
Introduction
Since 2015, Intel Corporation has cooperated with several communication 
service providers (Comms SPs) to define optimal network functions virtualization 
infrastructures (NFVIs) that would help virtualize their workloads. 

As part of this initiative, Intel helped a prominent video, phone, and cable Internet 
access provider to build a performant generic infrastructure that could be used 
for different workloads such as video on demand and high-speed, data-related 
network functions. This infrastructure had to be capable of supporting edge and 
access services across technologies such as Data Over Cable Service Interface 
Specifications (DOCSIS), Ethernet, or passive optical networks. 

Many Internet customers use a speed test server as a tool to compare the actual 
speed they are experiencing with the speed they signed up for. These servers 
are based on the transport control protocol (TCP); therefore, TCP performance is 
critical in such a network infrastructure.

At the time of this writing, there was no publicly available speed test server that 
could run in a virtualized setup and achieve download and upload rates greater 
than 1 Gbps using a single virtual machine. Hence, to define the ideal TCP tunings 
necessary to deploy a performant NFVI, we relied on iPerf3* instead. 

This document describes the hardware and software components as well as TCP 
performance optimizations implemented in order to deliver an optimal NFVI 
capable of handling communications-grade network functions virtualization (NFV) 
workloads. The document also briefly discusses three key test scenarios that 
reflect real-world workloads. We share performance test results for these three 
scenarios and summarize all of our key findings. Our findings will benefit readers 
who are considering virtualizing their topology and are more interested in TCP 
than User Datagram Protocol (UDP) workloads, regardless of whether they plan to 
deploy a speed test server. 

Our research shows that open source software can be successfully used to achieve 
a reliable and flexible topology that enables delivery of robust and highly efficient 
virtualized infrastructures. We present an example of such an infrastructure that 
is built upon standard servers with Intel® Xeon® processors and is optimized to 
set up a virtualized broadband speed test server. The infrastructure is capable of 
processing external workloads with an average throughput of 9.35 Gbps over a  
10 Gbps network connection and internal workloads with a throughput reaching  
45 Gbps.
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An Open Source Infrastructure 
The NFVI used for this proof-of-concept (PoC) consists 
of three commercial off the-shelf (COTS) Intel® Xeon® 
processor-based servers (see Table 2 in the Appendix), 
running the Fedora* 21 Server operating system. We 
installed OpenStack* Kilo on these three servers. One 
server was configured as an OpenStack controller that also 
includes the OpenStack Networking* functions, whereas the 
remaining two servers were configured as compute nodes. 
Figure 1 shows the physical topology and software stack 
used in this PoC.

OpenStack is a well-known open source software platform 
that enables users to deploy, orchestrate, and manage 
virtual network functions (VNFs) in the cloud using a single 
web-based dashboard. New NFV extensions integrated into 
OpenStack Kilo include support for non-uniform memory 
access (NUMA) architectures, CPU affinity in virtual machines 
(VM), and huge pages. 

These extensions enabled us to select particular CPU cores, 
memory banks, and network interface cards (NICs) that 
would belong to the same NUMA node, and dedicate these 
resources to specific performance-demanding VMs, such as 
the broadband speed test server.

Open vSwitch* (OvS*), is a production-quality, widely 
deployed open source virtual software switch. OvS’s primary 
switching component is a “fastpath” kernel module, which is 
programmed and controlled by user-space processes. This 
fastpath maintains switching lookup tables that are used to 
process traffic directly in kernel space. However, flows that 
are not recognized in the switching tables must be sent to 
user space for classification so that an appropriate switching 
rule can be inserted into the fastpath’s tables. The new rule 

is subsequently used in the fastpath to handle previously 
unrecognized flows. While OvS is largely performant, 
packets processed by OvS must traverse the kernel network 
stack and as such are subject to any inherent latency and 
performance impacts.

