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I n te I ® Introduction

/

Introduction

Intel® Al Edge systems are a range of optimized commercial Al systems that are delivered and
sold through OEM/ODM in the Intel® ecosystem. They are commercial platforms that are
verified-configured, tuned and benchmarked using Intel®’s reference Al software application
on Intel® hardware to deliver optimal performance for Edge Workloads.

Intel® Al Edge Systems offer a balance between computing and Al acceleration to deliver
optimal TCO, scalability and security. Al systems enable our partners to jumpstart
development through a hardened system foundation verified by Intel® and to increase the
trust in their system performance. Al Edge systems enable the ability to add Al functionality
through continuous integration into business applications for better business outcomes and
streamlined implementation efforts.

To support the development of these Edge Al systems, Intel® is offering reference design and
verified reference configuration blueprints with Edge Al system configurations that are tuned
and benchmarked for different Edge Al System types that support Edge Al use cases. Verified
reference blueprints (VRB) include Hardware BOM, Foundation Software configuration (OS,
Firmware, Drivers) tested and verified with supported Software stack (software framework,
libraries, orchestration management).

This document describes a verified reference blueprint using the dual socket 5th Gen Intel®
Xeon® Scalable processor family.

When end users choose an Intel® Al Edge Systems Verified Reference Blueprint, they should
be able to deploy the Al workload more securely and efficiently than ever before. End users
spend less time, effort, and expense evaluating hardware and software options. Intel® Al Edge
System Verified Reference Blueprint helps end users simplify design choices by bundling
hardware and software pieces together while making the high performance more predictable.

Intel® Al Edge Systems Verified Reference Blueprint —Scalable Performance Edge Al on
Intel® Xeon Scalable 2S for Computer Vision,and GEN Al is based on dual socket single-node
architecture, that provides an environment to execute multiple Al workloads that are common
to be deployed at the edge, such as the “Intel® Automated Self-Checkout Reference
Package”,and “Generative Al".

AllIntel ® Al Edge Systems Verified Reference Blueprint Configurations feature a workload-
optimized stack tuned to take full advantage of an Intel® Architecture (IA) foundation. To
meet the requirements, OEM/ODM systems must meet a performance threshold that
represents a premium customer experience.

There are two configurations for Intel ® Al Edge Systems Verified Reference Blueprint —
Scalable Performance Edge Al on Intel® Xeon Scalable 2S for Computer Vision and GEN Al
covering a base and plus configuration:

¢ Intel ® Al Edge Systems Verified Reference Blueprint — Scalable Performance Edge Al on
Intel® Xeon Scalable 2S for Computer Vision, and GEN Al Plus configuration for the Node is
defined with at least a 64-core 5th Generation Intel® Xeon® Scalable processor and high-
performance network, with storage and integrated platform acceleration products from
Intel® for maximum virtual machine density Intel ® Al Edge Systems Verified Reference
Blueprint — Scalable Performance Edge Al on Intel® Xeon Scalable 2S for Computer Vision

Reference Architecture
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and GEN Al Base configuration is defined with a 32-core or higher 5th Generation Intel®
Xeon® Scalable processor and network, with storage and add-in platform acceleration
products from Intel® targeting for optimized value and performance-based solutions.

Bill of Materials (BOM) requirement details for the configurations are provided in Chapter 2 of
this document.

Intel ® Al Edge Systems Verified Reference Blueprint is defined in collaboration with our
ecosystem partners to demonstrate the value of the solution for Al Inference use cases. The
solution leverages the hardened hardware, firmware, and software to allow customers to
integrate on top of this known good foundation.

Intel ® Al Edge Systems Verified Reference Blueprint provides numerous benefits to ensure
end users have excellent performance for their Edge Al Inference applications. Some of the
key benefits of the Reference Blueprint based on the 5th Generation Intel® Xeon® Scalable
Processor Family processorinclude:

e High core counts and per-core performance

o Compact, power-efficient system-on-chip platform

e Streamlined path to cloud-native operations

e Accelerated Al inference using Intel® AMX and Intel® DL Boost
e Accelerated encryption and compression

o Platform-level security enhancements

Reference Architecture 7
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Design Compliance Requirements

Design Compliance Requirements

2.1

Table .

Table 2.

This chapter focuses on the design requirements for Intel ® Al Edge Systems Verified
Reference Blueprint — Scalable Performance Edge Al on Intel® Xeon Scalable 2S for
Computer Vision,and GEN Al.

Platform Requirements

The checklists in this chapter are a guide for assessing the platform’s conformance to Intel ® Al
Edge Systems Verified Reference Blueprint — Scalable Performance Edge Al on Intel® Xeon
Scalable 2S5 for Computer Vision, and GEN Al. The hardware requirements for the Plus

Configuration and Base Configuration are detailed below.

Platform Plus Configuration

Ingredient Requirement R e?g%ﬂ:gé ed Quantity
Intel® Xeon® Platinum 8592+ Processor at
Processor 1.9GHz, 64C/128T, 350W or higher Required 2
number SKU
Memory 16x 32 GB DDR5, 5600 MHz (512 GB total) | Required 16 (8 per NUMA)
Storage . . .
(Boot Drive) 480 GB or equivalent boot drive Required 1
Storage 1TB or equivalent drive (recommended
9¢ Non-Uniform Memory Access (NUMA) Recommended 2 (1per NUMA)
(Capacity) .
aligned)
Intel® Ethernet Network Adapter ES10- .
Network 2CODA2 Required 1
10 Gbps or 25 Gbps port for Pre-boot
LAN on Execution Environment (PXE) and
Motherboard . - . Required 2 (1 perNUMA)
(LOM) Operation, Administration and
Management (OAM)
LAN on 1/10 Gbps port for Management Network Required 1
Motherboard Interface Controller (NIC)
(Lom)
Platform Base Configuration
Ingredient Requirement Required/ Quantity
Recommended
Intel® Xeon® Gold 6538N processorat 2.1
Processor GHz, 32C/64T, 205W or higher number Required 2
SKU
Memory 32 GB DDR5, 5200 MHz (512 GB total) Required 16 (8 per NUMA)
Stgrage (Boot 480 GB or equivalent boot drive Required 1
Drive)
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2.2

Table 3.

Table 4.

