
Introduction
Since 2015, Intel Corporation has cooperated with several communication
service providers (Comms SPs) to define optimal network functions virtualization
infrastructures (NFVIs) that would help virtualize their workloads.

As part of this initiative, Intel helped a prominent video, phone, and cable Internet
access provider to build a performant generic infrastructure that could be used
for different workloads such as video on demand and high-speed, data-related
network functions. This infrastructure had to be capable of supporting edge and
access services across technologies such as Data Over Cable Service Interface
Specifications (DOCSIS), Ethernet, or passive optical networks.

Many Internet customers use a speed test server as a tool to compare the actual
speed they are experiencing with the speed they signed up for. These servers
are based on the transport control protocol (TCP); therefore, TCP performance is
critical in such a network infrastructure.

At the time of this writing, there was no publicly available speed test server that
could run in a virtualized setup and achieve download and upload rates greater
than 1 Gbps using a single virtual machine. Hence, to define the ideal TCP tunings
necessary to deploy a performant NFVI, we relied on iPerf3* instead.

This document describes the hardware and software components as well as TCP
performance optimizations implemented in order to deliver an optimal NFVI
capable of handling communications-grade network functions virtualization (NFV)
workloads. The document also briefly discusses three key test scenarios that
reflect real-world workloads. We share performance test results for these three
scenarios and summarize all of our key findings. Our findings will benefit readers
who are considering virtualizing their topology and are more interested in TCP
than User Datagram Protocol (UDP) workloads, regardless of whether they plan to
deploy a speed test server.

Our research shows that open source software can be successfully used to achieve
a reliable and flexible topology that enables delivery of robust and highly efficient
virtualized infrastructures. We present an example of such an infrastructure that
is built upon standard servers with Intel® Xeon® processors and is optimized to
set up a virtualized broadband speed test server. The infrastructure is capable of
processing external workloads with an average throughput of 9.35 Gbps over a
10 Gbps network connection and internal workloads with a throughput reaching
45 Gbps.

Muhammad A. Siddiqui
Solution Engineer

Przemysław Lal
Solution Engineer

Tarek Radi
Lead Solution Enabling Manager

Mark Kavanagh
Application Engineer

Implementing a TCP Broadband Speed Test
in the Cloud for Use in an NFV Infrastructure

When communication service
providers consider virtualizing

their network architectures,
one of the key components

of focus is TCP performance,
which is fundamental for most

networking services.

technical brief

Technical Brief | Implementing a TCP Broadband Speed Test in the Cloud for Use in an NFV Infrastructure

An Open Source Infrastructure
The NFVI used for this proof-of-concept (PoC) consists
of three commercial off the-shelf (COTS) Intel® Xeon®
processor-based servers (see Table 2 in the Appendix),
running the Fedora* 21 Server operating system. We
installed OpenStack* Kilo on these three servers. One
server was configured as an OpenStack controller that also
includes the OpenStack Networking* functions, whereas the
remaining two servers were configured as compute nodes.
Figure 1 shows the physical topology and software stack
used in this PoC.

OpenStack is a well-known open source software platform
that enables users to deploy, orchestrate, and manage
virtual network functions (VNFs) in the cloud using a single
web-based dashboard. New NFV extensions integrated into
OpenStack Kilo include support for non-uniform memory
access (NUMA) architectures, CPU affinity in virtual machines
(VM), and huge pages.

These extensions enabled us to select particular CPU cores,
memory banks, and network interface cards (NICs) that
would belong to the same NUMA node, and dedicate these
resources to specific performance-demanding VMs, such as
the broadband speed test server.

Open vSwitch* (OvS*), is a production-quality, widely
deployed open source virtual software switch. OvS’s primary
switching component is a “fastpath” kernel module, which is
programmed and controlled by user-space processes. This
fastpath maintains switching lookup tables that are used to
process traffic directly in kernel space. However, flows that
are not recognized in the switching tables must be sent to
user space for classification so that an appropriate switching
rule can be inserted into the fastpath’s tables. The new rule

is subsequently used in the fastpath to handle previously
unrecognized flows. While OvS is largely performant,
packets processed by OvS must traverse the kernel network
stack and as such are subject to any inherent latency and
performance impacts.

The Data Plane Development Kit (DPDK) is a set of libraries
and drivers that enable faster packet processing. In 2014
DPDK was integrated with OvS. The result was a set of DPDK-
accelerated OvS network devices (netdevs), which enabled
packets to be processed solely in user space. The most
important advantage of DPDK-enabled netdevs is significant
acceleration of I/O traffic between the virtual switch and
connected NIC. In some cases, OvS with DPDK performed
12x faster compared to OvS without DPDK.1

DPDK leverages poll mode drivers (PMDs) that continuously
scan the NIC for arriving frames. Upon arrival, frames are
directly transferred into user-space shared memory using
direct memory access. There, OvS processes the frames,
bypassing the kernel network stack and thus avoiding the
overhead of handling interrupts and context switching, which
would otherwise have been experienced in a non-DPDK-
enabled setup. Furthermore, the traffic paths between OvS
and OpenStack VMs have also been optimized. OvS 2.4 saw
the introduction of DPDK-optimized vHost-user netdevs,
which improved host-guest communication significantly over
VirtIO back ends such as vHost-net.