The Data Plane Development Kit (DPDK) is a set of libraries 
and drivers that enable faster packet processing. In 2014 
DPDK was integrated with OvS. The result was a set of DPDK-
accelerated OvS network devices (netdevs), which enabled 
packets to be processed solely in user space. The most 
important advantage of DPDK-enabled netdevs is significant 
acceleration of I/O traffic between the virtual switch and 
connected NIC. In some cases, OvS with DPDK performed 
12x faster compared to OvS without DPDK.1 

DPDK leverages poll mode drivers (PMDs) that continuously 
scan the NIC for arriving frames. Upon arrival, frames are 
directly transferred into user-space shared memory using 
direct memory access. There, OvS processes the frames, 
bypassing the kernel network stack and thus avoiding the 
overhead of handling interrupts and context switching, which 
would otherwise have been experienced in a non-DPDK-
enabled setup. Furthermore, the traffic paths between OvS 
and OpenStack VMs have also been optimized. OvS 2.4 saw 
the introduction of DPDK-optimized vHost-user netdevs, 
which improved host-guest communication significantly over 
VirtIO back ends such as vHost-net. 

On the compute nodes of this PoC, we used OvS 2.5.90 
with DPDK 16.04 in order to take advantage of multi-queue 
support. We also contributed to the open source community 
by enabling TCP segmentation offload (TSO) in OVS-DPDK 
for flat and VLAN networks. This helped boost packet 
throughput between VMs.   

Figure 1. Physical topology of the PoC infrastructure with three Intel® Xeon® processor-based servers in an OpenStack* 
environment. One server was configured as a controller, and the other two were configured as compute nodes. All servers are 
connected through a top-of-rack switch and are running Fedora* 21 Server. Each server has four network interfaces, one for 
each network type as described in Table 1. 
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Network Topology
In the OpenStack setup, we created two provider networks: 
an External network and a VLAN network. The External 
network was a flat (untagged) network, which provided 
Internet access to OpenStack VMs and was built using Intel® 
Ethernet Server Adapter I350-T4 (1 GbE). The VLAN network 
was an 802.1Q tagged network that mapped to the existing 
physical VLAN network outside the OpenStack cloud.  On 
the compute nodes, Intel® Ethernet Server Adapter X520-
DA2NICs were used to connect VMs on this VLAN network to 
an external machine that was connected to the same physical 
VLAN network. OVS-DPDK and neutron-ovs-dpdk agents 
were installed on both compute nodes to enable fast packet 
processing on these VLAN interfaces. 

The Dynamic Host Configuration Protocol (DHCP) service 
was installed on the controller node and enabled for each 
OpenStack network. This DHCP service provided OpenStack 
VMs with IP addresses from a pool of addresses allocated to 
each subnet. External machines or VMs that were outside the 
OpenStack cloud were assigned static IP addresses that were 
outside the pool allocated to the OpenStack subnets.

After OpenStack VMs were spawned on the same VLAN 
network and separate compute nodes, east-west traffic 
flowed between the VLAN interfaces of the compute nodes, 
going through a top-of-rack switch. When VMs were on the 
same compute node and OpenStack network, switching 
happened within that compute node and packets never left 
the host machine. In this PoC, our focus and performance 
tests were conducted on a single-provider VLAN network. As 
a result, we did not need a virtual router or tunnel.

Tuning the System for Optimal TCP  
Traffic Performance
TCP traffic performance tests were started after compiling 
the plain OvS with DPDK (OVS-DPDK) and setting the 
“extra-spec” property2  to OpenStack Compute* flavors for 
OpenStack VMs to make use of features like CPU affinity, 
huge pages, and single NUMA node topology. Intel® Hyper-
Threading Technology (Intel® HT Technology) and Intel® 
Turbo Boost Technology were enabled in the BIOS of both 
compute nodes. For highly NUMA-optimized workloads, one 
can also consider enabling “Cluster-on-Die” optimization. In 
our PoC setup, both compute nodes had processors where 
the Cluster-on-Die feature was not supported. 

Additionally, we set the nova extra-spec property to “hw:cpu_
threads_policy=prefer.” When the host machine has Intel HT 
Technology enabled, this property guarantees that virtual 
CPUs (vCPUs) got placed on the same physical core, making 
them thread siblings (see Table 4). In this technical brief, we 
refer to all above optimizations as the “baseline performance 
tunings.” 

