh script as shown
model_shard="/llm/models/llama3-8B/shard_model_hf"
model_name="llama3-8B"

11. Download the prompt json files for model tests
For Llama3 models download the below prompt file
wget -O prompt.json https://Intel®-extension-for-
pytorch.s3.amazonaws.com/miscellaneous/llm/prompt-3.json

For other models, use the below prompt file
wget https://Intel®-extension-for-
pytorch.s3.amazonaws.com/miscellaneous/llm/prompt.json

12. Run the benchmark script for distributed inference. This script will create a "result-
model_name_mmddyyhhss" folder in the same directory and will contain text files for each
test iteration

./benchmark_cpu.sh

13. Extract KPIs using the python script. This script generate a CSV file named
llm_benchmark_results.csv with all the KPIs

python extract_kpis.py --results-dir results-model_name_mmddyyhhss

14. Copy the llm_benchmark_results.csv file from docker to host
docker cp ipex-
cpu:/home/Ubuntu*/llm/llm_benchmark_results.csv ./root/workspace

A.2.3.2 Running IPEX-LLM on Single GPU

The Generative AI benchmark on Intel® Data Center GPU Flex 170 leverages the IPEX-LLM
framework and is deployed in a containerized manner.

To run the Generative AI benchmark on Intel® Data Center GPU Flex 170:

1. Download the IPEX-LLM container image:
export DOCKER_IMAGE=Intel®analytics/ipex-llm-serving-xpu:2.1.0-SNAPSHOT
docker pull Intel®analytics/ipex-llm-serving-xpu:2.1.0-SNAPSHOT

2. Launch the IPEX-LLM container. For example, to benchmark with the Meta Llama3-8B
model:

export CONTAINER_NAME=ipex-llm-serving-xpu
export MODEL_PATH=~/llama3-8b
docker run -itd \

https://intel-extension-for-pytorch.s3.amazonaws.com/miscellaneous/llm/prompt-3.json
https://intel-extension-for-pytorch.s3.amazonaws.com/miscellaneous/llm/prompt-3.json
https://intel-extension-for-pytorch.s3.amazonaws.com/miscellaneous/llm/prompt.json
https://intel-extension-for-pytorch.s3.amazonaws.com/miscellaneous/llm/prompt.json

Appendix

Reference Architecture 37

 --net=host \
 --device=/dev/dri/card0 \
 --device=/dev/dri/renderD128 \
 --memory="64G" \
 --name=$CONTAINER_NAME \
 --shm-size="16g" \
 -v $MODEL_PATH:/llm/models \
 $DOCKER_IMAGE bash

3. Copy the run-arc-sweep.sh script to the container:
docker cp ~/applications.platform.Intel®-select-for-
network/enterprise_ai/common/ipex-llm-gpu/run-arc-sweep.sh ipex-llm-
serving-xpu:/benchmark/all-in-one/

4. Login to the container and update the run-arc-sweep.sh script to use the appropriate
model. For example, to benchmark with the Meta Llama3-8B model:

docker exec -it ipex-llm-serving-xpu /bin/bash
cd /benchmark/all-in-one/
$EDITOR run-arc-sweep.sh

…
current_model_name="llama3-8b"
…

5. Login to the container and start the benchmark:
bash run-arc-sweep.sh

6. Review the benchmark results:
cat optimize_model_gpu-results*.csv

A.2.3.3 Running vLLM-IPEX-LLM on CPU

Create conda environment
$ wget https://github.com/conda-
forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh
$ chmod +x ./Miniforge3-Linux-x86_64.sh
$./Miniforge3-Linux-x86_64.sh
$ conda create -n ipex-vllm python=3.11
$ conda activate ipex-vllm

Install dependencies
pip3 install numpy
pip3 install --pre --upgrade ipex-llm[all] --extra-index-
url https://download.pytorch.org/whl/cpu
pip3 install psutil fastapi "uvicorn[standard]"
pip3 install sentencepiece # Required for LLaMA tokenizer.
pip3 install "pydantic<2" # Required for OpenAI server.

