
 1

TECHNOLOGY GUIDE
Intel Corporation

Galois Fields New Instructions - Method for Calculating
Toeplitz Hash Using GFNI

Authors
Vladimir Medvedkin

Andrey Chilikin

Konstantin Ananyev

1 Introduction
The Toeplitz hash function is used for hash calculation to distribute packets across the
queues with receive side scaling (RSS) in Ethernet devices. The Toeplitz hash function is
frequently implemented in hardware of modern network interface cards (NIC) but it can
also be used to calculate hash values in software use cases.

Software implementations of the Toeplitz hash function require a lot of CPU cycles, and
calculation time is nondeterministic, for example due to the multiple branching involved
in different implementations.

The proposed solution outlined here allows the elimination of branches and dramatically
reduces the number of CPU cycles needed to calculate the Toeplitz hash signature.

This document is part of the Network Transformation Experience Kit, which is available at
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-
kits.

https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits

Technology Guide | Method for Calculating Toeplitz Hash Using Galois Fields New Instructions

 2

Table of Contents
1 Introduction ... 1

1.1 Terminology .. 3
1.2 Reference Documentation ... 3

2 Overview ... 3
2.1 Existing Implementations and Limitations ... 3
2.2 Overview of Galois Fields New Instructions (GFNI) ... 4
2.3 GFNI-Based Toeplitz Hash Algorithm .. 4

3 Implementation ... 6
4 Performance ... 6
5 Data Plane Development Kit (DPDK) API.. 8
6 Summary ... 8

Figures
Figure 1. Toeplitz hash representation using matrix multiplication ... 5
Figure 2. GFNI matrix multiplication... 5
Figure 3. Large hash key matrix representation with 8x8 blocks .. 5
Figure 4. Example for 12-byte tuple .. 6
Figure 5. zmm registers representation .. 6

Tables
Table 1. Terminology ... 3
Table 2. Reference Documents ... 3
Table 3 Performance benchmarks for scalar and GFNI Toeplitz hash calculation for different tuple sizes ... 7
Table 4 System configuration .. 7
Table 5 Software configuration ... 8

Document Revision History

REVISION DATE DESCRIPTION

001 May 2022 Initial release.

Technology Guide | Method for Calculating Toeplitz Hash Using Galois Fields New Instructions

 3

1.1 Terminology

Table 1. Terminology

ABBREVIATION DESCRIPTION

GFNI Galois Fields New Instructions

NIC Network Interface Cards

RSS Receive Side Scaling

1.2 Reference Documentation

Table 2. Reference Documents

REFERENCE SOURCE

Intel® Intrinsics Guide https://www.intel.com/content/www/us/en/docs/intrinsics-
guide/index.html#text=vgf2p8affineqb

Data Plane Development Kit https://www.dpdk.org/

2 Overview
Modern NICs support multiple queues to provide network processing scalability for multicore CPUs. Incoming network packets can
be distributed across these queues by RSS technology with the Toeplitz algorithm as the default hashing function. It works by
parsing ingress packets and generating an n-tuple comprised of specific fields in the packet. Then NIC computes the Toeplitz hash
signature using this n-tuple and a predefined Toeplitz RSS hash key.

Pseudocode for a Toeplitz function would look like the following:

// For hash-input input[] of length N bytes (8N bits)

// and random secret key K of X bits

ComputeHash(input[], N)

Result = 0;

For each bit b in input[] {

if (b == 1) then Result ^= (left-most 32 bits of K);

shift K left 1 bit position;

}

return Result;

In a conventional Toeplitz hash implementation in software, the number of iterations depends on the input value, or to be more
precise on the number of non-zero bits in the input value. As such the number of cycles, and hence computation time, can vary
significantly depending on input.