As part of our performance testing, OpenStack VMs were 
spawned with several variations of virtual resources such as:

   • 1 virtual CPU and 1 GB RAM.

   •  2 virtual CPUs and 2 GB RAM, where a single physical  
core was used to accommodate 2 vCPUs.

   •  4 virtual CPUs and 4 GB RAM, where 2 physical cores  
were used to accommodate 4 vCPUs.

   •  8 virtual CPUs and 8 GB RAM, where 4 physical cores  
were used to accommodate 8 vCPUs.

Performance tests were executed for VMs with two different 
pairs of Linux* distributions: a pair of CentOS* 7 with kernel 
3.10 and a pair of Ubuntu* 14.04 with kernel 3.13. The reason 
we tested two different Linux distributions was to identify 
any major differences in performance across two of the most 
common open source operating systems, especially when 
tested with their out-of-box kernels. Once both distributions 
were tested with the baseline performance tunings, the 
kernel was upgraded to version 4.5.4, which was the latest 
available kernel at the time of testing.

In all test scenarios and configurations, we used the iPerf3* 
tool to test TCP traffic throughput. Both iPerf3 server and 
client VMs were spawned on the OpenStack VLAN network. 
In this technical brief, a VM with an iPerf3 instance is 
referred to as “iPerf3 speed test VM.” All tests were executed 
for a duration of 60 seconds. In addition, multiple iPerf3 
TCP streams (1, 2, 4, 8, and 12) were tested in almost all 
configurations. We also experimented with three different 
PMD core masks to find the optimal assignment of virtual 
cores to DPDK PMD threads. Table 3 and Figure 8 in the 
Appendix show the details of how we assigned different 
cores to different DPDK PMD threads.

Because iPerf3 is not a multi-threaded network bandwidth 
measurement tool, we ran multiple iPerf3 processes in each 
iPerf3 speed test VM. Each process was run on a different 
port and pinned to a different logical core inside the guest VM.  

Table 1. Networks used in the PoC.

NETWORK NETWORK DESCRIPTION COMPUTE NODES NIC CONTROLLER NODE NIC

External
Flat provider network used for Internet/remote 

access to the hosts and OpenStack VMs.
Intel® Ethernet Server Adapter I350-T4

VLAN
802.1Q tagged provider network mapped to the 

existing physical virtual local area network (VLAN). 
This network simulates the subscribers.

Intel® Ethernet Server 
Adapter X520-DA2

Intel® Ethernet Converged Network 
Adapter X710-DA4

Management
Management network used for accessing and 

managing OpenStack* services.
Intel® Ethernet Server Adapter I350-T4

Data (VxLAN)
Virtual extensible local area network (VxLAN) tunnel 

used for east-west traffic between tenant VMs on 
different hosts.

Intel® Ethernet Server 
Adapter X520-DA2

Intel® Ethernet Converged Network 
Adapter X710-DA4
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Additional Optimizations to Enhance TCP 
Traffic Performance
We collected the results after implementing all baseline 
performance tunings and realized that the achieved TCP 
traffic throughput would be unsatisfactory for high-speed, 
data-related network functions such as those that CSPs 
would run. Consequently, we executed the following on our 
PoC setup:

•  Upgraded the software stack: We upgraded the software 
stack on both compute nodes by recompiling OvS 2.5.90 
with DPDK 16.04, which also entailed upgrading QEMU* to 
version 2.5.0. 

•  Kernel upgrade: We upgraded the Linux kernel of all iPerf3 
speed test VMs to version 4.5.4. We did not upgrade the 
host kernel.

•  OvS support for TSO on DPDK vHost-user ports: TSO 
support in OVS-DPDK was not available at the time of this 
testing. Thus, we implemented and published an OVS-
DPDK patch to support this. The patch enabled successful 
feature negotiation of TSO (and implicitly, transmit 
checksum offloading) between the hypervisor and the OVS-
DPDK vHost-user back end. Thus, TSO may be enabled on 
a per-port basis in the VM using the standard Linux ‘ethtool’ 
utility. Furthermore, the patch also increases the maximum 
permitted frame length for OVS-DPDK-netdevs to 64 KB—a 
necessity to accommodate oversized frames received—and 
provides support for handling “offload” frames. 