On the compute nodes of this PoC, we used OvS 2.5.90
with DPDK 16.04 in order to take advantage of multi-queue
support. We also contributed to the open source community
by enabling TCP segmentation offload (TSO) in OVS-DPDK
for flat and VLAN networks. This helped boost packet
throughput between VMs.

Figure 1. Physical topology of the PoC infrastructure with three Intel® Xeon® processor-based servers in an OpenStack*
environment. One server was configured as a controller, and the other two were configured as compute nodes. All servers are
connected through a top-of-rack switch and are running Fedora* 21 Server. Each server has four network interfaces, one for
each network type as described in Table 1.

br-int DHCP

br-ex

External

br-vlan

VLAN

br-int

br-vlan

br-int

br-ex

External

br-vlan

VLAN

 TOR Switch

Internet

Management Network

VLAN2

Compute 1 CentOS/Ubuntu VMs

Open vSwitch 2.5.90

QEMU 2.5

Fedora 21

DPDK 16.04

OpenStack Kilo 2015.1.1

KVM 2.3.0.5fc21

Intel® Xeon® processor E5-2680 v2, 2.80 GHz

Compute 2 CentOS/Ubuntu VMs

QEMU 2.5

Fedora 21

OpenStack Kilo 2015.1.1

KVM 2.3.0.5fc21

Intel® Xeon® processor E5-2680 v2, 2.80 GHz

Controller + Neutron

Open vSwitch 2.5.0

Fedora 21

OpenStack Kilo 2015.1.1

Intel® Xeon® processor E5-2680 v3, 2.50 GHz

br-vxlan
br-tun

VXLAN

br-vxlan
br-tun

VXLAN

Data Network (VXLAN)

External Machine

VLAN NetworkExternal Network

Management Management External VLANVXLANManagement

10 GbE 10 GbE10 GbE10 GbE

Open vSwitch 2.5.90 DPDK 16.04

br-ex br-vxlan
br-tun

2

Technical Brief | Implementing a TCP Broadband Speed Test in the Cloud for Use in an NFV Infrastructure

Network Topology
In the OpenStack setup, we created two provider networks:
an External network and a VLAN network. The External
network was a flat (untagged) network, which provided
Internet access to OpenStack VMs and was built using Intel®
Ethernet Server Adapter I350-T4 (1 GbE). The VLAN network
was an 802.1Q tagged network that mapped to the existing
physical VLAN network outside the OpenStack cloud. On
the compute nodes, Intel® Ethernet Server Adapter X520-
DA2NICs were used to connect VMs on this VLAN network to
an external machine that was connected to the same physical
VLAN network. OVS-DPDK and neutron-ovs-dpdk agents
were installed on both compute nodes to enable fast packet
processing on these VLAN interfaces.

The Dynamic Host Configuration Protocol (DHCP) service
was installed on the controller node and enabled for each
OpenStack network. This DHCP service provided OpenStack
VMs with IP addresses from a pool of addresses allocated to
each subnet. External machines or VMs that were outside the
OpenStack cloud were assigned static IP addresses that were
outside the pool allocated to the OpenStack subnets.

After OpenStack VMs were spawned on the same VLAN
network and separate compute nodes, east-west traffic
flowed between the VLAN interfaces of the compute nodes,
going through a top-of-rack switch. When VMs were on the
same compute node and OpenStack network, switching
happened within that compute node and packets never left
the host machine. In this PoC, our focus and performance
tests were conducted on a single-provider VLAN network. As
a result, we did not need a virtual router or tunnel.

Tuning the System for Optimal TCP
Traffic Performance
TCP traffic performance tests were started after compiling
the plain OvS with DPDK (OVS-DPDK) and setting the
“extra-spec” property2 to OpenStack Compute* flavors for
OpenStack VMs to make use of features like CPU affinity,
huge pages, and single NUMA node topology. Intel® Hyper-
Threading Technology (Intel® HT Technology) and Intel®
Turbo Boost Technology were enabled in the BIOS of both
compute nodes. For highly NUMA-optimized workloads, one
can also consider enabling “Cluster-on-Die” optimization. In
our PoC setup, both compute nodes had processors where
the Cluster-on-Die feature was not supported.