2.1 Existing Implementations and Limitations
There are several software implementations of the Toeplitz hash function. Some of them (DPDK*/Linux*/FreeBSD*) calculate hash
by viewing input tuple bit by bit. This technique is very computationally intensive, and thus is both slow and indeterminate in terms
of the number of cycles required. Another approach uses precalculated tables for every byte in a tuple. While this technique is
faster, it is memory bound. Therefore, in real environments it can take a lot of cycles and performance may vary significantly. Some
examples of software Toeplitz function implementations are:

• FreeBSD: sys/net/toeplitz.c: toeplitz_hash()
• Linux: include/xen/interface/io/netif.h: xen_netif_toeplitz_hash
• DPDK: lib/hash/rte_thash.h:rte_softrss()

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=vgf2p8affineqb
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=vgf2p8affineqb
https://www.dpdk.org/

Technology Guide | Method for Calculating Toeplitz Hash Using Galois Fields New Instructions

 4

2.2 Overview of Galois Fields New Instructions (GFNI)
Recent Intel® CPUs, from the 3rd Generation Intel® Xeon® Scalable processors onwards, have a new instruction set called the Galois
Fields New Instructions (GFNI). One of these instructions is vgf2p8affineqb[1], which computes an affine transformation in the
Galois Field (28). For this instruction, an affine transformation is defined as “A * x + b” where “A” is an 8x8 bit matrix, and “x” and “b”
are 8-bit vectors. One SIMD (single instruction, multiple data) register (operand 1) holds “x” as either 16, 32, or 64 8-bit vectors. A
second SIMD register (operand 2) or memory operand contains 2, 4, or 8 “A” values, which are operated upon by the
correspondingly aligned 8 “x” values in the first register. The “b” vector is constant for all calculations.

In fact, this instruction is a multiplication of a matrix of size 8x8 (matrix A) and a matrix of size 8x1 (one byte – x) with elements over
the field Galois Field of order 2 (GF(2)) to obtain the resulting matrix of size 8x1.

2.3 GFNI-Based Toeplitz Hash Algorithm
Let us express the previously shown ComputeHash function as follows:

• N – size (in bits) of resulting hash value
• M – size (in bits) of input tuple value
• K – size (in bits) of Toeplitz key

Here, K must be ≥ N + M – 1

Let us use the following notation:

• hn – nth bit of hash value
• tm – mth bit of input tuple
• ki – ith bit of Toeplitz key

So, we can express the value of nth bit of result as follows:

hn = 0;

for (m = 0; m < M; m++)

 if (tm == 1)

 hn = hn ^ km + n

It can be expressed as:

hn = 0;

for (m = 0; m < M; m++)

 hn = hn ^ (tm AND km + n)

Since hn, tm and ki are bits that is {0, 1} so we can use the GF(2) arithmetic. In GF(2) “AND” is equal to multiplication and ^ is equal to
addition, so we can express the value of hn as follows:

ℎ𝑛𝑛 = �𝑡𝑡𝑚𝑚 ∗ 𝑘𝑘𝑚𝑚+𝑛𝑛
𝑚𝑚

Where m belongs to [0, M)

So, from a mathematical perspective the Toeplitz hash could be represented as a multiplication of an n x m Henkel matrix (that is,
row-reversed Toeplitz matrix), which represents the hash key and an n-bit vector, which in turn represents the input tuple.

Technology Guide | Method for Calculating Toeplitz Hash Using Galois Fields New Instructions

 5

k0 k1 km

k1

...

kn

... km km+1

...

... km+n

t0

t1

...

...

...

...

tm

h0

h1

...

hn

Figure 1. Toeplitz hash representation using matrix multiplication

The problem arises when we want to express multiplication of matrixes with sizes not equal to (8 x 8) and (8 x 1) with GFNI
instructions as shown on Figure 2. In fact, in real world, hash values are usually 32 bit values, and input tuples have different sizes
depending on their type (for example, ipv4 or ipv6 tuples have very different tuple sizes).

h0

h1

h2

h3

h4

h5

h6

h7

k0 k1 k2 k3 k4 k5 k6 k7

k1 k2 k3 k4 k5 k6 k7 k8

k2 k3 k4 k5 k6 k7 k8 k9

k3 k4 k5 k6 k7 k8 k9 k10

k4 k5 k6 k7 k8 k9 k10 k11

k5 k6 k7 k8 k9 k10 k11 k12

k6 k7 k8 k9 k10 k11 k12 k13

k7 k8 k9 k10 k11 k12 k13 k14

t0

t1

t2

t3

t4

t5

t6

t7

Figure 2. GFNI matrix multiplication

To overcome that problem we split the key matrix and the value matrix into 8 bit chunks so that it can be expressed via GFNI. In this
case the key matrix could be represented as shown in Figure 3.