Install vLLM
git clone https://github.com/vllm-project/vllm.git andand \
cd ./vllm andand \
git checkout v0.4.2 andand \
pip install wheel packaging ninja setuptools==49.4.0 numpy andand \
pip install -v -r requirements-cpu.txt --extra-index-
url https://download.pytorch.org/whl/cpu andand \
sudo apt install build-essential
VLLM_TARGET_DEVICE=cpu python3 setup.py install
pip install ray

https://download.pytorch.org/whl/cpu
https://github.com/vllm-project/vllm.git
https://download.pytorch.org/whl/cpu

Appendix

38 Reference Architecture

Download Dataset
$wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfi
ltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json

Run throughput benchmarking command line:
VLLM_CPU_KVCACHE_SPACE=16 # 16GB for KV_CACHE
python3 ./benchmark_throughput.py --device cpu --n 1000
--model Meta-Llama-3-8B --enable-chunked-prefill --dataset
ShareGPT_V3_unfiltered_cleaned_split.json
--trust-remote-code --max-num-batched-tokens 256

A.3 Network Security AI Test Methodology

A.3.1 MalConv AI Test Methodology
Follow the instructions below to run the MalConv AI testing:

1. You will need to provide your own testing dataset to use. Create the following directories:
 mkdir -p malconv/datasets/KNOWN
 mkdir -p malconv/datasets/MALICIOUS

2. Place the benign files into the “malconv/datasets/KNOWN” directory, and place the
malicious files in the “malconv/datasets/MALICIOUS” directory

3. Use the “build_dockerfile.sh” script to build the Dockerfile image for the MalConv testing.
If proxy variables for Internet access are needed, please set them in the Dockerfile before
running the script.

4. Run the “run_malconv_test.sh” script to run the MalConv benchmarking test. The
generated “malconv_results.log” file will contain five runs of the mean inference time
results and ROC AUC accuracy of each model tested with different numbers of cores per
instance.

A.3.2 Bert AI Test Methodology
Follow the instructions below to run the BERT testing:
1. Use the “build_dockerfile.sh” script to build the Dockerfile image for the MalConv testing.

If proxy variables for Internet access are needed, please set them in the Dockerfile before
running the script.

1. Run the “run_bert_test.sh” script to run the benchmarking test. The generated
“bert_results.log” file will contain five runs of the testing showing multiple statistics
for different numbers of cores per instance. The mean latency value is highlighted in the
results shown in Section 4.4.2.

§

https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json

	1 Introduction
	2 Design Compliance Requirements
	2.1 Hardware Requirements
	2.2 BIOS Settings
	2.3 Solution Architecture
	2.4 Platform Technology Requirements
	2.5 Platform Security
	2.6 Side Channel Mitigation

	3 Platform Tuning and GPU Driver Setup
	3.1.1 Install Docker
	3.1.2 Install Datacenter GPU Drivers
	3.1.2.1 Reboot the server for the changes to take place in the OS

	3.1.3 Configure permissions on the OS groups for GPU as rendering device
	3.1.4 Verify the installation to check if the GPU device is working with i915 driver

	4 Performance Verification
	4.1 Memory Latency Checker (MLC)
	4.2 Vision AI
	4.3 GEN AI
	4.4 Network Security AI: MalConv and BERT
	4.4.1 MalConv for Malicious portable executable (PE) detection

	5 Summary
	5.1 Vision AI Performance Summary
	5.2 GEN AI Performance Summary

	Appendix A Appendix
	A.1 Automated Self-Checkout Test Methodology
	A.2 Generative AI Test Methodology
	A.2.1 IPEX-LLM Testing Methodology on CPU
	A.2.2 IPEX-LLM Testing Methodology on GPU
	A.2.3 Running IPEX-LLM Benchmarking Scripts
	A.2.3.1 Running IPEX-LLM on CPU
	A.2.3.2 Running IPEX-LLM on Single GPU
	A.2.3.3 Running vLLM-IPEX-LLM on CPU
	A.3 Network Security AI Test Methodology
	A.3.1 MalConv AI Test Methodology
	A.3.2 Bert AI Test Methodology