Additionally, we set the nova extra-spec property to “hw:cpu_
threads_policy=prefer.” When the host machine has Intel HT
Technology enabled, this property guarantees that virtual
CPUs (vCPUs) got placed on the same physical core, making
them thread siblings (see Table 4). In this technical brief, we
refer to all above optimizations as the “baseline performance
tunings.”

As part of our performance testing, OpenStack VMs were
spawned with several variations of virtual resources such as:

 • 1 virtual CPU and 1 GB RAM.

 • 2 virtual CPUs and 2 GB RAM, where a single physical
core was used to accommodate 2 vCPUs.

 • 4 virtual CPUs and 4 GB RAM, where 2 physical cores
were used to accommodate 4 vCPUs.

 • 8 virtual CPUs and 8 GB RAM, where 4 physical cores
were used to accommodate 8 vCPUs.

Performance tests were executed for VMs with two different
pairs of Linux* distributions: a pair of CentOS* 7 with kernel
3.10 and a pair of Ubuntu* 14.04 with kernel 3.13. The reason
we tested two different Linux distributions was to identify
any major differences in performance across two of the most
common open source operating systems, especially when
tested with their out-of-box kernels. Once both distributions
were tested with the baseline performance tunings, the
kernel was upgraded to version 4.5.4, which was the latest
available kernel at the time of testing.

In all test scenarios and configurations, we used the iPerf3*
tool to test TCP traffic throughput. Both iPerf3 server and
client VMs were spawned on the OpenStack VLAN network.
In this technical brief, a VM with an iPerf3 instance is
referred to as “iPerf3 speed test VM.” All tests were executed
for a duration of 60 seconds. In addition, multiple iPerf3
TCP streams (1, 2, 4, 8, and 12) were tested in almost all
configurations. We also experimented with three different
PMD core masks to find the optimal assignment of virtual
cores to DPDK PMD threads. Table 3 and Figure 8 in the
Appendix show the details of how we assigned different
cores to different DPDK PMD threads.

Because iPerf3 is not a multi-threaded network bandwidth
measurement tool, we ran multiple iPerf3 processes in each
iPerf3 speed test VM. Each process was run on a different
port and pinned to a different logical core inside the guest VM.

Table 1. Networks used in the PoC.

NETWORK NETWORK DESCRIPTION COMPUTE NODES NIC CONTROLLER NODE NIC

External
Flat provider network used for Internet/remote

access to the hosts and OpenStack VMs.
Intel® Ethernet Server Adapter I350-T4

VLAN
802.1Q tagged provider network mapped to the

existing physical virtual local area network (VLAN).
This network simulates the subscribers.

Intel® Ethernet Server
Adapter X520-DA2

Intel® Ethernet Converged Network
Adapter X710-DA4

Management
Management network used for accessing and

managing OpenStack* services.
Intel® Ethernet Server Adapter I350-T4

Data (VxLAN)
Virtual extensible local area network (VxLAN) tunnel

used for east-west traffic between tenant VMs on
different hosts.

Intel® Ethernet Server
Adapter X520-DA2

Intel® Ethernet Converged Network
Adapter X710-DA4

3

Technical Brief | Implementing a TCP Broadband Speed Test in the Cloud for Use in an NFV Infrastructure

Additional Optimizations to Enhance TCP
Traffic Performance
We collected the results after implementing all baseline
performance tunings and realized that the achieved TCP
traffic throughput would be unsatisfactory for high-speed,
data-related network functions such as those that CSPs
would run. Consequently, we executed the following on our
PoC setup:

• Upgraded the software stack: We upgraded the software
stack on both compute nodes by recompiling OvS 2.5.90
with DPDK 16.04, which also entailed upgrading QEMU* to
version 2.5.0.

• Kernel upgrade: We upgraded the Linux kernel of all iPerf3
speed test VMs to version 4.5.4. We did not upgrade the
host kernel.

• OvS support for TSO on DPDK vHost-user ports: TSO
support in OVS-DPDK was not available at the time of this
testing. Thus, we implemented and published an OVS-
DPDK patch to support this. The patch enabled successful
feature negotiation of TSO (and implicitly, transmit
checksum offloading) between the hypervisor and the OVS-
DPDK vHost-user back end. Thus, TSO may be enabled on
a per-port basis in the VM using the standard Linux ‘ethtool’
utility. Furthermore, the patch also increases the maximum
permitted frame length for OVS-DPDK-netdevs to 64 KB—a
necessity to accommodate oversized frames received—and
provides support for handling “offload” frames.

Note that we validated the patch only on OpenStack
deployed flat and VLAN networks. The guest may only take
advantage of TSO if OvS is connected to a NIC that supports
such functionality.