Note that we validated the patch only on OpenStack 
deployed flat and VLAN networks. The guest may only take 
advantage of TSO if OvS is connected to a NIC that supports 
such functionality. 

The offloading works as follows: when OvS dequeues a 
frame from a TSO-enabled guest port using the DPDK vHost 
library, the library sets specific offload flags in the metadata 
that DPDK uses to represent a frame (known as “mbuf”). 
Upon receipt of an ‘offload’ mbuf, OvS sets additional offload 
flags and attribute values in the mbuf before passing it to 
the DPDK NIC driver for transmission. The driver examines 
and interprets the mbuf’s offload flags and corresponding 
attributes to facilitate TCP segmentation on the NIC. 

With the enablement of TSO for DPDK netdevs in OvS, the 
segmentation of guest-originated oversized TCP frames 
moves from the guest operating system’s software TCP/IP 
stack to the NIC hardware. The benefits of this approach are 
many. First, offloading segmentation of a guest’s TCP frames 
to hardware significantly reduces the compute burden on 
the VM’s vCPU. Consequently, when the guest does not need 
to segment frames itself, its vCPU can take advantage of the 
additionally available computational cycles to perform more 
meaningful work. 

Second, with TSO enabled, OvS does not need to receive, 
process, and transmit a large number of smaller frame 
segments, but rather a smaller amount of significantly larger 
frames. In other words, the same amount of data can be 
handled with significantly reduced overhead. 

Finally, the reduction in the number of small packets, which 
are sent to the NIC for transmission, results in the reduction 
of Peripheral Component Interconnect* bandwidth usage. 
The cumulative effect of these enhancements is a massive 
improvement in TCP throughput for DPDK-accelerated OvS.

Our TSO patch for OvS 2.5.90 and DPDK 16.04 was 
published as a request for comment on the ovs-dev mailing 
list and is available for you to download from https://mail.
openvswitch.org/pipermail/ovs-dev/2016-June/316414.html.

•  Multi-queue support for DPDK vHost-user ports: In this 
upgraded stack, multi-queue was available for us to use. 
Multi-queue enables VMs to scale network performance as 
the number of virtual CPUs increases. 

Test Scenarios
We set up several test scenarios and did performance 
testing with various configurations and optimizations. In this 
technical brief, we focus on only three test scenarios that are 
the closest to a real-world setup. 

Test Scenario #1: Multiple external iPerf3 clients 
connected to an iPerf3 server VM residing inside an 
OpenStack-managed cloud
On an external server outside the OpenStack cloud, we 
spawned five CentOS 7 VMs on the VLAN2 network. 
These VMs simulate subscriber requests that connect to 
a broadband speed test server, which reside inside the 
OpenStack-managed cloud. VMs are running on top of the 
Kernel-based Virtual Machine (KVM*) and OvS (see Figure 2).

There were no optimizations done to the external client VMs; 
however, each VM had allocated to it two virtual CPUs and  
2 GB of RAM. The iPerf3 speed test server VM was spawned  
inside the OpenStack-managed cloud and was initially optimized  
with the baseline performance tunings mentioned above. 
After recording initial test results, we applied all additional 
TCP optimizations mentioned above to the iPerf3 speed test 
VM (except for multi-queue) and recaptured the results.

Figure 2. Test Scenario 1—Multiple external clients 
connected to iPerf3* speed test server.
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Test Scenario #2: iPerf3 client VM connected to an 
iPerf3 server VM, with both VMs located on different 
compute nodes within an OpenStack-managed cloud
Two CentOS 7 VMs were spawned on different compute 
nodes and on the same OpenStack VLAN2 network. One VM 
was configured with an iPerf3 client to simulate any network 
function interacting with TCP traffic (for example, responding 
to TCP data or forwarding TCP data), while the other VM was 
configured with an iPerf3 server that simulated a broadband 
speed test server (see Figure 3). 

