
Table of Contents

Executive Summary 1

1 Test Purpose. . 3

1.1 Test Setup Details.3

1.2 Tests Results. 4

1.3 Conclusion. . 6

Configuration Specifications. 6

2 High-Level Overview 6

3 SUT Installation and Configuration. . 7

3.1 Host Configuration. 7

3.2 vRouter Configuration 12

4 Test Generators' Installation and
4 Configuration . . 19

4.1 Hardware and Software Details. . 19

4.2 Test Setup Details. 19

4.3 Test Parameters. 19

4.4 Characterization Scripts 21

5 Running the Characterization 22

6 BIOS Settings . . 23

7 References. . 26

Executive Summary
Today, most communications service providers (CommSP) use in their networks
many proprietary, fixed-function hardware platforms to deliver services. Adding
new services/functions to a network usually requires new equipment dedicated
to the new functions. CommSPs find such an approach of deploying new services
slow, costly, and difficult to scale and manage.

In an effort to make their networks and services more agile to deploy and manage,
many CommSPs are embracing network functions virtualization (NFV), a new
service deployment architecture that enables network functions to run on virtual
machines on Intel® architecture–based servers. Such servers are capable of
hosting multiple applications, which reduces cost and power consumption. Using
a virtualized environment, new software instances can be deployed or turned off
very rapidly. Introducing NFV is expected to create much more flexible network
services, to permanently lower network costs, and to improve time to market for a
significant return on investment.

A big question in this transition is about whether the NFV system can perform at
the same level as the dedicated appliance it replaces. Many hardware appliances
have specialized packet processing ASICs that help to deliver wire speed
performance for even the fastest network speeds. The challenge is to design an
NFV system that can match the same or higher performance using Intel® Xeon®
processors. In the NFV paradigm, a service comprises the software component
called the virtual network function (VNF), the virtualization infrastructure (virtual
machines, server), and the management and orchestration.

The Brocade* 5600 vRouter is a commercial network router VNF from Brocade
Corp. The Brocade 5600 vRouter delivers advanced layer 3/4 routing, stateful
firewall, NAT, and VPN capabilities in software that is designed for carrier-class
reliability and performance. The routing functions built into a VNF make it a key
piece of equipment in a CommSP network, both in the central office and as a
component of a virtual enterprise customer premises equipment (vE-CPE) solution.

Given that the performance of the Brocade 5600 vRouter is crucial, Intel
developed a testing methodology that can be used by Intel employees, partners,
and customers to evaluate performance of the Brocade 5600 vRouter in their
own networks.

This test report documents the performance obtained by running the router
functionality of the Brocade* 5600 vRouter in a virtual environment on a dual-
socket Intel® Xeon® processor–based server.

High Performance Packet
Processing on Intel® Architecture
Platforms: Brocade* 5600 vRouter

Communications Service Providers
Virtual Router

white paper

This document focuses on the performance (both throughput and latency) obtained by running the router functionality
of the Brocade 5600 vRouter in a virtual environment on a dual-socket Intel Xeon processor–based server. The parameters
used (number of routes, next hops) as well as the traffic pattern are fully described in this document. Other parameters
and other traffic patterns might yield different results. In the rest of this paper, vRouter and Brocade 5600 refer to Brocade
5600 vRouter.

Figure 1 shows that the vRouter is capable of maintaining line rate using 4x 10 Gbps interfaces, when using packet sizes of 256
bytes or higher, and up to 32k next hops per interface.¹

As shown on Figure 2, the latency obtained for 64 bytes packets is between 20 and 30 microseconds when the load is
between 1% and 50% of line rate.¹

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 2

Figure 1. Infuence of number of next hops on performance¹

Figure 2. vRouter’s latency and throughput in function of the input rate¹

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 8 64 512 4096 32768 262144

Th
ro

ug
hp

ut
 (%

 o
f l

in
e

ra
te

)

Number of hosts per port

Brocade 5600 vRouter throughput
4x 10GbE interfaces, implied routes

< 0.1% packet loss

64 bytes

128 bytes

256 bytes

512 bytes

1024 bytes

1280 bytes

1518 bytes

0

100

200

300

400

500

600

700

800

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

0% 20% 40% 60% 80% 100%

A
ve

ra
ge

 L
at

en
cy

 (m
ic

ro
 s

ec
on

ds
)

O
ut

pu
t R

at
e

(%
 L

in
e

Ra
te

)

Input Rate (% Line Rate)

Brocade 5600 vRouter throughput and latency
4x 10GbE interfaces

64 bytes packets
1024 routes and 16 next hops per interface

Output Rate

Latency (micro seconds)

	¹	Intel internal analysis. See Section 3 for the system under test’s configuration details, and Section 4 for the test generators’ configuraton details.

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 3

1 Test Purpose
We conducted the tests described in sections 1.2.1 to 1.2.5
to show the performance when one CPU socket of a dual-
socket server is used (Figure 3). Section 1.2.6 gives some
performance expectations for when the VNF is scaled to run
one Brocade 5600 vRouter instance on each CPU socket (two
instances in total).

The Brocade 5600 vRouter is running in a virtual machine,
using QEMU² as the hypervisor and CentOS* Linux*³ as the
host operating system. PCI pass through is being used,⁴ i.e.,
the control of the full physical device is given to the virtual
machine; a virtual switch was not used in the fast path (see
Figure 3).

1.1 Test Setup Details
The Brocade 5600 vRouter is characterized under network
load produced by test generators. The test generators
generate IP traffic toward four 10 GbE interfaces (results in
sections 1.2.1 to 1.2.5) or eight 10 GbE interfaces (sections
1.2.6), and they measure the traffic coming from those
interfaces. Those test generators can be from commercial
suppliers such as Ixia* or Spirent,* or Intel architecture–
based servers running pktgen or prox, which are traffic-
generation applications that are part of the Data Plane
Development Kit (DPDK) library of applications.

For automation purposes, prox (https://01.org/intel-data-
plane-performance-demonstrators/prox-overview) has
been used to generate the traffic and to measure the
throughput and latency from the vRouter.⁵ An Ixia traffic
generator was used as well to confirm some key data results.

One of the key parameters when characterizing the
performance of a router is the number of active hosts/
next-hops that can be directly seen by the router (in blue
on Figure 4). The number of routes in the routing table is
another key parameter: on Figure 4, the yellow and green
networks can only be accessed by “Router 1” using the
routes in the routing tables.

Instead of the number of hosts, some reports sometimes
use the number of flows. For an example, see “Brocade
Vyatta 5600 vRouter: NFV Routing and Security
Performance Benchmark on Mid-Range Cloud Servers.”⁶
While a flow often refers to 5-tuple (i.e., IP source and
destination, UDP (or TCP) source and destination, and
protocol), another definition of a flow is being used in that
report (two tuples: IP source and IP destination), as it is
expected that layer 4 fields (UDP source and destination
ports, protocol) have no influence on a L3 router.

To avoid any confusion with the 5-tuple flows, we will use
the term “host-pair” to refer to “two tuples.”

Test generators (TG) simulate a certain number of hosts/
next hops (one or two per interface shown on Figure 5) and
also generate packet flows.

Figure 5 shows the test setup used for this characterization,
using two systems to generate traffic to four ports. In this
setup, TG interface 0 (TG) only generates packets towards
TG2; TG2 only generates traffic towards TG0, TG1 towards
TG3, and TG3 towards TG1.