Ingredient Requirement Required/ Quantity
Recommended
Storage 1TB or equivalent drive (recommended
(Capacity) NUMA aligned) Recommended 2 (1 perNUMA)
Intel® Ethernet Network Adapter E810-
Network CODA2 Recommended 1
LAN on 10 Gbps or 25 Gbps port for PXE/OAM Required 2
Motherboard '|/'|0 Gb
ps port for Management Network .
(Lom) Interface Controller (NIC) Required !

BIOS Settings

To meet the performance requirements for an Intel ® Al Edge Systems Verified Reference
Blueprint — Scalable Performance Edge Al on Intel® Xeon Scalable 2S for Computer Vision,
and GEN Al, Intel® recommends using the BIOS settings for enabling processor P-state and C-
state with Intel® Turbo Boost Technology (“turbo mode”) enabled. Hyperthreading is
recommended to provide higher thread density. For this solution Intel® recommmends using the
NFVI profile BIOS settings for on-demand Performance with power consideration.

The NFVI profile for BIOS settings is documented in chapter 3 of B/OS Settings for Intel®
Wireline, Cable, Wireless and Converged Access Platform (#747130).

Recommended BIOS Settings

Setting Value
Hardware Prefetcher Enabled
Intel® (VMX) Virtualization Technology Enabled
Hyper-Threading Enabled
Intel® Speed Shift Technology (P-States) Enabled
Turbo Mode Enabled
C-States Enabled
Enhanced C-States Enabled

Additionally, for this specific solution please make the corresponding addition BIOS changes
on top of NFVIBIOS Profile to yield optimize performance for the solution configurations.

Additional BIOS Settings on top of NFVI BIOS Profile

Setting Value
Sub NUMA Clustering SNC2
AVXPI1 Level 2
AVXICCP Pre-grant License Enabled
AVC ICCP Pre-Grant Level 512 Heavy

Reference Architecture 9
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Note:

Setting Value

Memory Page Policy Adaptive

BIOS settings differ from vendor to vendor. Please contact your Intel® Representation for

NFVIBIOS Profile Doc# 747130 or in case you have difficulty configuring for the exact setting in your
system BIOS.

2.3

Figurel.

Solution Architecture

Figure 1 shows the architecture diagram of the Intel ® Al Edge Systems Verified Reference
Blueprint. The software stack consists of three categories of Al software:

1.  Vision Al
2. Generative Al
3. Network Security Al

All three applications are containerized using docker.

For the Vision Al use case, we are using the Intel® Automated Self-Checkout application which
measures the stream density. The video data is ingested and pre-processed before each
inferencing step. The inference is performed using two models - YOLOvV5 and EfficientNet,
where the YOLOV5 model does the object detection and the EfficientNet model performs the
Object Classification. For additional information refer to Appendix A.1.

Figure 2 shows the architecture diagram for the Intel® Automated Self-Checkout application,
which in this case is deployed containerized via Docker. The Vision Al use case measures
stream density in terms of the number of supported cameras at the target FPS, accounting for
all stages within the processing pipeline. The video data is ingested and pre-processed before
each inference stage. The inference is performed using two models: YOLOvV5 and
EfficientNet. The YOLOv5 model performs object detection while the EfficientNet model
performs object classification. For additional information refer to the Appendix.

Test Methodology for the Intel® Automated Self-Checkout Pipeline

INGESTION PRE-PROCESSING INFERENCING PRE-PROCESSING INFERENCING POST-PROCESSING

Product Inference
Classification Metadata

Frame Object
splitting Detection

Crop & Scale

ﬁy ﬁg

efficientnet

Crop & Scale yolov5

Bounding

Box Display

Decoder

N

N

Raw Frame
@15 FPS
Resolution

For the Generative Al use case, we are using Large Language Models (LLMs) using Intel®
Extension of PyTorch (IPEX) framework for performing LLM inference on Intel® Xeon®
Scalable Processor based CPUs and Intel® Data Center Flex GPUs. For additional information
referto Appendix 2.
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Figure 2.

Figure 3.

For Network Security Al, we are using Malconv and finetuned BERT-base-cased for malicious
portable executable (PE) file detection and email phishing detection respectively. For
additional information refer to Appendix Error! Reference source not found.3 .

Architecture of the Intel ® Al Edge Systems Verified Reference Blueprint

Vision Al: Gen Al: Network Security Al:

Intel® Automated Self-Checkout Large Language Models Malconv and BERT
Reference Package Applications

Models:
Models:
- o Falcon 40B, GPT-Neox-20b, Models:
Obiject Detection: Yolovs gelAP ISt
o e D Llama3-8B, Pg:::;m, TinyLlama, Malconv and BERT-base-cased

IPEX CPU, IPEX LLM XPU,
" " Tensor Flow, ONNX, oneDNN,
OpenVINO™, DL Streamer, FFMPEG, DeepSpeed, Transformers, oneDNN, Nl Compress):r Python

VPL, Python 3.8+ oneCCL, torch-ccl, Intel Neural
g - 5 & 310+
& Compressor , Python 3.10+

Framework
and
Library

1° Media D
(VAAPI

Container Runtime (Docker) + Docker Compose
Ubuntu 22.04 LTS Deskto| Kernel

Dual Socket 5th Gen Intel® Xeon® Scalable Processor-based platform
Intel® Data Center GPU Flex 170

Drivers

Figure 3 shows the architecture diagram for the Intel® Automated Self-Checkout application,
which in this case is deployed containerized via Docker. The Vision Al use case measures
stream density in terms of the number of supported cameras at the target FPS, accounting for
all stages within the processing pipeline. The video data is ingested and pre-processed before
each inference stage. The inference is performed using two models: YOLOvV5 and
EfficientNet. The YOLOv5 model performs object detection while the EfficientNet model
performs object classification. For additional information refer to the Appendix.

Test Methodology for Retail Self-checkout Pipeline

INGESTION PRE-PROCESSING INFERENCING PRE-PROCESSING INFERENCING POST-PROCESSING

Product Inference
Classification Metadata

Frame Object

splitting Detection Crop & Scale

?@ Vg

efficientnet

Crop & Scale

Bounding
Box Display

Decoder
Encode Encode

Raw Frame
@15 FPS
Resolution

Table 5is a guide for assessing the conformance to the software requirements of the Intel ® Al
Edge Systems Verified Reference Blueprint. Ensure that the platform meets the requirements
listed in the table below.
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Table 6.