Both VMs and both compute nodes were initially optimized 
with baseline performance tunings, and the results were 
captured. Next, we applied all additional TCP optimizations 
mentioned above to the iPerf3 speed test VM (except for 
multi-queue) and recaptured the results. Finally, we repeated 
the scenario with multi-queue enabled and, recaptured again 
the results.

Test Scenario #3: iPerf3 client VM connected to an 
iPerf3 server VM, with both VMs located on the same 
compute node within an OpenStack-managed cloud
Two CentOS 7 VMs were spawned on the same compute 
node and connected to the OpenStack VLAN2 network. One 
VM was configured as the iPerf3 client, while the other VM 
was configured as an iPerf3 server (see Figure 4).

Both VMs and the compute node were initially optimized with 
baseline performance tunings, and the results were captured. 
Next, we applied all additional TCP optimizations mentioned 
above to the iPerf3 speed test VM (except for multi-queue), 
and recaptured results. Finally, we repeated the scenario with 
multi-queue enabled, and recaptured again the results.

Results
When VMs were running operating systems with default 
kernels, we noticed that TCP throughput results were 
generally better on Ubuntu 14.04 VMs than on CentOS 
7 VMs. However, after upgrading the kernels of both 
Ubuntu and CentOS VMs to version 4.5.4, we experienced 
comparable performance results. For this reason, we are 
presenting only the CentOS 7 results. 

For Test Scenario #1, we were able to achieve an 
accumulative average throughput of 3.87 Gbps using 
baseline performance tunings (see the left bar of Figure 5). 
After upgrading the Linux kernel to version 4.5.4 in the speed 
test server VM, upgrading the software stack and enabling 
TSO, the accumulative average TCP traffic throughput 
increased to 9.35 Gbps (see the right bar of Figure 5). This 
is around a 2.4x improvement. Both results were obtained 
when we used two logical cores from separate physical cores 
for DPDK PMD threads, and when two vCPUs and 2 GB RAM 
were allocated to the iPerf3 server VM.

For Test Scenario #2, using the baseline TCP tunings we 
achieved an average throughput between 4.6 Gbps and 5.5 
Gbps, depending on the number of iPerf3 streams used 
(see Figure 6). After applying the additional TCP tunings 
(with and without multi-queue), we the average throughput 
increased to around 9.35 Gbps, which was an improvement 
of approximately 1.7x. This shows that multi-queue had a 
negligible effect in this scenario. Notice that these results 
were obtained when one logical core was assigned to the 
DPDK PMD thread, and client and server VMs were allocated 
two vCPUs and 2 GB RAM each. 

For Test Scenario #3, using the baseline TCP tuning we 
achieved an average throughput of 3.9 Gbps (see Figure 7). 
After applying the additional TCP tunings without multi-
queue, the throughput ranged between 22 and 33.5 Gbps, 
depending on the number of iPerf3 streams. With additional 
eight queues enabled, we were able to achieve a throughput 
of around 45 Gbps for larger number of streams. The impact 
of applying all TCP tunings in this scenario resulted in an 
approximately 10x higher average TCP throughput. Notice 
that these results were obtained when we used two logical 
cores from separate physical cores for DPDK PMD threads, 
and when four vCPUs and 4 GB RAM were allocated to the 
iPerf3 speed test VMs. 

Figure 3. Test Scenario 2—iPerf3* client and iPerf3 server 
VMs are spawned on different compute nodes.

Figure 4. Test Scenario 3—iPerf3* client and iPerf3 server 
are spawned on the same compute node.

Figure 5. Test Scenario #1—an increase of ~2.4x in TCP 
throughput.
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Summary
The most impressive TCP performance boost was achieved 
after enabling TSO for DPDK netdevs in OvS and utilizing 
the multi-queue feature in speed test VMs. At the time of 
this writing, multi-queue support for OVS-DPDK was made 
available in the OvS mainline, while work on upstreaming 
of TSO support was in progress. For example, patches 
for supporting TSO for flat networks and VLAN networks 
in OVS-DDPK are currently available here: https://mail.
openvswitch.org/pipermail/ovs-dev/2016-June/316414.html.  