Figure 4. Network topology

² http://wiki.qemu.org/Main_Page
³ https://www.centos.org
⁴ PCI-Pass-through was chosen to stay focused on CPU characteristics and not be distracted by vNIC/NIC capabilities and does not reflect on what the Brocade 5600 vRouter supports
⁵ Choice of test generator is simply based on engineer’s preference and has no known impact on the performance numbers.
⁶ https://networkbuilders.intel.com/docs/Vyatta_5600_Performance_Test_Full_Report.pdf

Figure 3. High level architecture

Figure 5. Test setup overview

https://01.org/intel-data-plane-performance-demonstrators/prox-overview
https://01.org/intel-data-plane-performance-demonstrators/prox-overview
https://networkbuilders.intel.com/docs/Vyatta_5600_Performance_Test_Full_Report.pdf
https://networkbuilders.intel.com/docs/Vyatta_5600_Performance_Test_Full_Report.pdf
https://networkbuilders.intel.com/docs/Vyatta_5600_Performance_Test_Full_Report.pdf
http://wiki.qemu.org/Main_Page
https://www.centos.org
https://networkbuilders.intel.com/docs/Vyatta_5600_Performance_Test_Full_Report.pdf

In such a setup, if four hosts per interface are used, 32
bidirectional host-pairs are generated (4 x 4 x 2). If 1,000
hosts per interface are used, 2 million flows are generated
(1000 x 1000 x 2). Different traffic profiles (e.g., TG0
generating traffic toward all TG ports) will deliver different
performance.

1.2 Test Results
1.2.1 Throughput

The router is configured with 1024 routes and 16 next hops
per interface.

This result (Figure 6) shows the throughput obtained while
increasing the input rate, using 64 bytes packets.⁷ We see
that the output rate increases linearly with the input rate
(as expected), up to around 80% of the line rate, where the
output rates saturate. The output rate is limited to 80% of
the line rate because of PCIe* Gen2 bandwidth limitation
on Intel® 82599 10 Gigabit Ethernet Controller when using
both interfaces.

The overload behavior of the vRouter is optimal because
the output rate remains stable when system became
overloaded (above 80% of input rate). When the router
reaches this throughput level, it drops the extra packets,
but it is still able to handle 80% of the line rate properly. A
bad behavior would show an output rate decreasing when
the input rate is higher than 80% of the line rate: the router
would spend so much time dropping packets that it would
not be able to route packets properly.

1.2.2 Packet Loss
The previous result demonstrated the outgoing
throughput. In the ideal situation, a router should not drop
packets until it becomes overloaded. Figure 7 shows the
packet loss while increasing the input rate.

We see that at all input rates lower than 80% of the line
rate, there are no dropped packets.⁷

A very small percentage of packet loss might sometimes
happen at rates lower than 80%, and is usually due to a
fastpath thread running the dataplane being interrupted.

This behavior can usually be avoided by a better tuning of
the host system (running QEMU), preventing all datapath-
related cores from being interrupted.

At high input rates (> 80% of line rate), the dropped
packet rate increases dramatically. This is expected as
the system becomes overloaded. In previous tests (see
Figure 6), we have seen that at those rates, the output rate
saturates at 80% of the line rate, hence the extra packets
(approximately the difference between the input rate and
the output rate) are dropped.

1.2.3 Latency
Latency is a very important characteristic of a router VNF.

We see (Figure 8) that the average latency for most
input rates is between 20 and 30 microseconds. Only
for very low input rates (< 1%) does the latency increase
to up to around 250 microseconds (with still around 64
microseconds at 0.1% of line rate).⁷ This increase in latency
at low rates is not a real surprise:

•	 DPDK applications usually handle packets in bulks:
such applications might wait up to some predefined time
until a certain number of packets are available. These
are then handled in bulk, as this is more efficient than
handling packets one by one.

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

O
ut

pu
t R

at
e

(%
 L

in
e

Ra
te

)

Input Rate (% Line Rate)

Brocade 5600 vRouter throughput
4x 10GbE interfaces

64 bytes packets
1024 routes and 16 next hops per interface

Figure 6. Brocade 5600 vRouter throughput⁷

-5%

0%

5%

10%

15%

20%

0% 20% 40% 60% 80% 100%

Pe
rc

en
ta

ge
 d

ro
pp

ed
 p

ac
ke

ts

Input Rate (% Line Rate)

Brocade 5600 vRouter percentage dropped packets
4x 10GbE interfaces

64 bytes packets
1024 routes and 16 next hops per interface

Figure 7. Brocade 5600 vRouter packet drop⁷

0
100
200
300
400
500
600
700
800
900

1,000

0% 20% 40% 60% 80% 100%

La
te

nc
y

(m
ic

ro
 s

ec
on

ds
)

Input Rate (% Line Rate)

Brocade 5600 vRouter throughput
4x 10GbE interfaces

64 bytes packets
1024 routes and 16 next hops per interface

Maximum Latency

Average Latency

Minimum Latency

Figure 8. Brocade 5600 vRouter latency⁷

	⁷	Intel internal analysis. See Section 3 for the system under test’s configuration details, and Section 4 for the test generators’ configuraton details.

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 5

•	 Power saving techniques might also be
implemented, either reducing the polling frequency when
the load is low, or even maybe enabling C-states (power
modes), allowing a server to switch into deeper C-states
when the load is low. The Brocade 5600 vRouter supports
parameters to tune sleep time (see power-profile, min-
sleep, max-sleep parameters).

High latency is observed when the input rate is higher than
80% of the line rate: the system is then overloaded, and all
hardware and software buffers and queues are full (e.g.,
including NIC RX buffer, RX descriptors, internal application
buffers, inter-core ring buffers; TX descriptors, NIC TX
buffer size).

No QoS was used in this test setup. The use of QoS
would probably dramatically increase the latency (up to
milliseconds), as many packets may be buffered in such a
use case.

1.2.4 The Influence of the Number of Next
Hops
A number of configurations were used with several fixed
numbers of hosts/next hops to establish a realistic baseline
performance.

As shown in Figure 9, there might be many next hops for
a router: gateways (like Router 2 and Router 3), as well as
some systems directly connected (though switches) to
the router under test (like the systems connected through
Switch 1 and Switch 2).

The performance when varying the number of next hops
is shown in Figure 10. This test has been run five times for
each of the data points, and error bars show the variability
in performance. This variability is higher when very few
next hops are used.

Increasing the number of hosts/next hops has an influence
on the performance. 256-byte packets and higher can be
handled by the system at line rate provided that less than
32k next hops are active per interface.⁷

From that perspective, it is important to note that a packet
size of 256 bytes is probably lower than the average packet
size of networks. So, being able to handle any packet size
higher than 256 bytes is enough for most networks.

It is also probably quite unrealistic to have more than a few
hundred systems connected to a router (through switches).
Most networks probably do not use more than a few
hundred next hops.

In summary, for realistic use cases (>= 256 byte packets,
<= 1k active hosts per interface), the system can handle
packets at line rate.

1.2.5 Influence of Number of Routes
 Another important parameter that can influence router
performance is the number of routes configured in the
routing table, and consequently the number of systems
that can be reached through the routing table (in Figure 11,
systems in green or yellow networks, like 20.2.0.2).

In addition to the number of routes, the netmask of the
routes also influences performance.

Figure 12 shows the performance of the Brocade 5600
vRouter when increasing the number of /24 static routes.
Up to 32k routes have been configured, i.e., 8k routes per
interface. Performance is shown after running tests one
time, while performance variability (as shown in Figure 10)
still applies. Line rate is reached for all packet sizes
except 64 bytes. In this case, performance is not
influenced by the number of routes; the difference seen
on the graph for 64 bytes packets fits within the variability
identified in Figure 10.