Design Compliance Requirements

SW Configuration
Ingredient SW Version Details
oS Ubuntu 22.04.4LTS
Kernel 6.5 (in-tree generic)
OpenVINO 2024.0.1
Docker Engine 27.1.0
Docker Compose 2.29
Intel® Level Zero for GPU 1.3.29735.27
Intel® Graphics Driver for GPU (i915) 24.3.23
Media Driver VAAPI 2024.15

Intel® OneVPL

2023.4.0.0-799

Mesa 23.2.0.20230712.1-2073
OpenCV 4.8.0
DLStreamer 2024.0.
FFmpeg 2023.3.0

Platform Technology Requirements

This section lists the requirements for Intel’s advanced platform technologies.

The Intel ® Al Edge Systems Verified Reference Blueprint requires Intel® Virtualization
Technology (VT) to be enabled to reap the benefits of hardware virtualization. Either Intel®

Boot Guard or Intel® Trusted Execution Technology establishes the firmware verification,

allowing for platform static root of trust.

Platform Technology Requirements

Platform Technologies Enable/Disable Required/Recommended

Intel® VT Intel® CPU Virtual Enable Required
Machine Extension
(VMX) Support
Intel®1/O Enable Required
Virtualization

Intel® AMX Intel® Advanced Enable Required
Matrix Extenstions

Intel® Boot Intel® Boot Guard Enable Required

Guard

Intel® TXT Intel® Trusted Enable Recommended
Execution
Technology

Reference Architecture
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2.5 Platform Security

For Intel® Al Edge Systems, itis recommended that Intel® Boot Guard Technology be enabled
so that the platform firmware is verified suitable during the boot phase.

In addition to protecting against known attacks, all Intel® Accelerated Solutions recommend
installing the Trusted Platform Module (TPM). The TPM enables administrators to secure
platforms for a trusted (measured) boot with known trustworthy (measured) firmware and OS.
This allows local and remote verification by third parties to advertise known safe conditions for
these platforms through the implementation of Intel® Trusted Execution Technology (Intel®
TXT).

2.6 Side Channel Mitigation

Intel® recommends checking your system’s exposure to the “Spectre” and “Meltdown”
exploits. This reference implementation has been verified with Spectre and Meltdown
exposure using the latest Spectre and Meltdown Mitigation Detection Tool, which confirms
the effectiveness of firmware and operating system updates against known attacks.

The spectre-meltdown-checker tool is available for download at
https://github.com/speed47/spectre-meltdown-checker.

§
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Platform Tuning for Worker Node

3.1

3.1.1

3.2

3.2.1

3.2.2

Additional Linux Packages Installation

Install Docker

Follow the instructions at https://docs.docker.com/engine/install/Ubuntu*/ to install Docker
Engine on Ubuntu*.

Kubernetes Installation (Optional)

Install Docker and cri-dockerd

Follow the instructions at https://docs.docker.com/engine/install/ubuntu/ to install Docker
Engine on Ubuntu, and follow the instructions at https://www.mirantis.com/blog/how-to-
install-cri-dockerd-and-migrate-nodes-from-dockershim/ to install cri-dockerd. Download the
cri-dockerd binary package for version 0.3.4.

Install Kubernetes

Follow the instructions at https://kubernetes.io/docs/setup/production-
environment/tools/kubeadm/install-kubeadm/ to install Kubernetes including the kubelet,
kubeadm, and kubectl packages. To continue to initialize the Kubernetes cluster, follow the
steps below:

Note that setup does not use swap memory so it must be disabled
# swapoff -a

# systemctl enable --now kubelet

# systemctl start kubelet

# cat <<EOF > /etc/sysctl.d/k8s.conf
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
EOF

# sysctl --system

In the below command, update the Kubernetes version being used and the host-ip to that of
the system being used

# kubeadm init --kubernetes-version=v1.28.0 --pod-network-
cidr=10.244.0.0/16 --apiserver-advertise-address=<host-ip> —--token-ttl 0
--ignore-preflight-errors=SystemVerification --cri-
socket=unix:///var/run/cri-dockerd.sock
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3.2.3

Install Calico

Follow the instructions at https://docs.tigera.io/calico/latest/getting-
started/kubernetes/quickstart to install Calico. In the second step of the “Install Calico”

section, the cidr address of the file needs to be modified, so run the following steps instead of
step 2 listed in the instructions:

Update the URL if necessary
# wget

https://raw.githubusercontent.com/projectcalico/calico/v3.26.1/manifests/
custom-resources.yaml

Update the cidr address in the “custom-resources.yaml” file to 10.244.0.0/16
# kubectl create -f custom-resources.yaml

Once completed, wait for the Calico pods to be running before starting to use the cluster.

§
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Performance Verification

Performance Verification

Table 7.

This chapter aims to verify the performance metrics for the Intel ® Al Edge Systems Verified
Reference Blueprint to ensure that there is no anomaly seen. Refer to the information in this
chapter to ensure that the performance baseline for the platform is as expected.

The performance data was collected on August 30, 2024, with the following hardware and

software configurations.

Hardware and OS Configurations for Intel® Al Edge Systems Verified Reference Blueprint -
Scalable Performance Edge Al on Intel® Xeon Scalable 2S Base and Plus

Hardware Config

Base

Plus

CPU 2x Intel® Xeon® Gold 6538N 2x Intel® Xeon® Platinum EMR
Processor 8592+ Processor

Sockets 2 2

Cores per Socket 32 64

LLC Cache 60MB Cache 320MB Cache

TDP per CPU 205W 350W

Simultaneous
Multithreading (SMT)

Intel® Hyper-Threading
Technology Enabled

Intel® Hyper-Threading
Technology Enabled

CPUs

128

256

CPU Frequency

2.1 GHz base clock speed
4.1 GHz max turbo frequency

1.9 GHz base clock speed,
2.9 GHz all-core turbo frequency,
3.9 GHz max turbo frequency,

NUMA Nodes 2 2

Hyperthreading Enable Enable
Turbo Enable Enable
C-State Enable Enable

Total Memory

16x32GB 512GB, DDR5-5200
MT/s, IDPC, 8 channels

16x32GB 512GB, DDR5-5600
MT/s, IDPC, 8 channels

Hard Drive/ Disk

1x447.1G INTEL SSDSC2KB48

2x447.1GINTEL SSDSC2KB48

Network Interface
Card/AIC

1x Dual port Intel® Ethernet
Network Adapter E810-2CQDA2

2x Ethernet Connection X722 for
10GBASE-T

1x Dual port Intel® Ethernet
Network Adapter E810-
2CQDA2

2x Ethernet Connection X722 for
1

generic)

Network speed 1GbE 1GbE
Microcode 0x21000240 0x21000240
OS/Kernel Ubuntu 22.04.4 (kernel 6.5.0-18- Ubuntu 22.04.4 (kernel 6.5.0-44-

generic)
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Table 8.