As a result of enabling TSO and upgrading the Linux kernel 
to 4.5.4, we achieved up to a 1.7x higher throughput when 
client and server speed test VMs were spawned on different 
compute nodes, compared to a system where only baseline 
performance tunings were applied. When both speed test 
VMs were deployed on the same compute node, enabling the 
multi-queue feature allowed packet processing to improve 
further by approximately 10x.

Open source software provides a multitude of ways for 
optimizing packet processing performance on COTS servers. 
With the use of Intel Xeon processors and a high-speed 
network infrastructure, including 10 Gigabit Intel® Ethernet 
Controllers, virtualization of more high-speed network 
function workloads is feasible. “Intel Architecture delivers 
a high-performance PoC infrastructure capable of handling 
heavy workloads. 

Some open source projects are already mature enough 
to offer a gamut of enhancements dedicated to cloud 
and virtualized environments. OpenStack Kilo provides 
provisions to optimize performance for its VMs. Some of 
the key features that improve overall performance include 
NUMA topology awareness and huge pages, which reduce 
the number of translation lookaside buffer (TLB) misses. 
Other features include affinitizing a VM’s CPU cores to the 
host machine. Proper selection from a variety of Linux 
distributions may be relevant, as they come with different 
kernel versions, and may perform differently over the same 
infrastructure. Our tests showed that performance of packet 
processing improved with the latest release of the kernel. 
However, due to the large amount of TCP-related updates 
and fixes integrated with each kernel version, it is difficult 
to pinpoint exactly which update impacted the overall 
performance.

The next step on the optimization path is the selection of 
packet processing acceleration technologies. We strongly 
recommend the use of DPDK because it provides a flexible 
and fast packet-forwarding path between VMs and the 
physical NIC of the hosts on which they reside. In this PoC, 
we used OVS-DPDK to benefit from fast packet switching and 
forwarding. Since DPDK PMDs continuously scan the host’s 
NICs for arriving data, they require dedicated hardware 
resources. In most of our testing, we achieved optimal 
performance by dedicating two non-sibling logical cores to 
the DPDK PMD threads. 

Today’s open source projects are evolving rapidly with 
new optimizations being developed all the time. Be sure to 
research these enhancements thoroughly and use the right 
optimizations that are relevant to your workload and test 
scenarios. The optimizations we presented in this technical 
brief applied best to an iPerf3 TCP workload, but your 
workloads may have different requirements. Consequently, 
not all optimizations mentioned in this technical brief might 
be applicable. 

Figure 6. Test Scenario #2—an increase of ~1.7x in TCP 
throughput.

Figure 7. Test Scenario #3—an increase of ~10x in TCP 
throughput.
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Appendix

Hardware Details

Details on Performance Tunings
1. OVS-DPDK and neutron-ovs-dpdk agents were installed on both compute nodes. 

2.  1 GB huge pages were used for OpenStack VMs to reduce TLB misses by memory management hardware and CPU on 
x86_64 architectures.

3.  CPU pinning schema: Each compute has 20 physical cores spread across two NUMA nodes, 10 in each NUMA node. We 
enabled Intel HT Technology in those systems to get a total of 40 logical cores per compute node and 20 logical cores in 
each NUMA node: 

    •  On both compute nodes, 1 physical core and its sibling core were dedicated for Linux scheduling and host housekeeping.

    •  DPDK PMD threads were pinned to CPU cores on the host machine. We tested three different pmd-core-masks 
configurations as presented in Figure 8. In most of the over 2,000 tests results, the best throughput was achieved when 
two physical (non-sibling) cores were assigned to DPDK PMD threads and both CPU cores belonged to the same NUMA 
node as the NIC. Second best results were seen when one logical core was assigned/dedicated for DPDK PMD threads. 
Throughput results were not as good when we used two logical cores, from the same physical core, for test scenario 1 and 
3. Please note that these results are optimal for the presented workload and test scenarios. You might need to consider 
using a different pmd-core-mask for your workloads.

    • Remaining cores of the NUMA node were allocated to OpenStack compute services as shown in Table 3

Table 2. Dual-processor COTS servers based on Intel® Xeon® processors provide a multitude of processing cores and high 
speed networking to serve as powerful and energy-efficient platforms for virtualized workloads. 