The offloading works as follows: when OvS dequeues a
frame from a TSO-enabled guest port using the DPDK vHost
library, the library sets specific offload flags in the metadata
that DPDK uses to represent a frame (known as “mbuf”).
Upon receipt of an ‘offload’ mbuf, OvS sets additional offload
flags and attribute values in the mbuf before passing it to
the DPDK NIC driver for transmission. The driver examines
and interprets the mbuf’s offload flags and corresponding
attributes to facilitate TCP segmentation on the NIC.

With the enablement of TSO for DPDK netdevs in OvS, the
segmentation of guest-originated oversized TCP frames
moves from the guest operating system’s software TCP/IP
stack to the NIC hardware. The benefits of this approach are
many. First, offloading segmentation of a guest’s TCP frames
to hardware significantly reduces the compute burden on
the VM’s vCPU. Consequently, when the guest does not need
to segment frames itself, its vCPU can take advantage of the
additionally available computational cycles to perform more
meaningful work.

Second, with TSO enabled, OvS does not need to receive,
process, and transmit a large number of smaller frame
segments, but rather a smaller amount of significantly larger
frames. In other words, the same amount of data can be
handled with significantly reduced overhead.

Finally, the reduction in the number of small packets, which
are sent to the NIC for transmission, results in the reduction
of Peripheral Component Interconnect* bandwidth usage.
The cumulative effect of these enhancements is a massive
improvement in TCP throughput for DPDK-accelerated OvS.

Our TSO patch for OvS 2.5.90 and DPDK 16.04 was
published as a request for comment on the ovs-dev mailing
list and is available for you to download from https://mail.
openvswitch.org/pipermail/ovs-dev/2016-June/316414.html.

• Multi-queue support for DPDK vHost-user ports: In this
upgraded stack, multi-queue was available for us to use.
Multi-queue enables VMs to scale network performance as
the number of virtual CPUs increases.

Test Scenarios
We set up several test scenarios and did performance
testing with various configurations and optimizations. In this
technical brief, we focus on only three test scenarios that are
the closest to a real-world setup.

Test Scenario #1: Multiple external iPerf3 clients
connected to an iPerf3 server VM residing inside an
OpenStack-managed cloud
On an external server outside the OpenStack cloud, we
spawned five CentOS 7 VMs on the VLAN2 network.
These VMs simulate subscriber requests that connect to
a broadband speed test server, which reside inside the
OpenStack-managed cloud. VMs are running on top of the
Kernel-based Virtual Machine (KVM*) and OvS (see Figure 2).

There were no optimizations done to the external client VMs;
however, each VM had allocated to it two virtual CPUs and
2 GB of RAM. The iPerf3 speed test server VM was spawned
inside the OpenStack-managed cloud and was initially optimized
with the baseline performance tunings mentioned above.
After recording initial test results, we applied all additional
TCP optimizations mentioned above to the iPerf3 speed test
VM (except for multi-queue) and recaptured the results.

Figure 2. Test Scenario 1—Multiple external clients
connected to iPerf3* speed test server.

Compute 1

TOR Switch

External Host

Native Kernel

VM1

iPerf3 Speed Test
Server

OVS-DP DK

Open vSwitch Bridge

10 Gbps

10 Gbps

VM2 VM3 VM4 VM5

4

https://mail.openvswitch.org/pipermail/ovs-dev/2016-June/316414.html
https://mail.openvswitch.org/pipermail/ovs-dev/2016-June/316414.html

Technical Brief | Implementing a TCP Broadband Speed Test in the Cloud for Use in an NFV Infrastructure

Test Scenario #2: iPerf3 client VM connected to an
iPerf3 server VM, with both VMs located on different
compute nodes within an OpenStack-managed cloud
Two CentOS 7 VMs were spawned on different compute
nodes and on the same OpenStack VLAN2 network. One VM
was configured with an iPerf3 client to simulate any network
function interacting with TCP traffic (for example, responding
to TCP data or forwarding TCP data), while the other VM was
configured with an iPerf3 server that simulated a broadband
speed test server (see Figure 3).

Both VMs and both compute nodes were initially optimized
with baseline performance tunings, and the results were
captured. Next, we applied all additional TCP optimizations
mentioned above to the iPerf3 speed test VM (except for
multi-queue) and recaptured the results. Finally, we repeated
the scenario with multi-queue enabled and, recaptured again
the results.

Test Scenario #3: iPerf3 client VM connected to an
iPerf3 server VM, with both VMs located on the same
compute node within an OpenStack-managed cloud
Two CentOS 7 VMs were spawned on the same compute
node and connected to the OpenStack VLAN2 network. One
VM was configured as the iPerf3 client, while the other VM
was configured as an iPerf3 server (see Figure 4).