Table 9.

Memory Latency Checker (MLC)

The Memory Latency Checker which can be downloaded from
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-
checker.html. Download the latest version, unzip the tarball package, go into the Linux* folder,
and execute . /mlc.Table 8 and Table 9 below should be used as a reference for verifying the
validity of the system setup.

Memory Latency Checker
Key Performance Metric Local Socket (Base) Local Socket (Plus)
Idle Latency (ns) 100 90
Memory Bandwidths between nodes within 128991 624033
the system (using read-only traffic type)
(MB/s)

Peak Injection Memory Bandwidth (1 MB/sec) Using All Threads

Peak Injection I::Isei:%oarﬁ' aigggdth (1MB/sec) Base Solution Plus Solution
All Reads 518515 624252
3:1Reads-Writes 432482 549163
2:1Reads-Writes 420184 542341
1:1Reads-Writes 395431 533820
STREAM-Triad 401704 545087
L9aded Latencies using Read-only traffic type 203 307
with Delay=0 (ns)

L2-L2 HIT latency (ns) 55 61
L2-L2 HITM latency (ns) 56 62

Note: If the latency performance and memory bandwidth performance are outside the range, please
verify the validity of the Platform components, BIOS settings, kernel power performance profile used,
and other software components.

4.2

Vision Al

The Intel® Automated Self-Checkout Reference Package provides critical components
required to build and deploy a self-checkout use case using Intel® hardware, software, and
other open-source components. The Intel® Automated Self-Checkout serves as a proxy
workload for Vision Al applications and leverages the YOLOvV5 model for performing detection
along with the efficientnet-bO model for performing classification.

The video stream is cropped and resized to enable the inference engine to run the associated
models. The object detection and product classification features identify the SKUs during
checkout. The bar code detection, text detection, and recognition feature further verify and
increase the accuracy of the detected SKUs. The inference details are then aggregated and
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Figure 4.

Table10.

4.2.]

pushed to the enterprise service bus or MQTT to process the combined results further. This
proxy workload supports either running directly on the CPU or fully offloading to the GPU,
including encoding/decoding, along with inferencing.

Vision Al Video Analytics Pipeline

INGESTION PRE-PROCESSING INFERENCING PRE-PROCESSING INFERENCING POSTPROCESSING
. | _
[? ~ S Frame splitting Object Detedion Product Inference
™ — Classification Metadata
T
/ Crop&Saile l Tl t
-/ sz
/ == | i
-~ =,

Raw Frame

LY

@15FPs
Resolution

Intel® Automated Self-Checkout Workload Configuration

Ingredient Software Version Details
OpenVINO™ 2024.0.1
DLStreamer 2024.0.1
FFmpeg 2023.3.0
VPL 2023.4.0.0-799
Python 3.8+
oS Ubuntu Desktop LTS, Kernel 6.5 (gcc11.4.0)

Intel® Automated Self-Checkout on Dual Socket Intel® Xeon®
Scalable Processor

The Intel ® Al Edge Systems Verified Reference Blueprint — Scalable Performance Edge Al on
Intel® Xeon Scalable 2S Plus platform with Dual Socket Intel® Xeon® Platinum 8592+ should
be able to service up to 73 IP camera streams at 14.95 FPS per stream, for an aggregate of up
to 1098 FPS.

The Intel ® Al Edge Systems Verified Reference Blueprint— Scalable Performance Edge Al
Intel® Xeon Scalable 2S Base platform with Dual Socket Intel® Xeon® Xeon® Gold 6538N
should be able to service up to 38 IP camera streams at 14.95 FPS per stream, for an aggregate
of upto 570 FPS.
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Figure5. Intel® Automated Self-Checkout Workload Performance (Plus CPU Configuration)

Retail Self-Checkout, yolov5s, efficientnet-b0, INT8
OpenCV 4.7.0, DLStreamer 1.7.0, Gstreamer 1.20.3
Target FPS: 14.95
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Intel® 5th Generation Xeon 8592+
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Number of Streams

The graph above presents the maximum number of supported IP camera streams at a target of
14.95 FPS. The Vision Al workload is running exclusively on Intel® Xeon® Platinum
8592+Scalable Processor. In addition, the chart depicts the amount of remaining CPU
utilization headroom available for running other workloads.

Figure 6. Intel® Automated Self-Checkout Workload Performance (-Base CPU Configuration)

Retail Self-Checkout, yolov5s, efficientnet-b0, INT8
OpenCV 4.7.0, DLStreamer 1.7.0, Gstreamer 1.20.3
Target FPS: 14.95
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(s}

‘T' Intel® 5th Generation Xeon 6538N
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Number of Streams

The graph above presents the maximum number of supported IP camera streams at a target of
14.95 FPS. The Vision Al workload is running exclusively on Intel® Xeon® Gold 6538N Scalable
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4.3

4.3.1

Table .

20

Processors. In addition, the chart depicts the amount of remaining CPU utilization headroom
available for running other workloads.

GEN Al

In the current technological landscape, Generative Al (GenAl) workloads and models have
gained widespread attention and popularity. Large Language Models (LLMs) have emerged as
the dominant models driving these GenAl applications. The generation task is memory bound
due to iterative decode and KV Cache which needs special management to reduce memory
overheads.

Intel® Extension for PyTorch* provide a lot of specific optimizations for these LLMs with
platform features optimizations for performance boost on Intel® hardware. The optimizations
take advantage of Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Vector Neural
Network Instructions (VNNI) and Intel® Advanced Matrix Extensions (Intel® AMX) on Intel®
CPUs as well as Intel® Xe Matrix Extensions (XMX) Al engines on Intel® discrete GPUs.
Moreover, Intel® Extension for PyTorch* provides easy GPU acceleration for Intel® discrete
GPUs through the PyTorch* xpu device.