CONTROLLER / NEUTRON COMPUTE 1 COMPUTE 2

Processor

2x Intel® Xeon® processor E5-2680 v3, 
2.50 GHz, 48 logical cores with  

Intel® Hyper-Threading Technology 
(Intel® HT Technology)

2x Intel® Xeon® processor E5-2680 v2, 
2.80 GHz, 40 logical cores with  

Intel® HT Technology

2x Intel® Xeon® processor E5-2680 v2, 
2.80 GHz, 40 logical cores with  

Intel® HT Technology

Memory 128 GB, DDR4-2133 64 GB,  DDR3-1600 64 GB,  DDR3-1600

Management 
and External 

networks NICs

Intel® Ethernet Server Adapter 
I350-T4

Intel® Ethernet Server Adapter 
I350-T4 

Intel® Ethernet Server Adapter 
I350-T4

Data (VXLAN) 
and VLAN 

networks NICs

Intel® Ethernet Converged Network 
Adapter X710-DA4

Intel® Ethernet Server Adapter X520-
DA2

Intel® Ethernet Server Adapter X520-
DA2 1 TB HDD

Storage 200 GB HDD 1 TB HDD

 Top-of-rack 
switch

Extreme Networks Summit* X670V-48t-BF-AC 10GbE Switch, SFP+ Connections

NUMA Node 1

NUMA Node 0

LC 29

LC 39

LC 28 LC 27 LC 26 LC 25 LC 24 LC 23 LC 9 LC 8 LC 7 LC 6 LC 5 LC 4 LC 3

LC 38 LC 37 LC 36 LC 35 LC 34 LC 33 LC 32 LC 31 LC 30 LC 19 LC 18 LC 17 LC 16 LC15 LC 14 LC 13 LC 12 LC 11 LC 10

Siblings

LC 2 LC 1 LC 0

0xC

0x400004

0x4

LC 22 LC 21 LC 20

PM
D

 2

PM
D

 1
PM

D
 1

PM
D

 2

PM
D

 1

Figure 8. Logical core numbering on both compute nodes used in the PoC. Only NUMA node 0 is used. There is an offset of 
20 between each of the sibling cores. 0x400004 refers to pmd-core-mask when two logical cores (LC2 and LC22) on the 
same physical core are dedicated for the DPDK PMD threads. 0x4 refers to pmd-core-mask, when one logical core (LC2) was 
dedicated for a PMD thread, and 0xC refers to pmd-core-mask when two logical cores (LC2 and LC3) on different physical 
cores are dedicated for the PMD threads.
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Table 3. CPU core pinning schema. Cores 11–19 and 31–39, from NUMA node 1, are unassigned and not used in performance 
testing.

Table 4. The ‘extra-specs’ settings for iPerf3* speed test VMs.

Table 5. iPerf3* execution commands.

4.  Optimizations for OpenStack VMs: We used special OpenStack flavors to spawn iPerf3 speed test VMs. We set extra_specs 
properties to those flavors, as mentioned in Table 4, to make sure that:

    •  Network interface card, DPDK PMD threads, and both the virtual CPU and memory of the VMs fall on the same NUMA node 
0 of the compute node.

    •  OpenStack VMs use dedicated CPUs, and guest’s CPUs are pinned to host’s CPUs.

    •  OpenStack VMs use 1 GB huge pages.

    •  Guest vCPUs are placed on same physical core whenever possible.

NUMA 0 NODE CORES DESCRIPTION CONFIGURING

0, 20 Housekeeping
In /etc/default/grub file: GRUB_CMDLINE_LINUX = … 
isolcpus=1–19,21–39

2, 3
Open vSwitch*-Data Plane 
Development Kit poll mode 
driver threads

In /etc/default/ovs-dpdk file: OVS_PMD_CORE_MASK=C

Or using command: ovs-vsctl set Open_vSwitch . other_config:pmd-
cpu-mask=C

1 ovs-vswitchd daemon In /etc/default/ovs-dpdk file: OVS_CORE_MASK=2

4–9, 24–29 OpenStack* virtual machines In /etc/nova/nova.conf file: vcpu_pin_set = 4–9,11–19,24–29,31–39