Figure 9. Next hops in network topology

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 8 64 512 4096 32768 262144

Th
ro

ug
hp

ut
 (%

 o
f l

in
e

ra
te

)

Number of hosts per port

Brocade 5600 vRouter throughput
4x 10GbE interfaces, implied routes

< 0.1% packet loss

64 bytes

128 bytes

256 bytes

512 bytes

1024 bytes

1280 bytes

1518 bytes

Figure 10. Influence of the number of next hops on
throughput⁷

Figure 11. Routes in network topology

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 6

Another approach would be to use dynamic routing
protocols such as BGP to configure the routes, but this is
out of the scope of this document.

We see in Figure 12 that for up to 32k routes, the number of
routes has no influence on the performance.⁷

1.2.6 Two Brocade 5600 vRouter Instances
on a Dual-Socket System
All test results so far were obtained using only one CPU
socket. The goal of this additional characterization is to see
how the Brocade 5600 vRouter performance scales with
the number of sockets: two independent Brocade 5600
vRouter instances, each running on its own CPU socket, are
being used (see Figure 13).

The comparison between the performance obtained with
the router handling four interfaces using all cores from one
CPU socket (Figure 14) is compared with the performance
obtained when having two instances of the router, each
handling four interfaces and using all cores from one CPU
socket (Figure 13). Figure 15 shows that the performance
scales very well with the number of sockets when using two
VNFs, one on each socket.

1.3 Conclusion
The Brocade 5600 vRouter is an example of how an
appliance-based function can be virtualized and achieve
the benefits promised by NFV technology. To answer the
performance question, this document provides a roadmap
for interested parties to create their own test plan for
determining whether the performance of the Brocade 5600
vRouter is suitable for their applications.

Configuration Specifications
This document explains how to properly configure the
systems (both SUT and test systems) to run the Brocade
5600 vRouter characterization that was described in the
pages above.

2 High-Level Overview
The Brocade 5600 vRouter runs in a virtual machine, using
QEMU as the hypervisor and CentOS as the host operating
system. PCI passthrough is being used, i.e., the control of the
full physical device is given to the virtual machine; there is
no virtual switch involved in the fast path (see Figure 3). Two
different configurations can be used:

One Brocade 5600 vRouter instance using one CPU socket
(Figure 16).

Two instances each using its own CPU socket (Figure 17).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2000 4000 6000 8000 10000

O
ut

pu
t R

at
e

(%
 L

in
e

Ra
te

)

Number of Routes per interface

Brocade 5600 vRouter throughput
4x 10GbE interfaces, 1 next hop per interface

influence of static routes
< 0.1% packet loss

64
128
256
512
1024
1280
1518

Figure 12. Influence of the number of routes on
throughput⁷

Figure 14. One vRouter instance

Figure 13. Two instance of vRouters, each on its own CPU
socket

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

64 128 256 512 1024 1280 1518

TX
 R

at
e

(r
el

at
iv

e
to

 8
0

G
bp

s)

Packet Size (Bytes)

Routing
(4x 10 Gbps and 4 routes per CPU socket)

1 socket
1 Brocade 5600
vRouter
4x 10 Gbps

2 sockets
2 Brocade 5600
vRouters
8x 10 Gbps

Figure 15. vRouter performance scaling⁷

3 SUT Installation and Configuration
3.1 Host Configuration
3.1.1 Hardware and Software Details

3.1.2 Grub.cfg
DPDK-related CPU cores must be isolated through isolcpus
in grub.cfg by making sure interrupts are handled by core 0.

	 linux16 /vmlinuz-3.10.0-229.11.1.el7.
x86 _ 64 root=/dev/mapper/centos-root ro
rd.lvm.lv=centos/swap vconsole.keymap=us
ipv6.disable=1 crashkernel=auto vconsole.
font=latarcyrheb-sun16 rd.lvm.lv=centos/
root selinux=0 rhgb quiet LANG=en _ US.UTF-8
intel _ iommu=on iommu=pt noirqbalance intel _
pstate=disable intel _ idle.max _ cstate=0
processor.max _ cstate=0 default _ hugepagesz=1G
hugepagesz=1G hugepages=16 transparent _
hugepage=never
isolcpus=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,
34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,
51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,
68,69,70,71

3.1.3 QEMU
3.1.3.1 Dependencies
The following packages must be installed to be able to
install and build QEMU.

sudo yum install net-tools
sudo yum install gcc
sudo yum install bzip2
sudo yum install zlib-devel
sudo yum install glib2-devel
sudo yum install gcc-c++
sudo yum install flex bison autoconf automake
libtool
sudo yum install numactl-devel numactl
sudo yum install pciutils
sudo yum install bridge-utils

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 7

Figure 16. High level architecture – one instance on one
socket

Figure 17. High level architecture: two instance, each on its
own CPU socket

ITEM DESCRIPTION NOTES

Platform Intel® Server Board
S2600WT Family

Form factor 2U Rack Mountable

Processor(s) 2x Intel® Xeon® CPU
E5-2699 v3

46080KB L3 Cache per
CPU, 18 cores per CPU
(36 logical cores due to
Hyper-threading).

Memory 32 GB RAM (8x 4 GB)
per socket

Quad channel 2134 DDR4

BIOS SE5C610.86B.01.
01.0009.060120
151350

Hyper-threading enabled
Hardware prefetching
enabled
COD disabled

ITEM DESCRIPTION NOTES

Host OS CentOS 7.1 Kernel version: 3.10.0-
229.7.2.el7.x86_64

Hypervisor QEMU 2.4.1

vRouter Brocade 5600 vRouter
v4.0R1

Hugepages 8x 1 GB on host or 16x
1 GB on host

5x 1 GB in VM

16x used when using
8x 10 Gbps interfaces

DPDK used Used in
Brocade 5600 vRouter;
version unknown

NICs 8x Intel® 82599 10
Gigabit Ethernet
Controller

2 dual-port PCIe gen-2
cards on socket 0 and
2 on socket 1.

3.1.3.2 QEMU Build
tar xvjf qemu-2.4.1.tar.bz2
cd qemu-2.4.1
./configure --disable-attr --enable-kvm
--enable-vhost-net --disable-docs --disable-
vnc-png --disable-vnc-jpeg --disable-sdl
--disable-curl --disable-curses --disable-
vnc-sasl --disable-vnc-tls --enable-numa
make
make install

3.1.4 Scripts
The following sections list the scripts used for the
characterization. There is no guarantee that these
scripts will run on software or hardware with different
specifications than that which is listed in this document.

Scripts expect to have the Brocade 5600 vRouter image
(vyatta-kvm _ 4.0R1 _ amd64.img) in user home
directory (/home/user in this example). When using
two VMs, the image of the second VM is called vyatta-
kvm _ 4.0R1 _ amd64 _ vm2.img.