To better trade-off the performance and accuracy, different low-precision solutions like
weight-only-quantization is also enabled. Additionally, tensor parallel and pipeline parallelism
mechanism is also adopted for distributed inference to get lower latency for LLMs.

GEN Al on Dual Socket 5th Gen Intel® Xeon® Scalable Processor

The Large Language Model (LLM) proxy workload highlights the Generative Al processing
capabilities of the Intel® Al Edge Systems Verified Reference Blueprint —Scalable
Performance Edge Al on Intel® Xeon Scalable 2S platform, with the 8B to 40B parameter
model is supported directly on 5th Gen Intel® Xeon® Scalable processors. Specifically, we
have tested Llama3-8B, GPT-Neox20B and Falcon40B model with bfloat16, INT8 and INT4
precision.

The weight only quantization method was used for model quantization for converting model
from bfloat16 to INT8 and INT4. For faster inference on dual socket CPUs with multiple NUMA
regions, we have used auto tensor-parallelism (TP) using DeepSpeed optimization with Sub-
NUMA Clustering (SNC) setting.

GEN Al Workload Configuration

Ingredient Software Version Details
CPU:
PyTorch v2.3.100+cpu
Framework /Toolkit Deepspeed v0.14.0

Transformers v4.38.1
IPEX-LLM

tiiuae/falcon-40b

EleutherAl/gpt-neox-20b
meta-llama/Llama-3-8b-hf
microsoft/Phi-3-mini-4k-instruct

Topology or ML Algorithm
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Ingredient

Software Version Details

TinyLlama/TinyLlama-1.1B-Chat-v1.0

Libraries

oneDNNv3.4.1

oneCCL v2021.11
torch-cclv2.3.0+cpu

Intel® Neural Compressorv2.4.1

Model Precision

BF16,INT8,INT4

Quantization methods

weight-only-quantization

Warmup steps 1

Number of Iterations 4

Batch Size 1,2,4,8,16,32
Beam Width 1(greedy search)

Input Token Size

32,256,1024,2048

Output Token Size 1024

Compiler GCC version12.3.0

Python 3.10.12

oS Ubuntu Desktop LTS, Kernel 6.5

Intel® Al Edge Systems Verified Reference Blueprint —Scalable Performance Edge Alon
Intel® Xeon Scalable 2S -Base platform and Large-Plus platform ensure that the results of the
system follow the expected results as shown below to baseline the performance of the
platform. The results shown include performance values for the next token latency, the
achievable number of tokens per second, and the inference latency.

Table12. Generative Al Workload Performance on Large-Plus
Gen Al Precision Input Output Batch Average Next Inference
Models Tokens | Tokens Size Token latency (ms) time
Falcon 40B INT4 1024 1024 1 66 <60s
INT8 55
GPT-
1024 1024 1 <60s
INT4 14
Llama3-8B INT8 1024 1024 1 20 <60s
BF16 32
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Figure7. Falcon-40B Model Performance on Large-Plus CPU Configuration
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For the Falcon-40b model, a dual socket Intel® Xeon® Platinum 8592+ Processor can achieve
a next token latency down to 58 ms for a single batch size using an input token size of 256 with
INT4 precision with an inference time of 60 sec.

Figure8. GPT-NEOX-20B Model Performance on Large-Plus CPU Configuration
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For the GPT-Neox-20 model, a dual socket Intel® Xeon® Platinum 8592+ Processor can
achieve a next token latency down to 32 ms for a single batch size using an input token size of

256 with INT4 precision with an inference time of 33 sec.

Llama3-8B Model Performance on Large-Plus CPU Configuration
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For the Llama3-8b model, a dual socket Intel® Xeon® Platinum 8592+ Processor can achieve a
next token latency down to 14 ms for a single batch size using an input token size of 1024 with
INT4 precision with an inference time of 15 sec.

Table 13.

GEN Al Workload Performance on Large-Base

Models Precision Input Output Batch Average Inference
Tokens Tokens Size next token time
latency (ms)
INT4 1024 1024 1 43 <60s
GPT-NEOX-20B
BF16 38
Llama-3-88 INT8 1024 1024 1 24 <60s
INT4 18
Phi3-mini-4k- BF16 22
instruct INTS 1024 1024 1 16 <60s
INT4 13
Reference Architecture 25




intel.

Performance Verification

Figure10. GPT-NEOX-20B Model Performance on Large-Base CPU Configuration
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For the GPT-Neox-20 model, a dual socket Intel® Xeon® Gold 6538N Processor can achieve a
next token latency down to 40 ms for a single batch size using an input token size of 256 with
INT4 precision with an inference time of 41 sec

Figure1l. Llama3-8B Model Performance on Large-Base CPU Configuration
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INFERENCE TIME (S)
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(LOWER IS BETTER)

H32 m256 m1024 m2048

BFLOATI16

LLAMA3-8B

For the Llama3-8b model, a dual socket Intel® Xeon® Gold 6538N Processor can achieve a
next token latency down to 17 ms for a single batch size using an input token size of 256 with
INT4 precision with an inference time of 18 sec.

Figure 12.

Phi3-min-4K-instruct Model Performance on Large-Base CPU Configuration
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PHI3, 1024 OUTPUT TOKEN SIZE, CUMULATIVE TOKENS/SECOND
(HIGHER IS BETTER)
m32 m256 1024 m 2048
; ~
e 8 2
0 n < S “"Iég
n o © < & > <
& S 2 B | -
z M 5 5] ® B Q m
: o B R | o % e . o 1% |
— Anl — 3 — < - —
=l z e I ===
nn e W 1 I ||||||I 1 1 I I...IIl"I | | I
1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32
INT4 INT8 BFLOAT16
PHI3-MINI
PHI3, 1024 OUTPUT TOKEN SIZE, INFERENCE TIME (LOWER IS
BETTER)
m32 m256 1024 m2048
) = 5
@ - -~
w
s N o o
= g 5 8 8
s
z s N5 «ﬁ
I | B | R mﬁmwwmﬂgﬂ
£ oo o W || arn off o Il | |
R R T1 | B 1| |I will il 1 I 1l " il il 1 || "
1 2 4 8 16 32 1 2 4 32 1 2 32
INT4 INT8 BFLOAT16
PHI3-MINI

For the Phi3-mini model, a dual socket Intel® Xeon® Gold 6538N Processor can achieve a next
token latency down to 13 ms for a single batch size using an input token size of 1024 with INT4
precision with an inference time of 14 sec

4.4 Network Security Al

For the Network Security Al performance verification, we will use Malconv and finetuned
BERT-base-cased for malicious portable executable (PE) file detection and email phishing
detection respectively.