Both VMs and the compute node were initially optimized with
baseline performance tunings, and the results were captured.
Next, we applied all additional TCP optimizations mentioned
above to the iPerf3 speed test VM (except for multi-queue),
and recaptured results. Finally, we repeated the scenario with
multi-queue enabled, and recaptured again the results.

Results
When VMs were running operating systems with default
kernels, we noticed that TCP throughput results were
generally better on Ubuntu 14.04 VMs than on CentOS
7 VMs. However, after upgrading the kernels of both
Ubuntu and CentOS VMs to version 4.5.4, we experienced
comparable performance results. For this reason, we are
presenting only the CentOS 7 results.

For Test Scenario #1, we were able to achieve an
accumulative average throughput of 3.87 Gbps using
baseline performance tunings (see the left bar of Figure 5).
After upgrading the Linux kernel to version 4.5.4 in the speed
test server VM, upgrading the software stack and enabling
TSO, the accumulative average TCP traffic throughput
increased to 9.35 Gbps (see the right bar of Figure 5). This
is around a 2.4x improvement. Both results were obtained
when we used two logical cores from separate physical cores
for DPDK PMD threads, and when two vCPUs and 2 GB RAM
were allocated to the iPerf3 server VM.

For Test Scenario #2, using the baseline TCP tunings we
achieved an average throughput between 4.6 Gbps and 5.5
Gbps, depending on the number of iPerf3 streams used
(see Figure 6). After applying the additional TCP tunings
(with and without multi-queue), we the average throughput
increased to around 9.35 Gbps, which was an improvement
of approximately 1.7x. This shows that multi-queue had a
negligible effect in this scenario. Notice that these results
were obtained when one logical core was assigned to the
DPDK PMD thread, and client and server VMs were allocated
two vCPUs and 2 GB RAM each.

For Test Scenario #3, using the baseline TCP tuning we
achieved an average throughput of 3.9 Gbps (see Figure 7).
After applying the additional TCP tunings without multi-
queue, the throughput ranged between 22 and 33.5 Gbps,
depending on the number of iPerf3 streams. With additional
eight queues enabled, we were able to achieve a throughput
of around 45 Gbps for larger number of streams. The impact
of applying all TCP tunings in this scenario resulted in an
approximately 10x higher average TCP throughput. Notice
that these results were obtained when we used two logical
cores from separate physical cores for DPDK PMD threads,
and when four vCPUs and 4 GB RAM were allocated to the
iPerf3 speed test VMs.

Figure 3. Test Scenario 2—iPerf3* client and iPerf3 server
VMs are spawned on different compute nodes.

Figure 4. Test Scenario 3—iPerf3* client and iPerf3 server
are spawned on the same compute node.

Figure 5. Test Scenario #1—an increase of ~2.4x in TCP
throughput.

Compute 1

TOR Switch

iPerf3 Speed Test
Server

OVS-DP DK

10 Gbps

Compute 2

iPerf3 Speed Test
Client

OVS-DP DK

10 Gbps

Compute 1

iPerf3 Speed Test
Server

OVS-DP DK

iPerf3 Speed Test
Client

CentOS 7
Baseline performance tunings

Baseline performance tunings:
2 vCPU/2 GB RAM per VM, 2 PMDs on separate physical cores

3.87 Gbps

9.35 Gbps10

8

6

4

2

0
CentOS 7

Baseline performance
tunings + Kernel

4.5.4 + TSO

Client 1
Client 2
Client 3
Client 4
Client 5

5

Technical Brief | Implementing a TCP Broadband Speed Test in the Cloud for Use in an NFV Infrastructure

1 2 4 8 12

2 vCPU/2 GB RAM per VM, 1 PMD thread

Baseline performance tunings

Baseline performance tunings + Kernel 4.5.4 +TSO

Baseline performance tunings + Kernel 4.5.4 +TSO + 8MQ

4.66

9.3 9.34 9.34 9.35

9.359.359.349.339.34

8.85

4.64
4.96

Number of iPerf3 streams

4.97
5.45

9.5

4.5

Th
ro

ug
hp

ut
 [G

bp
s]

1 2 4 8 12

4 vCPU/4 GB RAM per VM, 2 PMD threads on different physical cores

Baseline performance tunings

Baseline performance tunings + Kernel 4.5.4 +TSO

Baseline performance tunings + Kernel 4.5.4 +TSO + 8MQ

3.64

33.42

32.27

27.39
21.91

45.65 44.5545.18

30.34

33.48

22.86

3.4 3.97

Number of iPerf3 streams

4.16 4.59

50

25

0

Th
ro

ug
hp

ut
 [G

bp
s]

Summary
The most impressive TCP performance boost was achieved
after enabling TSO for DPDK netdevs in OvS and utilizing
the multi-queue feature in speed test VMs. At the time of
this writing, multi-queue support for OVS-DPDK was made
available in the OvS mainline, while work on upstreaming
of TSO support was in progress. For example, patches
for supporting TSO for flat networks and VLAN networks
in OVS-DDPK are currently available here: https://mail.
openvswitch.org/pipermail/ovs-dev/2016-June/316414.html.