EXTRA_SPECS PARAMETER VALUE NOTES

hw:cpu_policy dedicated Guest virtual CPUs will be strictly pinned to a set of host physical CPUs.

hw:mem_page_size large Guest will use 1 GB huge pages.

hw:numa_mempolicy preferred
Provide memory resources according to extra_specs but if more resources are needed 
take from other NUMA node.

hw:numa_mem.0 4096 Mapping MB of RAM to NUMA node 0.

hw:numa_nodes 1 Number of NUMA nodes to expose to the guest.

hw_numa_cpus.0 0,1,2,3 Mapping of virtual CPUs list to NUMA node 0.

hw:cpu_threads_policy prefer If the host has threads, vCPU will be placed on the same core, so they are thread siblings.

SCENARIO iPerf3 SERVER VM EXECUTION iPerf3 CLIENT VM EXECUTION

Scenario 1

iperf3 –s –p2000 -D
iperf3 –s –p3000 -D
iperf3 –s –p4000 -D
iperf3 –s –p5000 -D
iperf3 –s –p6000 -D

iPerf3 client VM #1:
iperf3 –c <SERVER_IP> -t60 -p2000 &
iPerf3 client VM #2:
iperf3 –c <SERVER_IP> -t60 –p3000 &
iPerf3 client VM #3:
iperf3 –c <SERVER_IP> -t60 –p4000 &
iPerf3 client VM #4:
iperf3 –c <SERVER_IP> -t60 –p5000 &
iPerf3 client VM #5:
iperf3 –c <SERVER_IP> -t60 –p6000 &

Scenario 2 (2 iPerf3 
processes on 2 
virtual CPUs)

iperf3 –s –A0 –p2000 -D
iperf3 –s –A1 –p3000 -D

iperf3 –c <SERVER_IP> -A0,0  -t60 –P <NO_OF_STREAMS> -p2000 &
iperf3 –c <SERVER_IP> -A1,1  -t60 –P <NO_OF_STREAMS> -p3000 &

Scenario 3 (4 iPerf3 
processes on 4 
virtual CPUs)

iperf3 –s –A0 –p2000 -D
iperf3 –s –A1 –p3000 -D
iperf3 –s –A2 –p4000 -D
iperf3 –s –A3 –p5000 -D

iperf3 –c <SERVER_IP> -A0,0  -t60 –P <NO_OF_STREAMS> -p2000 &
iperf3 –c <SERVER_IP> -A1,1  -t60 –P <NO_OF_STREAMS> -p3000 &
iperf3 –c <SERVER_IP> -A2,2  -t60 –P <NO_OF_STREAMS> -p4000 &
iperf3 –c <SERVER_IP> -A3,3  -t60 –P <NO_OF_STREAMS> -p5000 &
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NAME REFERENCE

COTS Commercial Off-the-Shelf

CPU Central Processing Unit

CSP Communication Service Provider

DHCP Dynamic Host Configuration Protocol

DOCSIS Data Over Cable Service Interface 
Specification  

DPDK Data Plane Development Kit

I/O Input/Output

Intel® HT 
Technology Intel® Hyper-Threading Technology

KVM Kernel-based Virtual Machine

LC Logical Core

netdev Network Device

NFV Network Function Virtualization

NFVI NFV Infrastructure

NIC Network Interface Card

NUMA Non-Uniform Memory Architecture

OvS Open vSwitch

NAME REFERENCE

OVS-DPDK DPDK-Accelerated Open vSwitch

PMD Passive Optical Network

PoC Quick Emulator

PON Random Access Memory

QEMU Software Defined Networking

RAM Transmission Control Protocol

SDN Transaction Lookaside Buffer

TCP TCP Segmentation Offload

TLB User Datagram Protocol

TSO Virtual CPU

UDP Virtual Local Area Network

vCPU Virtual Machine

VLAN Virtual Network Function

VM Virtual Switch

VNF Virtual eXtensible Local Area Network

vSwitch Virtual Tunnel End Point

VxLAN Virtual eXtensible LAN

Acronyms
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