3.1.4.1 Scripts to Prevent Interrupts on
DPDK Fast Path
Disable un-used services… (as root).
chkconfig abrt-ccpp off
chkconfig abrtd off
chkconfig acpid off
chkconfig atd off
chkconfig auditd off
chkconfig autofs off
chkconfig blk-availability off
chkconfig certmonger off
chkconfig cpuspeed off
chkconfig cups off
chkconfig haldaemon off
chkconfig firewalld off
chkconfig ip6tables off
chkconfig iptables off
chkconfig irqbalance off
chkconfig kdump off
chkconfig ksmtuned off
chkconfig ksm off
chkconfig libvirt-guests off
chkconfig libvirtd off
chkconfig lvm2-monitor off
chkconfig mcelogd off
chkconfig mdmonitor off
chkconfig messagebus off
chkconfig netfs off
chkconfig nfs off
chkconfig nfslock off
chkconfig portreserve off
chkconfig postfix off
chkconfig rpcbind off
chkconfig rpcgssd off
chkconfig rpcidmapd off
chkconfig sysstat off

service abrt-ccpp stop
service abrtd stop
service acpid stop
service atd stop

service auditd stop
service autofs stop
service blk-availability stop
service certmonger stop
service cpuspeed stop
service cups stop
service haldaemon stop
service ip6tables stop
service iptables stop
service irqbalance stop
service kdump stop
Stop firewall - preventing vnc to qemu
service firewalld stop
service ksmtuned stop
service ksm stop
service libvirt-guests stop
service libvirtd stop
service lvm2-monitor off
service mcelogd stop
service mdmonitor stop
service messagebus stop
service netfs stop
service nfs stop
service nfslock stop
service portreserve stop
service postfix stop
service rpcbind stop
service rpcgssd stop
service rpcidmapd stop
service sysstat stop

rmmod bluetooth
rmmod rfkill
rmmod cpufreq _ stats
rmmod ip6table _ filter
rmmod ip6 _ tables
rmmod ebtable _ nat
rmmod ebtables
rmmod nf _ conntrack _ ipv4
rmmod nf _ defrag _ ipv4
rmmod xt _ state
rmmod nf _ conntrack
rmmod ipt _ REJECT
rmmod xt _ CHECKSUM
rmmod iptable _ mangle
rmmod iptable _ filter
rmmod ip _ tables
rmmod stp
rmmod llc
rmmod ipv6
rmmod dm _ mirror
rmmod dm _ region _ hash
rmmod dm _ log
rmmod dm _ mod
rmmod vhost _ net
rmmod macvtap
rmmod macvlan
rmmod vhost
rmmod tun
rmmod iTCO _ wdt
rmmod iTCO _ vendor _ support
rmmod microcode
rmmod pcspkr
rmmod lpc _ ich

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 8

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 9

rmmod mfd _ core
rmmod i2c _ algo _ bit
rmmod dca
rmmod ptp
rmmod pps _ core
rmmod mdio
rmmod sg
rmmod i2c _ i801
rmmod i2c _ core
rmmod wmi
rmmod ext4
rmmod jbd2
rmmod mbcache
rmmod sd _ mod
rmmod crc _ t10dif
rmmod crct10dif _ common
rmmod ahci
rmmod libahci
rmmod isci
rmmod libsas
rmmod scsi _ transport _ sas

echo 0 > /proc/sys/kernel/nmi _ watchdog
echo 0 > /proc/sys/kernel/numa _ balancing
echo 1 > /sys/bus/workqueue/devices/writeback/cpumask
sysctl vm/stat _ interval=1000000

killall sftp-server
killall udevd

for i in `pgrep rcu[̂ c]̀ ; do taskset -pc 0 $i ; done

./set _ irq _ affinity enp3s0f0

Where enp3s0f0 is the management interface and set_irq_affinity is defined by:

device=$1
if [$device = ""] ; then
 echo "Please select which interface to use"
 exit
fi

i=0
while [1]; do
 irq=̀ cat /proc/interrupts | grep -i $device-TxRx-$i"$" | cut -d: -f1 | sed "s/ //g"̀
 if [-n "$irq"]; then
 printf "1 > /proc/irq/%d/smp _ affinity\n" $irq
 printf 1 > /proc/irq/$irq/smp _ affinity
 i=$(($i+1))
 else
 exit
 fi
done

3.1.4.2 Hugepages, vfio…
Create and mount hugepages
sudo mkdir -p /mnt/huge
sudo mount -t hugetlbfs nodev /mnt/huge

Create tap device
ip tuntap add tap0 mode tap
ip tuntap add tap1 mode tap
ifconfig tap0 up
ifconfig tap1 up

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 10

Create bridge for mgmt. interface
brctl addbr br0
brctl addif br0 tap0
brctl addif br0 tap1

Load and bind vfio driver
modprobe vfio-pci
echo "8086 10fb" > /sys/bus/pci/drivers/vfio-pci/new _ id
echo 0000:05:00.0 > /sys/bus/pci/devices/0000\:05\:00.0/driver/unbind
echo 0000:05:00.0 > /sys/bus/pci/drivers/vfio-pci/bind
echo "8086 10fb" > /sys/bus/pci/drivers/vfio-pci/new _ id
echo 0000:05:00.1 > /sys/bus/pci/devices/0000\:05\:00.1/driver/unbind
echo 0000:05:00.1 > /sys/bus/pci/drivers/vfio-pci/bind
echo "8086 10fb" > /sys/bus/pci/drivers/vfio-pci/new _ id
echo 0000:07:00.0 > /sys/bus/pci/devices/0000\:07\:00.0/driver/unbind
echo 0000:07:00.0 > /sys/bus/pci/drivers/vfio-pci/bind
echo "8086 10fb" > /sys/bus/pci/drivers/vfio-pci/new _ id
echo 0000:07:00.1 > /sys/bus/pci/devices/0000\:07\:00.1/driver/unbind
echo 0000:07:00.1 > /sys/bus/pci/drivers/vfio-pci/bind
echo "8086 10fb" > /sys/bus/pci/drivers/vfio-pci/new _ id
echo 0000:81:00.0 > /sys/bus/pci/devices/0000\:81\:00.0/driver/unbind
echo 0000:81:00.0 > /sys/bus/pci/drivers/vfio-pci/bind
echo "8086 10fb" > /sys/bus/pci/drivers/vfio-pci/new _ id
echo 0000:81:00.1 > /sys/bus/pci/devices/0000\:81\:00.1/driver/unbind
echo 0000:81:00.1 > /sys/bus/pci/drivers/vfio-pci/bind
echo "8086 10fb" > /sys/bus/pci/drivers/vfio-pci/new _ id
echo 0000:83:00.0 > /sys/bus/pci/devices/0000\:83\:00.0/driver/unbind
echo 0000:83:00.0 > /sys/bus/pci/drivers/vfio-pci/bind
echo "8086 10fb" > /sys/bus/pci/drivers/vfio-pci/new _ id
echo 0000:83:00.1 > /sys/bus/pci/devices/0000\:83\:00.1/driver/unbind
echo 0000:83:00.1 > /sys/bus/pci/drivers/vfio-pci/bind

service NetworkManager stop

vi /etc/sysconfig/network-scripts/ifcfg-br0
	 DEVICE=br0
	 #BOOTPROTO=dhcp
	 BOOTPROTO=static
	 IPADDR=192.168.1.142
	 NETMASK=255.255.255.0
	 GATEWAY=192.168.1.240
	 ONBOOT=yes
	 TYPE=Bridge

vi /etc/sysconfig/network-scripts/ifcfg-enp3s0f0
Generated by dracut initrd
	 NAME="enp3s0f0"
	 DEVICE="enp3s0f0"
	 ONBOOT=yes
	 UUID="a4d56fab-015e-458a-bb40-6a08cb8cf8d9"
	 TYPE=Ethernet
	 BRIDGE=br0
service network restart

3.1.4.3 QEMU Startup Script
See 3.1.4.4 for information on start _ vm.py script used in this section.

3.1.4.3.1 One VM on Socket 0
python start _ vm.py -name centos -enable-kvm \
 -cpu host \
 -m 8192 \
 -object memory-backend-file,prealloc=yes,mem-path=/mnt/huge,size=8192M,id=ram-
node0,host-nodes=0,policy=bind \
 -numa node,nodeid=0,cpus=0-17,memdev=ram-node0 \