As a result of enabling TSO and upgrading the Linux kernel
to 4.5.4, we achieved up to a 1.7x higher throughput when
client and server speed test VMs were spawned on different
compute nodes, compared to a system where only baseline
performance tunings were applied. When both speed test
VMs were deployed on the same compute node, enabling the
multi-queue feature allowed packet processing to improve
further by approximately 10x.

Open source software provides a multitude of ways for
optimizing packet processing performance on COTS servers.
With the use of Intel Xeon processors and a high-speed
network infrastructure, including 10 Gigabit Intel® Ethernet
Controllers, virtualization of more high-speed network
function workloads is feasible. “Intel Architecture delivers
a high-performance PoC infrastructure capable of handling
heavy workloads.

Some open source projects are already mature enough
to offer a gamut of enhancements dedicated to cloud
and virtualized environments. OpenStack Kilo provides
provisions to optimize performance for its VMs. Some of
the key features that improve overall performance include
NUMA topology awareness and huge pages, which reduce
the number of translation lookaside buffer (TLB) misses.
Other features include affinitizing a VM’s CPU cores to the
host machine. Proper selection from a variety of Linux
distributions may be relevant, as they come with different
kernel versions, and may perform differently over the same
infrastructure. Our tests showed that performance of packet
processing improved with the latest release of the kernel.
However, due to the large amount of TCP-related updates
and fixes integrated with each kernel version, it is difficult
to pinpoint exactly which update impacted the overall
performance.

The next step on the optimization path is the selection of
packet processing acceleration technologies. We strongly
recommend the use of DPDK because it provides a flexible
and fast packet-forwarding path between VMs and the
physical NIC of the hosts on which they reside. In this PoC,
we used OVS-DPDK to benefit from fast packet switching and
forwarding. Since DPDK PMDs continuously scan the host’s
NICs for arriving data, they require dedicated hardware
resources. In most of our testing, we achieved optimal
performance by dedicating two non-sibling logical cores to
the DPDK PMD threads.

Today’s open source projects are evolving rapidly with
new optimizations being developed all the time. Be sure to
research these enhancements thoroughly and use the right
optimizations that are relevant to your workload and test
scenarios. The optimizations we presented in this technical
brief applied best to an iPerf3 TCP workload, but your
workloads may have different requirements. Consequently,
not all optimizations mentioned in this technical brief might
be applicable.

Figure 6. Test Scenario #2—an increase of ~1.7x in TCP
throughput.

Figure 7. Test Scenario #3—an increase of ~10x in TCP
throughput.

6

https://mail.openvswitch.org/pipermail/ovs-dev/2016-June/316414.html
https://mail.openvswitch.org/pipermail/ovs-dev/2016-June/316414.html

Technical Brief | Implementing a TCP Broadband Speed Test in the Cloud for Use in an NFV Infrastructure

Appendix

Hardware Details

Details on Performance Tunings
1. OVS-DPDK and neutron-ovs-dpdk agents were installed on both compute nodes.

2. 1 GB huge pages were used for OpenStack VMs to reduce TLB misses by memory management hardware and CPU on
x86_64 architectures.

3. CPU pinning schema: Each compute has 20 physical cores spread across two NUMA nodes, 10 in each NUMA node. We
enabled Intel HT Technology in those systems to get a total of 40 logical cores per compute node and 20 logical cores in
each NUMA node:

 • On both compute nodes, 1 physical core and its sibling core were dedicated for Linux scheduling and host housekeeping.

 • DPDK PMD threads were pinned to CPU cores on the host machine. We tested three different pmd-core-masks
configurations as presented in Figure 8. In most of the over 2,000 tests results, the best throughput was achieved when
two physical (non-sibling) cores were assigned to DPDK PMD threads and both CPU cores belonged to the same NUMA
node as the NIC. Second best results were seen when one logical core was assigned/dedicated for DPDK PMD threads.
Throughput results were not as good when we used two logical cores, from the same physical core, for test scenario 1 and
3. Please note that these results are optimal for the presented workload and test scenarios. You might need to consider
using a different pmd-core-mask for your workloads.

 • Remaining cores of the NUMA node were allocated to OpenStack compute services as shown in Table 3

Table 2. Dual-processor COTS servers based on Intel® Xeon® processors provide a multitude of processing cores and high
speed networking to serve as powerful and energy-efficient platforms for virtualized workloads.