4.4, MalConv for Malicious portable executable (PE) detection
Alinference is used in network/security to help prevent advanced cyber-attacks. To improve

the latency associated with this application, the Intel® Xeon® Scalable Processor contains
technologies to accelerate Al inference such as AVX-512, Advanced Matric Extensions
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(AMX), and Vector Neural Network Instructions. The MalConv Al workload utilizes the
TensorFlow deep-learning framework, Intel® oneAPI Deep Neural Network Library (oneDNN),
AMX, and Intel® Neural Compressor to improve the performance of the Al inference model.

The starting model for the MalConv Al workload is an open-source deep-learning model called
MalConv which is given as a pre-trained Keras H5 format file. This model is used to detect
malware by reading the raw execution bytes of files. An Intel® optimized version of this H5
modelis used for this workload, and the testing dataset is about a 32GB subset of the dataset
from https://github.com/sophos/SOREL-20M. The performance of the model can be
improved by various procedures including conversion to a floating-point frozen model and
using the Intel® Neural Compressor for post-training quantization to acquire BF16, INT8, and
ONNX INT8 precision models.

Intel ® Al Edge Systems Verified Reference Blueprint— Large-Base platform and Large-Plus
platform ensure that the results of the system follow the expected results as shown below in
order to baseline the performance of the platform. Table 16 shows the software used for the
testing while Figures 19 and 20 show a graph of the mean inference time for each model. For
the 6538N configuration, with 2 cores perinstance, the INT8 model with
AVX512_CORE_AMX enabled was able to reach a performance of less than 10 ms. For the
8592+ configuration, with 4 cores per instance, the INT8 model with AVX512_CORE_AMX
enabled was able to reach a performance of less than 10 ms.

Note: Referto https://hub.docker.com/r/intel/malconv-model-base for the Intel® Optimized
MalConv Model.

Table 14.

30

MalConv Al Workload Configuration

Ingredient Software Version Details
TensorFlow 213.0
Intel® Extension for Tensorflow 2.13.0.1
oneDNN 2024.2.0
Python 3.1.7
Intel® Neural Compressor 2.6
ONNX 116.1
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Figure13. MalConv Al Entry Platform Performance Graph (6538N)
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Figure14. MalConv Al Entry Platform Performance Graph (8592+)
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BERT for email phishing detection

BERT is a pre-trained language representation model developed by Google Al Language
researchers in 2018, which consists of transformer blocks with a variable number of encoder
layers and a self-attention head. The model used in the testing is a fine-tuned version of the
Hugging Face BERT base cased model.

To detect phishing emails, the input email is first tokenized into chunks of words using the
Hugging Face tokenizer, with a special CLS token was added at the beginning. The tokens are
then padded to the maximum BERT input size, which by default is 512. The total input tokens
are converted to integer IDs and fed to the BERT model. A dense layer is added for email
classification, which takes the last hidden state for the CLS token as input.

Ensure that the results of the tests follow the expected results as shown in the following graph
to baseline the performance of the platform. Table 17 shows the software used for the testing,
while Figures 21 and 22 shows a graph of the results for the INT8 and FP32 BERT models. For
both the 6538N and the 8592+ configurations, with 8 cores per instance, the mean latency of
the INT8 model reaches below 20ms.

Refer to https://huggingface.co/bert-base-cased for the original Hugging Face BERT base
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Note: The phishing email test dataset can be found at https://github.com/IBM/nlc-email-
phishing/tree/master/data

Table15. BERT Al Workload Configuration

Ingredient Software Version Details
Torch 212
Intel® Extension for PyTorch 2.1100
Intel® oneDNN 2024.2.0
Python 3.1.7
Intel® Neural Compressor 2.6

Figure15. BERT Al Entry Platform Performance Graph (6538N)
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Figure16. BERT Al Entry Platform Performance Graph (8592+)
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5 Summary

The Intel® Al Edge Systems Verified Reference Blueprint —Scalable Performance Edge Al on
Intel® Xeon Scalable 2S for Computer Vision, and GEN Al defined on dual socket 5th Gen
Intel® Xeon® Scalable processors addresses the capabilities for Al inference offering the
following value proposition:

Table16. Vision Al Summary

Configuration No. of IP Camera Streams
Base (CPU only) 38
Plus (CPU only) 78

Table17. GEN Al Summary

Config Model Tokens/s
Plus CPU configuration Llama3 8B model with 670 tokens/s
(CPUonly) INTS8 precision Batch size

of 32
Plus CPU configuration GPT-NEOX-20B model Up to 39 tokens/s
(CPU only) with INT8 precision Batch

size of 2
Plus CPU configuration GPT-NEOX-20B model Up to 39 tokens/s
(CPU only) with INT8 precision Batch

size of 2
Plus CPU configuration Falcon40B model with Up to 17 tokens/s
(CPU only) INT4 precision Batch size

of 1

The threshold figure reported by frameworks like Intel®PESDQ could be less than the figure
above for ease of use.

This blueprint, combined with architectural improvements, feature enhancements, and

integrated Accelerators, provides a significant performance and scalability advantage in
support of today’s Al workload
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Figure17.

The following section provides detailed instructions for benchmarking a platform with each of
the proxy workloads for Vision Al, Generative Al, along with Network Security Al. The
benchmarking process leverages the tools and scripts provided as part of the Intel ® Al Edge
Systems Verified Reference Blueprint will be available later, please reach out to your Intel®
Field Representative for access.