 -uuid 8da5a07e-3b51-4be1-9f24-b8061c1dc271 -boot order=d \
 -drive file=/home/user/vyatta-kvm _ 4.0R1 _ amd64.img,if=none,id=drive-ide0-0-1,
format=raw \
 -device ide-hd,bus=ide.0,unit=0,drive=drive-ide0-0-1,id=ide0-0-1 \
 -net nic,model=e1000,macaddr=52:54:00:90:f2:a2 \
 -net tap,ifname=tap0,script=no,downscript=no,vhost=on \
 -vnc 192.168.1.142:2 \
 -device vfio-pci,host=05:00.0,id=hostdev0,bus=pci.0,addr=0x3 \
 -device vfio-pci,host=05:00.1,id=hostdev1,bus=pci.0,addr=0x4 \
 -device vfio-pci,host=07:00.0,id=hostdev2,bus=pci.0,addr=0x5 \
 -device vfio-pci,host=07:00.1,id=hostdev3,bus=pci.0,addr=0x6 \
 -device cirrus-vga,id=video0,bus=pci.0,addr=0x7 \
 -daemonize

3.1.4.3.2 Two VMs - One VM on Each CPU Socket
python start _ vm.py -name centos -enable-kvm \
 -cpu host \
 -m 8192 \
 -object memory-backend-file,prealloc=yes,mem-path=/mnt/huge,size=8192M,id=ram-
node0,host-nodes=0,policy=bind \
 -numa node,nodeid=0,cpus=0-17,memdev=ram-node0 \
 -uuid 8da5a07e-3b51-4be1-9f24-b8061c1dc271 -boot order=d \
 -drive file=/home/user/vyatta-kvm _ 4.0R1 _ amd64.img,if=none,id=drive-ide0-0-1,
format=raw \
 -device ide-hd,bus=ide.0,unit=0,drive=drive-ide0-0-1,id=ide0-0-1 \
 -net nic,model=e1000,macaddr=52:54:00:90:f2:a2 \
 -net tap,ifname=tap0,script=no,downscript=no,vhost=on \
 -vnc 192.168.1.142:2 \
 -device vfio-pci,host=05:00.0,id=hostdev0,bus=pci.0,addr=0x3 \
 -device vfio-pci,host=05:00.1,id=hostdev1,bus=pci.0,addr=0x4 \
 -device vfio-pci,host=07:00.0,id=hostdev2,bus=pci.0,addr=0x5 \
 -device vfio-pci,host=07:00.1,id=hostdev3,bus=pci.0,addr=0x6 \
 -device cirrus-vga,id=video0,bus=pci.0,addr=0x7 \
 -daemonize

python start _ vm2.py -name centos -enable-kvm \
 -cpu host \
 -m 8192 \
 -object memory-backend-file,prealloc=yes,mem-path=/mnt/huge,size=8192M,id=ram-
node1,host-nodes=1,policy=bind \
 -numa node,nodeid=0,cpus=0-17,memdev=ram-node1 \
 -uuid 8da5a07e-3b51-4be1-9f24-b8061c1dc271 -boot order=d \
 -drive file=/home/user/vyatta-kvm _ 4.0R1 _ amd64 _ vm2.img,if=none,id=drive-ide0-0-
1,format=raw \
 -device ide-hd,bus=ide.0,unit=0,drive=drive-ide0-0-1,id=ide0-0-1 \
 -net nic,model=e1000,macaddr=52:54:00:90:f2:a3 \
 -net tap,ifname=tap1,script=no,downscript=no,vhost=on \
 -vnc 192.168.1.142:3 \
 -device vfio-pci,host=81:00.0,id=hostdev0,bus=pci.0,addr=0x3 \
 -device vfio-pci,host=81:00.1,id=hostdev1,bus=pci.0,addr=0x4 \
 -device vfio-pci,host=83:00.0,id=hostdev2,bus=pci.0,addr=0x5 \
 -device vfio-pci,host=83:00.1,id=hostdev3,bus=pci.0,addr=0x6 \
 -device cirrus-vga,id=video0,bus=pci.0,addr=0x7 \
 -daemonize

3.1.4.4 Scripts for Pinning Virtual CPUs to Physical Cores
On the host system, every QEMU thread must be pinned to a different CPU core through taskset.

start _ vm.py script provided by prox (in helper-scripts) can be used to launch a VM and pin virtualized cores to physical
cores. The right pinning must be provided in vm-cores.py script.

This script uses the following syntax when Hyperthread is disabled:

cores = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]] to map virtual core 0 to 9 to physical core 0 to 9

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 11

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 12

3.1.4.4.1 One VM on Socket 0
Configure the script to run on 18 cores

cores = [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16],[17],[0]]

3.1.4.4.2 Two VMs - One VM on Each CPU Socket
Configure the script to run on 18 cores in vm-cores.py

cores = [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16],[17],[0]]

Copy the script to start_vm2.py. Modify it to get core information from vm2-cores.py and configure the vm2-cores.py
script to run on 18 cores of socket 1.

cores = [[18],[19],[20],[21],[22],[23],[24],[25],[26],[27],[28],[29],[30],[31],[32],[33],[34],[35]]

3.2 vRouter Configuration
3.2.1 Login and Password
Login=vyatta

Password=vyatta

3.2.2 Set Root Password
configure
set system login user root authentication plaintext-password 123456
commit
save
exit

3.2.3 Set vRouter Management Interface IP address
set interfaces dataplane dp0s2 address 192.168.1.210/24
set system static-host-mapping host-name vyatta inet 192.168.1.210

3.2.4 Enable ssh Access + http
configure
set service ssh
set service ssh allow-root
set service http
commit
save
exit

3.2.5 Key Manipulation
Copy public key from prox management system (from which prox characterization script will be started) to /home/vyatta/
pk.pub; then have the vRouter properly load the keys. Note: copying them manually in .ssh will result in those changes
being lost after reboot.

configure
loadkey root /home/vyatta/pk.pub
commit
save
exit

3.2.6 Set Dataplane IP Address
This is only one example. IP addresses and routes vary per use case.

set interfaces dataplane dp0s3 address 64.0.0.240/24
set interfaces dataplane dp0s4 address 65.0.0.240/24
set interfaces dataplane dp0s5 address 66.0.0.240/24
set interfaces dataplane dp0s6 address 67.0.0.240/24

3.2.7 Create Routes
set protocols static route 1.0.0.0/24 next-hop 64.0.0.1
set protocols static route 9.0.0.0/24 next-hop 65.0.0.1

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 13

set protocols static route 17.0.0.0/24 next-hop 66.0.0.1
set protocols static route 25.0.0.0/24 next-hop 67.0.0.1

3.2.8 Example Config File
The commands should result in a config file similar to this one:

interfaces {
 dataplane dp0s2 {
 address 192.168.1.210/24
 }
 dataplane dp0s3 {
 address 64.0.0.240/24
 }
 dataplane dp0s4 {
 address 65.0.0.240/24
 }
 dataplane dp0s5 {
 address 66.0.0.240/24
 }
 dataplane dp0s6 {
 address 67.0.0.240/24
 }
 loopback lo
}
protocols {
 static {
 route 1.0.0.0/24 {
 next-hop 64.0.0.1
 }
 route 9.0.0.0/24 {
 next-hop 65.0.0.1
 }
 route 17.0.0.0/24 {
 next-hop 66.0.0.1
 }

 route 25.0.0.0/24 {
 next-hop 67.0.0.1
 }
 }
}
service {
 https
 ssh
}
system {
 acm {

enable
operational-ruleset {
 rule 9985 {
 action allow
 command /show/tech-support/brief/
 group vyattaop
 }
 rule 9986 {
 command /show/tech-support/brief
 group vyattaop
 }
 rule 9987 {
 command /show/tech-support
 group vyattaop
 }
 rule 9988 {
 command /show/configuration
 group vyattaop