CONTROLLER / NEUTRON COMPUTE 1 COMPUTE 2

Processor

2x Intel® Xeon® processor E5-2680 v3,
2.50 GHz, 48 logical cores with

Intel® Hyper-Threading Technology
(Intel® HT Technology)

2x Intel® Xeon® processor E5-2680 v2,
2.80 GHz, 40 logical cores with

Intel® HT Technology

2x Intel® Xeon® processor E5-2680 v2,
2.80 GHz, 40 logical cores with

Intel® HT Technology

Memory 128 GB, DDR4-2133 64 GB, DDR3-1600 64 GB, DDR3-1600

Management
and External

networks NICs

Intel® Ethernet Server Adapter
I350-T4

Intel® Ethernet Server Adapter
I350-T4

Intel® Ethernet Server Adapter
I350-T4

Data (VXLAN)
and VLAN

networks NICs

Intel® Ethernet Converged Network
Adapter X710-DA4

Intel® Ethernet Server Adapter X520-
DA2

Intel® Ethernet Server Adapter X520-
DA2 1 TB HDD

Storage 200 GB HDD 1 TB HDD

 Top-of-rack
switch

Extreme Networks Summit* X670V-48t-BF-AC 10GbE Switch, SFP+ Connections

NUMA Node 1

NUMA Node 0

LC 29

LC 39

LC 28 LC 27 LC 26 LC 25 LC 24 LC 23 LC 9 LC 8 LC 7 LC 6 LC 5 LC 4 LC 3

LC 38 LC 37 LC 36 LC 35 LC 34 LC 33 LC 32 LC 31 LC 30 LC 19 LC 18 LC 17 LC 16 LC15 LC 14 LC 13 LC 12 LC 11 LC 10

Siblings

LC 2 LC 1 LC 0

0xC

0x400004

0x4

LC 22 LC 21 LC 20

PM
D

 2

PM
D

 1
PM

D
 1

PM
D

 2

PM
D

 1

Figure 8. Logical core numbering on both compute nodes used in the PoC. Only NUMA node 0 is used. There is an offset of
20 between each of the sibling cores. 0x400004 refers to pmd-core-mask when two logical cores (LC2 and LC22) on the
same physical core are dedicated for the DPDK PMD threads. 0x4 refers to pmd-core-mask, when one logical core (LC2) was
dedicated for a PMD thread, and 0xC refers to pmd-core-mask when two logical cores (LC2 and LC3) on different physical
cores are dedicated for the PMD threads.

7

Technical Brief | Implementing a TCP Broadband Speed Test in the Cloud for Use in an NFV Infrastructure

Table 3. CPU core pinning schema. Cores 11–19 and 31–39, from NUMA node 1, are unassigned and not used in performance
testing.

Table 4. The ‘extra-specs’ settings for iPerf3* speed test VMs.

Table 5. iPerf3* execution commands.

4. Optimizations for OpenStack VMs: We used special OpenStack flavors to spawn iPerf3 speed test VMs. We set extra_specs
properties to those flavors, as mentioned in Table 4, to make sure that:

 • Network interface card, DPDK PMD threads, and both the virtual CPU and memory of the VMs fall on the same NUMA node
0 of the compute node.

 • OpenStack VMs use dedicated CPUs, and guest’s CPUs are pinned to host’s CPUs.

 • OpenStack VMs use 1 GB huge pages.

 • Guest vCPUs are placed on same physical core whenever possible.

NUMA 0 NODE CORES DESCRIPTION CONFIGURING

0, 20 Housekeeping
In /etc/default/grub file: GRUB_CMDLINE_LINUX = …
isolcpus=1–19,21–39

2, 3
Open vSwitch*-Data Plane
Development Kit poll mode
driver threads

In /etc/default/ovs-dpdk file: OVS_PMD_CORE_MASK=C

Or using command: ovs-vsctl set Open_vSwitch . other_config:pmd-
cpu-mask=C

1 ovs-vswitchd daemon In /etc/default/ovs-dpdk file: OVS_CORE_MASK=2

4–9, 24–29 OpenStack* virtual machines In /etc/nova/nova.conf file: vcpu_pin_set = 4–9,11–19,24–29,31–39

EXTRA_SPECS PARAMETER VALUE NOTES

hw:cpu_policy dedicated Guest virtual CPUs will be strictly pinned to a set of host physical CPUs.

hw:mem_page_size large Guest will use 1 GB huge pages.

hw:numa_mempolicy preferred
Provide memory resources according to extra_specs but if more resources are needed
take from other NUMA node.

hw:numa_mem.0 4096 Mapping MB of RAM to NUMA node 0.

hw:numa_nodes 1 Number of NUMA nodes to expose to the guest.

hw_numa_cpus.0 0,1,2,3 Mapping of virtual CPUs list to NUMA node 0.

hw:cpu_threads_policy prefer If the host has threads, vCPU will be placed on the same core, so they are thread siblings.