Automated Self-Checkout Test Methodology

Test Methodology for the Automated Self-Checkout Proxy Workload

Streaming Video Content
Camera Original Resolution: 1920 X 1080

g Camera Sink
Source

Resolution: Per Frame Processing Pipeline
412X 412

Draw Object Crop Crop Text Classification

Text

Bounding Detection Tracking Detected Detection Detected Recognition (efficient-
Box (YOLOV5s) Object Text (OCR) netb0)

The Intel® Automated Self-Checkout Reference Package provides critical components
required to build and deploy a self-checkout use case using Intel® hardware, software, and
other open-source software. Vision workloads are large and complex and need to go through
many stages. Forinstance, in the pipeline shown within the figure below, the video data is
ingested, pre-processed before each inferencing stage, inferenced using two models -
YOLOvV5 and EfficientNet, and post-processed to generate metadata along with drawing the
bounding boxes for each frame. The camera source plays back pre-recorded video content,
which is then processed by the media analytics pipeline. The video stream input is decoded
within the CPU pipeline using software-based decodebin API calls, while for the GPU pipeline
the decoding is offloaded using vaapidecodebin API calls. The video content is freely available
from https://www.pexels.com.

The Intel® Automated Self-Checkout Reference makes use of Intel® Deep Learning Streamer
(Intel® DL Streamer), which leverages the open-source media framework GStreamer to
provide optimized media operations along with the Deep Learning Inference Engine from the
OpenVINO™ Toolkit to provide optimized inference. DLStreamer accelerates the media
analytics pipeline for the Vision Al use case and allows for offloading to the underlying Intel®
ARC™ and Intel® Data Center Flex GPUs.
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The media analytics pipeline for Vision Al utilizes DLStreamer to performs object classification
on the Region(s) of Interest (ROI) detected by gvadetect using the gvaclassify element and
Intermediate Representation (IR) formatted object classification model. The models used for
detection are in OpenVINO Intermediate Representation format, which is optimized for Intel®
CPUs and GPUs. One advantage for the OpenVINO IR format is that the models can be used
as-is without the need for retraining to leverage Intel® CPUs and GPUs. The Vision Al pipeline
also uses object tracking for reducing the frequency of object detection and classification,
thereby increasing the throughput, using gvatrack. The pipeline publishes the detection and
classification results within a JSON file, which is then parsed, and the final results are reported
inalogfile.

Note: The GStreamer multi-media framework is used to stream video content by the frame source
and the frame sink endpoints. The current release does not make use of the underlying media engines,
offloading to the media engines is planned for future releases of the Intel® Automated Self-Checkout
Reference.

Figure18. Detailed Test Methodology for Retail Self-Checkout Pipeline
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The test methodology implements the following to measure the maximum number of streams
that the system can sustain:

e Detection Model: Yolov5s

o Classification Model: efficientnet-b0O
e OpenVino 2024.0.1

e DLStreamer2024.0.1

e FFmpeg2023.3.0

e VPL2023.4.0.0-799

The test measures the number of streams that the server can sustain at the target FPS. For
each test iteration, the number of camera streams is monotonically increased until the
currently measured FPS value falls below the target FPS value.
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Upon test completion, the results are captured for the average FPS, the cumulative FPS, along
with the peak number of streams achieved at the target FPS.

Optionally, platform metrics can be collected including CPU utilization, CPU power, CPU
frequency, CPU temperature, along with wall power.

To run the automated self-checkout test, follow the steps below:
1. Pre-Requisites:

Install Docker

Set HTTP_PROXY and HTTPS_PROXY proxies in environment if necessary

Python version 3.8 is recommended

Change to the automated self-checkout test directory and initialize the environment:
cd enterprise ai/common/retail-self-checkout/

il

# ./init rsc.sh

Optionally, update the collect_server_power.sh script with the BMC information of the server
to collect the wall power metrics during the automated self-checkout benchmark.

Note: The collect_server_power.sh script is provided for convenience to collect wall power
measurements and is designed to be run within a lab environment and not within a production
environment.

# SEDITOR collect server power.sh

#!/usr/bin/env bash

ip address=<server-ip-address>

un=<bmc-username>

pw=<bmc-password>

Note: Startthe benchmark onthe 5th Gen Intel® Xeon® Scalable Processor using a batch size of By
default, the benchmark will use a target FPS of 14.95 along with an initial duration of 40 seconds to
allow the system to reach steady state.

# ./benchmark rsc.sh 1 cpu

3. Theresults will be stored withina CSV file located under rsc_results.
# cat ~/rsc_results/stream-density-cpu-yolov5s-effnetb0-density-
increment 1 init-duration 40 target-fps 14 95 batch 1.csv

4. Optionally, if turbostat is installed on the server then CPU related metrics can be
converted intoa CSV file as follows:
python3 turbostat log parser infer streams.py \
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--log-file ~/rsc_results/turbostat gpu batch 1.log \
--num-streams <max_ stream num> \

--csv-file-name ~/rsc_results/turbostat gpu batch 1l.csv

5. Optionally, if the BMC credentials have been provided then server power related metrics
can be convertedintoa CSV file as follows:

python3 server power log parser.py --log-file

~/rsc_results/server power cpu batch 1.log --csv-file-name

~/rsc_results/server power cpu batch l.csv

6. Start the benchmark against Intel® Data Center GPU Flex Series using a batch size of 1.

Note: By default, the benchmark will use a target FPS of 14.95 along with an initial duration of 40
seconds to allow the system to reach a steady state.

A2

A2l

# ./benchmark rsc.sh 1 gpu

7. Theresults will be stored withina CSV file located under rsc_results.
# cat ~/rsc_results/stream-density-gpu-yolov5s-effnetbO-density-
increment 1 init-duration 40 target-fps 14 95 batch 1.csv

8. Optionally, if turbostat is installed on the server then CPU related metrics can be

converted intoa CSV file as follows:
python3 turbostat log parser infer streams.py \

--log-file ~/rsc results/turbostat gpu batch 1.log \
—--num-streams <max stream num> \
--csv-file-name ~/rsc_results/turbostat gpu batch 1l.csv

9. Optionally, if the BMC credentials have been provided then server power related metrics

can be converted into a CSV file as follows:
python3 server power log parser.py --log-file
~/rsc_results/server power cpu batch 1.log --csv-file-name
~/rsc_results/server power cpu batch l.csv

Generative Al Test Methodology

IPEX-LLM Testing Methodology on CPU

The Generative Al benchmark on Intel® dual socket CPU was performed using Intel®
Extension of PyTorch (IPEX) for LLM. To reduce the inference latency and improve
throughput, tensor parallel is also enabled in our solution. We use DeepSpeed to auto shard the
model and then use Distributed Inference with DeepSpeed with AutoTP feature.