 }
 rule 9989 {
 action allow
 command "/clear/*"
 group vyattaop
 }
 rule 9990 {
 action allow
 command "/show/*"
 group vyattaop
 }
 rule 9991 {
 action allow
 command "/monitor/*"
 group vyattaop
 }
 rule 9992 {
 action allow
 command "/ping/*"
 group vyattaop
 }
 rule 9993 {
 action allow
 command "/reset/*"
 group vyattaop
 }
 rule 9994 {
 action allow
 command "/release/*"
 group vyattaop
 }
 rule 9995 {
 action allow
 command "/renew/*"
 group vyattaop
 }
 rule 9996 {
 action allow
 command "/telnet/*"
 group vyattaop
 }
 rule 9997 {
 action allow
 command "/traceroute/*"
 group vyattaop
 }
 rule 9998 {
 action allow
 command "/update/*"
 group vyattaop
 }
 rule 9999 {
 command "*"
 group vyattaop
 }
 }
 ruleset {
 rule 9999 {
 action allow
 group vyattacfg
 operation "*"
 path "*"
 }

 }

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 14

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 15

 }
 config-management {
 commit-revisions 20
 }
 console {
 device ttyS0

}
domain-name mcplab.net
host-name Vyatta-5600
login {

 user root {
 authentication {
 encrypted-password 1MGW0BV.5$vTG5Jtx6wPPxUGJmqalFH1
 public-keys root@vRouter.mcplab.net {
 key
AAAAB3NzaC1yc2EAAAADAQABAAABAQC5Mp83HPbAKauvCejhYAINjSB/CFv/6mBFwg+DmshLORPKtfBM+zvBPdeOL1GXZ
2sXJxUIz1HYWJ0ePsnsM05DfbdVfDN8D6s5uUgIsLM4wXx0jj17wcynFE2FBHq0FWab4fnj2ZqOLY9Z4UA63TFvBTdUfAz
xP8M/sSQGsR2nWTZ2300yH9SK8v4khClAFlQRt4Qp06ltMjo6QzHAUH3z8BGRkoF0LpJ9mayAN0UZ6QcE24kZJUQMFLFrJi
DfxzUwWDSdL2U0s5HDkHXyFFlJ6x/gTFjee7hl8njlgIN7gG/uT9OWpdLI/jlUg3VgR4h8hOdsPBcGSbhMpAUo39P3
 type ssh-rsa
 }
 		 }

 }
 user vyatta {

 authentication {
 encrypted-password 1MhxqymQQ$hpLZRkWd0hI3f5UQ0Z0ZO.
 public-keys user@vRouter.mcplab.net {
 key
AAAAB3NzaC1yc2EAAAADAQABAAABAQC5Mp83HPbAKauvCejhYAINjSB/CFv/6mBFwg+DmshLORPKtfBM+zvBPdeOL1GXZ2
sXJxUIz1HYWJ0ePsnsM05DfbdVfD6s5uUgIsLM4wXx0jj17wcynFE2FBHq0FWab4fnj2ZqOLY9Z4UA63TFvBTdUfAzxP8M/sS
QGsR2nWTZ2300yH9SK8v4khClAFlQRt4Qp06ltMjo6QzHAUH3z8BGRkoF0LpJ9mayAN0UZ6QcE24kZJUQMFLFrJiDfxzUwWD
DSdL2U0s5HDkHXyFFlJ6x/gTFjee7hl8njlgIN7gG/uT9OWpdLI/jlUg3VgR4h8hOdsPBcGSbhMpAUo39P3
 type ssh-rsa
 }

 }
 level admin

 }
}
static-host-mapping {

 host-name Vyatta-5600 {
 inet 192.168.1.96
 }

}
syslog {

 global {
 facility all {
 level warning
 }
 }
 }
}

/* Warning: Do not remove the following line. */
/* === vyatta-config-version: "config-management@1:dhcp-relay@2:pim@1:qos@2:routing@5:sflow@1:system
@13:twamp@1:vlan@1:vplane@2:vrrp@1:vrrp@2:webgui@1" === */
/* Release version: 3.5R5 */

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 16

3.2.8.1 VM1 Configuration
The configuration of the interfaces and routes of the first VM, with four routes and four next hops:

interfaces {
 dataplane dp0s2 {
 address 192.168.1.210/24
 }
 dataplane dp0s3 {
 address 64.0.0.240/24
 }
 dataplane dp0s4 {
 address 65.0.0.240/24
 }
 dataplane dp0s5 {
 address 66.0.0.240/24
 }
 dataplane dp0s6 {
 address 67.0.0.240/24
 }
 loopback lo
}
protocols {
 static {
 route 1.0.0.0/24 {
 next-hop 64.0.0.1
 }
 route 9.0.0.0/24 {
 next-hop 65.0.0.1
 }
 route 17.0.0.0/24 {
 next-hop 66.0.0.1
 }
 route 25.0.0.0/24 {
 next-hop 67.0.0.1
 }
 }
}

3.2.8.2 VM2 Configuration
The configuration of the interfaces and routes of the second VM, with four routes and four next hops (use case 1).

interfaces {
 dataplane dp0s2 {
 address 192.168.1.211/24
 }
 dataplane dp0s3 {
 address 68.0.0.240/24
 }
 dataplane dp0s4 {
 address 69.0.0.240/24
 }
 dataplane dp0s5 {
 address 70.0.0.240/24
 }
 dataplane dp0s6 {
 address 71.0.0.240/24
 }
 loopback lo
}
protocols {
 static {
 route 33.0.0.0/24 {
 next-hop 68.0.0.1
 }

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 17

 route 41.0.0.0/24 {
 next-hop 69.0.0.1
 }
 route 49.0.0.0/24 {
 next-hop 70.0.0.1
 }
 route 57.0.0.0/24 {
 next-hop 71.0.0.1
 }
 }
}

3.2.9 Example Script for Creating Brocade 5600 vRouter Configuration Files
The characterization tool (see section 4.4) uses many different configuration files. It provides a vRouter-agnostic simple
script for showing the interface addresses and routes used during the characterization. That information can then be used
to create configuration files. Or the script can be modified to directly create the config file using the correct syntax for the
vRouter under test. An example of such a modified script is given here below for Brocade 5600 vRouter. The config*.boot
must be copied in /config/prox directory on the Brocade 5600 vRouter.

3.2.9.1 One VM on Socket 0 – Four Ports per VM
use strict;
my $max _ nb _ routes = 8192;
my $max _ nb _ next _ hops = 1024;
my $max _ nb _ interfaces = 4;
my $nb _ next _ hops = 1;
my ($interface, $a1, $a2, $a3, $a4, $fh, $output _ route);