SCENARIO iPerf3 SERVER VM EXECUTION iPerf3 CLIENT VM EXECUTION

Scenario 1

iperf3 –s –p2000 -D
iperf3 –s –p3000 -D
iperf3 –s –p4000 -D
iperf3 –s –p5000 -D
iperf3 –s –p6000 -D

iPerf3 client VM #1:
iperf3 –c <SERVER_IP> -t60 -p2000 &
iPerf3 client VM #2:
iperf3 –c <SERVER_IP> -t60 –p3000 &
iPerf3 client VM #3:
iperf3 –c <SERVER_IP> -t60 –p4000 &
iPerf3 client VM #4:
iperf3 –c <SERVER_IP> -t60 –p5000 &
iPerf3 client VM #5:
iperf3 –c <SERVER_IP> -t60 –p6000 &

Scenario 2 (2 iPerf3
processes on 2
virtual CPUs)

iperf3 –s –A0 –p2000 -D
iperf3 –s –A1 –p3000 -D

iperf3 –c <SERVER_IP> -A0,0 -t60 –P <NO_OF_STREAMS> -p2000 &
iperf3 –c <SERVER_IP> -A1,1 -t60 –P <NO_OF_STREAMS> -p3000 &

Scenario 3 (4 iPerf3
processes on 4
virtual CPUs)

iperf3 –s –A0 –p2000 -D
iperf3 –s –A1 –p3000 -D
iperf3 –s –A2 –p4000 -D
iperf3 –s –A3 –p5000 -D

iperf3 –c <SERVER_IP> -A0,0 -t60 –P <NO_OF_STREAMS> -p2000 &
iperf3 –c <SERVER_IP> -A1,1 -t60 –P <NO_OF_STREAMS> -p3000 &
iperf3 –c <SERVER_IP> -A2,2 -t60 –P <NO_OF_STREAMS> -p4000 &
iperf3 –c <SERVER_IP> -A3,3 -t60 –P <NO_OF_STREAMS> -p5000 &

8

Technical Brief | Implementing a TCP Broadband Speed Test in the Cloud for Use in an NFV Infrastructure

NAME REFERENCE

COTS Commercial Off-the-Shelf

CPU Central Processing Unit

CSP Communication Service Provider

DHCP Dynamic Host Configuration Protocol

DOCSIS Data Over Cable Service Interface
Specification

DPDK Data Plane Development Kit

I/O Input/Output

Intel® HT
Technology Intel® Hyper-Threading Technology

KVM Kernel-based Virtual Machine

LC Logical Core

netdev Network Device

NFV Network Function Virtualization

NFVI NFV Infrastructure

NIC Network Interface Card

NUMA Non-Uniform Memory Architecture

OvS Open vSwitch

NAME REFERENCE

OVS-DPDK DPDK-Accelerated Open vSwitch

PMD Passive Optical Network

PoC Quick Emulator

PON Random Access Memory

QEMU Software Defined Networking

RAM Transmission Control Protocol

SDN Transaction Lookaside Buffer

TCP TCP Segmentation Offload

TLB User Datagram Protocol

TSO Virtual CPU

UDP Virtual Local Area Network

vCPU Virtual Machine

VLAN Virtual Network Function

VM Virtual Switch

VNF Virtual eXtensible Local Area Network

vSwitch Virtual Tunnel End Point

VxLAN Virtual eXtensible LAN

Acronyms

9

 ¹ https://networkbuilders.intel.com/docs/open-vswitch-enables-sdn-and-nfv-transformation-paper.pdf
 ² These are extra specifications that OpenStack administrators can set. See http://docs.openstack.org/admin-guide/compute-flavors.html
 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system

configuration. Check with your system manufacturer or retailer or learn more at intel.com.
 Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any

difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems
or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, reference www.intel.com/performance/resources/
benchmark_limitations.htm or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

 THE INFORMATION PROVIDED IN THIS PAPER IS INTENDED TO BE GENERAL IN NATURE AND IS NOT SPECIFIC GUIDANCE. RECOMMENDATIONS (INCLUDING POTENTIAL COST SAVINGS) ARE
BASED UPON INTEL’S EXPERIENCE AND ARE ESTIMATES ONLY. INTEL DOES NOT GUARANTEE OR WARRANT OTHERS WILL OBTAIN SIMILAR RESULTS.

 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS AND SERVICES. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS AND SERVICES INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

 Copyright © 2016 Intel Corporation. All rights reserved. Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and other countries.
 *Other names and brands may be claimed as the property of others. Printed in USA 0217/MH/MESH/PDF 335220-002 Please Recycle

http://www.intel.com
www.intel.com/performance/resources/benchmark_limitations.htm
www.intel.com/performance/resources/benchmark_limitations.htm