DeepSpeed builds on top of PyTorch, which has been highly optimized for CPU inference and
training. Intel® Extension for PyTorch adds state-of-the-art optimizations for popular LLM
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architectures, including highly efficient matrix multiplication kernels to speed up linear layers
and customized operators to reduce the memory footprint.

The runtime software components for DeepSpeed Inference on CPU are shown in Figure 23:

Intel® oneAPI Deep Neural Network Library (oneDNN) uses Intel® AVX-512 VNNI and
Intel® AMX optimizations.

Intel® oneAPI Collective Communications Library (oneCCL) is a library that implements the
communication patterns in deep learning.

Intel® Neural Compressor was used to convert the LLMs from FP32 datatype to bfloat1é or
int8 datatype.

Software components for DeepSpeed Inference on CPU

DeepSpeed
intel
PvTorch Extension for
PyTorch
oneCCL aneDNN

Follow the steps to setup the IPEX-CPU test and benchmark on Dual socket Intel® Xeon®
Scalable Processor. The user is expected to have privileged rights.

1.
#

3.

#

Install the baseline dependencies:
sudo apt update

sudo apt install -y make git numactl
sudo apt install -y python3
sudo pip install -upgrade pip

Clone the IPEX project:
git clone https://github.com/intel/intel-extension-for-pytorch.git

cd intel-extension-for-pytorch

git checkout v2.3.100+cpu

git submodule sync

git submodule update --init --recursive

Build the IPEX dockerimage:
DOCKER BUILDKIT=1 docker build --build-arg HTTPSiPROXY=${HTTPSiPROXY} -

-build-arg HTTP_PROXY=${HTTP_ PROXY} -f
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examples/cpu/inference/python/llm/Dockerfile --build-arg COMPILE=ON -t
ipex-cpu:2.3.100

The ipex-cpu container build takes approx. 30 mins

4. Verify the IPEX container is built
# docker images | grep ipex

REPOSITORY TAG IMAGE ID CREATED SIZE

ipex-cpu 2.3.100 d5ce81fe66£8 3 hours ago 4.61GB

5. Download the LLM models from HuggingFace:
# huggingface-cli download <model card> --local-dir ~/<local model path>
--token <your huggingface token>

6. Start the ipex-cpu docker container
# export DOCKER IMAGE=ipex-cpu:2.3.100

# export CONTAINER NAME=ipex-cpu

# export MODEL PATH=<CHANGE TO PATH TO THE MODEL DIRECTORY>

# docker run --rm -it --privileged --memory="256G" --shm-size="128G" --
name=$CONTAINER NAME -v S$MODEL PATH:/llm/models $DOCKER IMAGE bash

It's recommended to use shard_model before running distributed inference to save time

during model inference.

7. Shard model for Distributed inference inside the ipex-cpu docker container
# cd ./1lm/utils

# create shard model.py -m /llm/models/<MODEL_ ID> --save-path
/1lm/models/<SHARD-MODEL-DIRECTORY>

8. Copythe benchmark_cpu_ds.sh and extract_kpis.py script to the container:

# docker cp ~/applications.platform.intel-select-for-
network/enterprise ai/common/ipex-llm-cpu/benchmark cpu ds.sh ipex-
cpu://home/ubuntu/1l1lm/

# docker cp ~/applications.platform.intel-select-for-
network/enterprise ai/common/ipex-llm-cpu/extract kpis.py ipex-
cpu://home/ubuntu/1l1lm/

9. Change the user:group of the scripts inside the container:
# sudo chown ubuntu:ubuntu benchmark cpu ds.sh

# sudo chown ubuntu:ubuntu extract kpis.py

10. Edit the shard model path and model name in the benchmark_cpu_ds.sh script as shown
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model shard="/llm/models/llama3-8B/shard model hf"

model name="llama3-8B"

1. Download the prompt json files for model tests
For Llama3 models download the below prompt file

# wget -O prompt.json https://intel-extension-for-
pytorch.s3.amazonaws.com/miscellaneous/llm/prompt-3.json

For other models, use the below prompt file

# wget https://intel-extension-for-
pytorch.s3.amazonaws.com/miscellaneous/llm/prompt.json

12. Run the benchmark script for distributed inference. This script will create a "result-
model_name_mmddyyhhss" folder in the same directory and will contain text files for each

testiteration
# ./benchmark cpu ds.sh

13. Extract KPIs using the python script. This script generate a CSV file named

llm_benchmark_results.csv with all the KPls
# python extract kpis.py --results-dir results-model name mmddyyhhss

14. Copy the llm_benchmark_results.csv file from docker to host
# docker cp ipex-cpu:/home/ubuntu/llm/llm benchmark results.csv
./root/workspace

Network Security Al Test Methodology

MalConv Al Test Methodology

Follow the instructions below to run the MalConv Al testing:

1. Youwill need to provide your own testing dataset to use. Create the following directories:
# mkdir -p malconv/datasets/KNOWN
# mkdir -p malconv/datasets/MALICIOUS

2. Placethe benign files into the “malconv/datasets/KNOWN” directory, and place the
malicious files in the “malconv/datasets/MALICIOUS” directory

3. Use the “build_dockerfile.sh” script to build the Dockerfile image for the MalConv testing.
If proxy variables for Internet access are needed, please set them in the Dockerfile before
running the script.

4. Runthe”run malconv_test.sh”scriptto runthe MalConv benchmarking test. The
generated “malconv_results . 1og” file will contain five runs of the mean inference time
results and ROC AUC accuracy of each model tested with different numbers of cores per
instance.
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A.3.2 Bert Al Test Methodology

Follow the instructions below to run the BERT testing:

1. Use the “build_dockerfile.sh” script to build the Dockerfile image for the MalConv testing.
If proxy variables for Internet access are needed, please set them in the Dockerfile before
running the script.

2. Runthe”run bert test.sh”scripttorunthe benchmarkingtest. The generated
“bert results.log” file will contain five runs of the testing showing multiple statistics
for different numbers of cores perinstance. The mean latency value is highlighted in the
results shown in Section 4.4.2.
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