Create bricade configuration for use case 0 and 1
while ($nb _ next _ hops <= $max _ nb _ next _ hops) {
 my $nb _ routes _ per _ interface = $nb _ next _ hops;
 while ($nb _ routes _ per _ interface <= $max _ nb _ routes) {
 my $config = "tmp.".$nb _ routes _ per _ interface." _ ".$nb _ next _ hops.".boot";
 open($fh, '>', $config) or die "Could not open file '$config' $!";
 print $fh "interfaces {\n";
 print $fh "\tdataplane dp0s2 {\n";
 print $fh "\t\taddress 192.168.1.96/24\n";
 print $fh "\t}\n";
 for (my $i = 0; $i < $max _ nb _ interfaces; $i++) {
 print $fh "\tdataplane dp0s".($i+3)." {\n";
 print $fh "\t\taddress ".($i+64).".0.0.240/24\n";
 print $fh "\t}\n";
 }
 print $fh "\tloopback lo\n}\n";
 print $fh "protocols {\n";
 print $fh "\tstatic {\n";

 for (my $route _ nb = 0; $route _ nb < $nb _ routes _ per _ interface; $route _
nb++) {
 for ($interface = 0; $interface < $max _ nb _ interfaces; $interface++) {
 $a1 = $interface * 8 + 1 + (($route _ nb & 1) << 2) + ($route _
nb & 2);
 $a2 = (($route _ nb & 4) << 5) + (($route _ nb & 8) << 1) +
(($route _ nb & 0x10) >> 1) + (($route _ nb & 0x20) >> 4) + (($route _ nb & 0x40) >> 6);
 $a3 = (($route _ nb & 0x80)) + (($route _ nb & 0x100) >> 2)
+ (($route _ nb & 0x200) >> 5) + (($route _ nb & 0x400) >> 7) + (($route _ nb & 0x800) >> 10) +
(($route _ nb & 0x1000) >> 12);
 $a4 = 0;
 print $fh "\t\troute $a1.$a2.$a3.$a4"."/24 {\n";
 print $fh "\t\t\tnext-hop ".($interface+64).".0.".(($route _ nb %
$nb _ next _ hops) >> 7).".".(1 + (($route _ nb % $nb _ next _ hops) & 0x7f)) ."\n";
 print $fh "\t\t}\n";
 }
 }

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 18

 print $fh "\t}\n";
 print $fh "}\n";
 close $fh;
 my $output _ file = "config.".$nb _ routes _ per _ interface." _ ".$nb _ next _
hops.".boot";
 my $cmd = "cat $config config.base > $output _ file";
 system($cmd);
 $nb _ routes _ per _ interface = $nb _ routes _ per _ interface * 2;
 }
 $nb _ next _ hops = $nb _ next _ hops * 2;
}

Create routes configuration for use case 2

my $config = "tmp.1 _ 1 _ 2.boot";
open($fh, '>', $config) or die "Could not open file '$config' $!";

print $fh "interfaces {\n";
print $fh "\tdataplane dp0s2 {\n";
print $fh "\t\taddress 192.168.1.96/24\n";
print $fh "\t}\n";
for (my $i = 0; $i < $max _ nb _ interfaces; $i++) {
 print $fh "\tdataplane dp0s".($i+3)." {\n";
 print $fh "\t\taddress ".($i*8+1).".0.0.240/5\n";
 print $fh "\t}\n";
}
print $fh "\tloopback lo\n}\n";
print $fh "protocols {\n";
print $fh "\tstatic {\n";

for (my $i = 0; $i < $max _ nb _ interfaces; $i++) {
 $a1 = $i + 64 ;
 $a2 = 0;
 $a3 = 0;
 $a4 = 0;
 print $fh "\t\troute $a1.$a2.$a3.$a4/24 {\n";
 print $fh "\t\t\tnext-hop ".($interface * 8 + 1).".0.0.1\n";
 print $fh "\t\t}\n";
}
print $fh "\t}\n";
print $fh "}\n";
close $fh;
my $output _ file = "config.1 _ 1 _ 2.boot";
my $cmd = "cat $config config.base > $output _ file";
system($cmd);

In this script, config.base is a copy of config.boot as configured earlier in this document, where the protocol and
interface fields have been deleted. IP address of management interface is hard-coded in the script (192.168.1.96 in this
case).

3.2.9.2 Two VMs – One VM per CPU Socket, Four Ports per VM
This configuration has been used in only a limited set of tests. Hence the configuration files were modified by hand in the
second VM.

•	 The management interface has been changed in the second VM.

•	 The datapath interfaces, IP addresses, and routes are changed as well, following the same logic as in the one VM 	
 	 configuration.

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 19

4 Test Generators’ Installation and
Configuration
4.1 Hardware and Software Details

4.1.1 Grub.cfg
DPDK-related CPU cores must be isolated through isolcpus
in grub.cfg, by making sure interrupts are handled by core
0.

	 linux16 /vmlinuz-3.10.0-229.11.1.el7.
x86 _ 64 root=/dev/mapper/centos-root ro
rd.lvm.lv=centos/swap vconsole.keymap=us
ipv6.disable=1 crashkernel=auto vconsole.
font=latarcyrheb-sun16 rd.lvm.lv=centos/
root selinux=0 rhgb quiet LANG=en _ US.UTF-8
intel _ iommu=on iommu=pt noirqbalance intel _
pstate=disable intel _ idle.max _ cstate=0
processor.max _ cstate=0 default _ hugepagesz=1G
hugepagesz=1G hugepages=16 transparent _
hugepage=never
isolcpus=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,
34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,
51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,
68,69,70,71

4.1.2 Scripts to Prevent interrupts on
DPDK Fast Path
Same script as in 3.1.4.1 is run to decrease interrupts.

4.2 Test Setup Details
The Brocade 5600 vRouter is characterized using test
generators, and these test generators generate IP traffic
towards four or eight 10 Gbps interfaces and measure the
traffic coming from those interfaces. These test generators
can be Ixia (or Spirent), or COTS servers running DPDK-
based traffic-generation applications (pktgen or prox).

For automation purposes, prox (https://01.org/intel-data-
plane-performance-demonstrators/prox-overview) has
been used to generate the traffic and to measure the
throughput and latency from the vRouter. Ixia equipment
has been used as well to confirm some key data results.

Prox contains configuration files to be used for four-
and eight-interface vRouters. It also contains a set of
characterization scripts.

4.3 Test Parameters
The characterization studies the influence of the following
parameters on the throughput and latency:

•	 Packet size

•	 Number of next hops

•	 Number of routes

In order to run the characterization, three “use cases” have
been defined.

4.3.1 Use Case 0
In use case 0, the test generator increases the load of the
system from 0% to 100% of the line rate on all interfaces.
Steps of 0.01% are used from 0% to 0.1%; steps of 0.1%
are used from 0.1% to 1%, and steps of 1% are used for
each additional test. Each use case 0 run produces 120
data points. The throughput and latency generated by the
SUT (vRouter) is measured. The resulting file produced
by the characterization scripts contains the incoming and
outgoing load as well as latency for those increasing loads.
This can be easily plotted to show the influence of the load
on dropped packets and on latency. Use case 0 is usually
run for multiple packet sizes and traffic profiles (see below).

4.3.2 Use Case 1
Use case 1 measures 0 or 0.01% (configurable) packet loss,
for a fixed number of routes and next hops. Each use case
1 run produces 1 data point: the maximum throughput
rate for which 0 (or 0.01%) packets are lost. This use case
is usually run for a varying number of next hops, number
of routes, packet sizes, and traffic profiles. This use case
mainly studies the influence of the number of routes and
next hops on performance.

ITEM DESCRIPTION NOTES

Platform Intel® Server Board
S2600WT Family

Form factor 2U Rack Mountable

Processor(s) 2x Intel® Xeon® CPU
E5-2699 v3

46080KB L3 Cache per
CPU, 18 cores per CPU
(36 logical cores due to
Hyper-threading).

Memory 32 GB RAM (8x 4 GB)
per socket

Quad channel 2134
DDR4

BIOS SE5C610.86B.01.01
0009.060120151350

Hyper-threading enabled
Hardware prefetching
enabled
COD disabled

ITEM DESCRIPTION NOTES

Host OS CentOS 7.1 Kernel version: 3.10.0-
229.7.2.el7.x86_64

Hugepages 8x 1 GB

PROX 0.31 http://github.com/nvf-
crucio/prox

DPDK 2.2.0

NICs 8x Intel® 82599 10
Gigabit Ethernet
Controller

https://01.org/intel-data-plane-performance-demonstrators/prox-overview
https://01.org/intel-data-plane-performance-demonstrators/prox-overview
http://github.com/nvf-crucio/prox
http://github.com/nvf-crucio/prox

4.3.3 Use Case 2
Use case 2 focuses on the influence of the number of next hops. In this use case, no (or a very small number) of routes are
used; packets are forwarded using the interface implicit route (i.e., the interface has an IP address and a prefix a.0.0.0/24,
and this interface is used to forward packets a.0.0.b). Like use case 1, use case 2 measures maximum throughput using 0 or
0.01% packet loss. It is then run multiple times using a varying number of next hops.

4.3.4 Traffic Profiles
Six different traffic profiles have been defined. Some of these profiles only make sense to use when testing the dual-socket
configuration.

For the test results presented in this document, characterization is performed using the first traffic profile (traffic profile 0, i.e.,
for each interface, the traffic is sent to a unique other interface on the same CPU socket—from 1 to 2 and 2 to 1; from 3 to 4
and 4 to 3…)

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 20

Figure 18. Network configuration

Figure 19. Network configuration

Figure 20. Traffic profiles

For each traffic profile, traffic is received on all interfaces and sent towards some interfaces following a predefined pattern.

•	 In traffic profile 0, traffic from interface 1 is sent to interface 2, and from interface 2 towards interface 1; from 		
 	 interface 3 towards 4 and from 4 towards 3.

•	 In traffic profile 1 (dual socket only), traffic is also sent towards only one outgoing interface for each incoming 	 	
 	 interface, but the outgoing interface is always on the other socket compared to the incoming interface.

•	 In traffic profile 2, each packet from an incoming interface can be forwarded to all outgoing interfaces on the same 	
 	 socket.

•	 In traffic profile 3 (dual socket only), each packet from an incoming interface can be forwarded to all outgoing 	 	
 	 interfaces on the other socket.

•	 In traffic profile 4 (dual socket only), all packets from an incoming interface are forwarded to two interfaces on socket 	
 	 0 and two interfaces on socket 1 (50% of the packets cross QPI).

•	 In traffic profile 5 (dual socket only), each packet from an incoming interface can be forwarded to any outgoing 	 	
 	 interface (general vRouter case).

A traffic profile test is obtained by properly configuring the destination IP addresses of the packets being generated. Routes
and next hop configurations are the same for all traffic profiles.

4 4 Characterization Scripts
The characterization is performed in two phases: first a configuration file listing the tests to execute is created. Then the tests
are performed based on the configuration file.

The characterization configuration file (test_description.txt) has the following format:

Use case; next _ hops; routes; pkt _ size; traffic; reload

Default characterization configurations can be built using the following command:

./characterize _ vRouter.py –c 1 –u x # where x is the use case number

In order to run the characterization, the vRouter must be configured accordingly. To accomplish this, a set of vRouter
configurations can be produced using another script: create_interfaces_and_routes.pl. This script creates four sets of files:
two sets for use case 2, and two sets for use case 0 or 1 (which use the same configurations). Each set contains:

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 21

Figure 21. Characterization overview

•	 Interface.txt: contains the IP addresses and prefixes of the DPDK interfaces.

•	 Route.x.y.txt: contains the routing table for a configuration using x routes and y next hops.

These configurations files cannot be used as such by the vRouter. They are created using a vRouter agnostic syntax. vRouter
specific configuration files must still be created using vRouter syntax. Such scripts are not provided by the characterization
tool but should be very easy to write. An example is given in section 3.2.8.1. For the Brocade 5600 vRouter, the interfaces
must be configured within the interface section of the config.boot and the routes within the protocols section.

So, the user must create /config/prox/config.x _ y.boot (use case 1, x routes, y next hops) and /config/prox/
config.1 _ 1 _ 2.boot (use case 2)

The characterization tool copies those different configurations when needed (e.g., when changing the number of next hops
between two runs) and reload the SUT. It copies the configurations from /config/prox/config.x _ y.boot to /config/
config.boot (for use case 0 and 1) and from /config/prox/config.1 _ 1 _ 2.boot to /config/config.boot. The script
supposes the vRouter to be started when l2tp related message appears in dmesg.

If the vRouter uses a different boot configuration file format, the characterization script must be adapted.

4.4.1 One VM
The prox configuration file must be adapted to the system under test. The proper destination MAC addresses must be
inserted in the generated packets. The Brocade 5600 vRouter does (at least by default) not support promiscuous mode.
Hence, packets sent with wrong MAC addresses will be silently deleted by the vRouter interfaces.

It’s expected that the first four ports on the test generators are connected to the first four ports on the SUT.

4.4.2 Two VMs
The characterization scripts have been written to support one VM. The script supports only simple characterization in
the two VM case (e.g., fixed number of routes and next hops). For instance, the characterization script is unable to reload
new configurations on two VMs. To run some additional characterizations when the system under test is using two VMs,
the vRouters must be manually configured so that they appear from the outside as one VM with eight cores. The test _
description.txt must be configured so that configuration file is not reloaded (reload=0).

1; 1; 1; 64; 0; 0
1; 1; 1; 128; 0; 0
1; 1; 1; 256; 0; 0
1; 1; 1; 512; 0; 0
1; 1; 1; 1024; 0; 0
1; 1; 1; 1280; 0; 0
1; 1; 1; 1518; 0; 0

It’s expected that the first four ports on the test generators are connected to the first four ports on the SUT. Failing to do so
will result in bad performance.

5 Running the Characterization
In prox 0.31 with DPDK 2.2.0, the characterize _ vRouter.py script has an issue related to the inclusion of ierrors in
statistics. This requires a change in the script: the line rx+= ierrors should be commented out.

When the vRouter is properly configured, its configuration files copied in /config/prox and the test _ description.txt
file created, then the characterization can start. Run

./characterize _ vRouter.py –r 1

The characterization will create up to three results-related files (not all files exist in all use cases):

•	 minimal _ results.txt contains the results, usually useful to plot use case 1 and 2

•	 detailed _ results.txt contains the results to be plotted for use case 2. For use case 0 and 1, it contains all 	 	
 	 succeeding steps used in the binary search for 0% packet loss; it is used for debugging in use cases 0 and 1

•	 all _ results.txt contains all data points for use case 0 and 1. Only useful for debugging (e.g., looking at how 		
 	 many packets were lost and why higher throughput was not obtained).

Those files contain throughput and latency results. They can be plotted using Excel.*

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 22

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 23

6 BIOS Settings
The vRouter system under test configuration requires some specific BIOS settings.

The following screens show the difference compared to default BIOS settings.

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 24

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 25

7 References
PROX https://01.org/intel-data-plane-performance-demonstrators/overview and http://github.com/nvf-crucio/prox

Brocade 5600 vRouter http://www.brocade.com/en/products-services/software-networking/network-functions-
virtualization/vrouter.html

White Paper | High Performance Packet Processing on Intel® Architecture Platforms: Brocade* 5600 vRouter				 26

	Disclaimers

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may
cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more complete information visit www.intel.com/benchmarks.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families: Go to http://www.
intel.com/products/processor_number.

	© 2017 Intel Corporation. Intel, the Intel logo, and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.	 Please Recycle	 0217/DO/PDF	 335267-001US

https://01.org/intel-data-plane-performance-demonstrators/overview
http://github.com/nvf-crucio/prox
http://www.brocade.com/en/products-services/software-networking/network-functions-virtualization/vrouter.html
http://www.brocade.com/en/products-services/software-networking/network-functions-virtualization/vrouter.html
http://www.intel.com/benchmarks
http://www.intel.com/products/processor_number
http://www.intel.com/products/processor_number