K0 K1 … … … Km

K1 … … … Km Km+1

… … … … … …
Kn-1 … … … … Km+n-1

Figure 3. Large hash key matrix representation with 8x8 blocks

In addition, we can represent the hash key as a matrix with m/8 x n/8 elements, where each element itself is a 8x8 bit matrix. In the
same way the input value can be represented as a vector of m/8 elements, where each element is an 8-bit vector.

So, Hi byte could be expressed as a multiplication of corresponding row by value bytes:

 𝐻𝐻𝑖𝑖 = ∑ 𝐾𝐾𝑖𝑖+𝑗𝑗 ∗ 𝑇𝑇𝑗𝑗𝑗𝑗

Where j is in the range [0, M/8). When arithmetic is defined over GF(2), the addition operation is expressed as an XOR. Multiplication
in turn is expressed as an AND operation.

Technology Guide | Method for Calculating Toeplitz Hash Using Galois Fields New Instructions

 6

3 Implementation
To apply the GFNI technique to some real-life use case, here is an example where we can accelerate Toeplitz hash calculation for
RSS in case of the IPv4 traffic.

For example, for the most commonly used IPv4 4-tuple, which consists of {src_ip, dst_ip, src port, dst port} and is 12 bytes long, so
m is 12 (where M = 12 * 8 bit) and n will be equal to N/8, which means 32/8 (because we are expecting to have 32-bit hash value).
So, there will be 4 matrixes (8x8 bits each) in each column and 12 matrixes in a row.

At first sight we need to have 48 matrixes, but most matrixes repeat multiple times (up to n). So, in total we only need to have m+n-
1 or 15 unique matrices, which are arranged as shown in Figure 4.

h0

h1

h2

h3

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

k1 k2 k3 k4 k5

k0

k6

k5k1 k2 k3 k4

k7 k8 k9 k10

k6 k7 k8 k9

k11k12

k10k11

k2 k3 k4 k5 k6 k7 k8 k9 k10k11k12

k3 k4 k5 k6 k7 k8 k9 k10k11k12

k13

k13k14

Figure 4. Example for 12-byte tuple

These 15 matrixes can be packed into two 512-bit registers as shown in Figure 5.

k0

000t00000

k1

00t0t10000

k2

0t0t1t20000

k7

t4t5t6t70000

k8

t5t6t7t80000

k9

t6t7t8t90000

k14

t110000000

k10

t7t8t9t100000

...

...

00000000

Matrices register

data register

Matrices register

data register

Interation 1

Interation 2

Figure 5. zmm registers representation

4 Performance
To test the performance of the GFNI enhanced function, we looked at the implementation in Data Plane Development Kit (DPDK).
DPDK is a popular open source, set of libraries for high-speed packet processing in user space.

For 12-byte input tuples, which are commonly used for IPv4/TCP, the current Toeplitz hash implementation in DPDK takes ~178
cycles (varies depending on tuple content). Other tuple sizes used for benchmark are: IPv4 2-tuple (8 bytes), IPv6 2-tuple (32 bytes),
IPv6 4-tuple (36 bytes).

Technology Guide | Method for Calculating Toeplitz Hash Using Galois Fields New Instructions

 7

The prototype using proposed GFNI implementation takes ~11.8 cycles, demonstrating up to26x times performance boost on the
same platform.

Table 3 Performance benchmarks for scalar and GFNI Toeplitz hash calculation for different tuple sizes

 IPv4 2-tuple IPv4 4-tuple IPv6 2-tuple IPv6 4-tuple

Tuple size (bytes)

8

12

32

36

rte_softrss_be (cycles)
178.8

314.1

775.2

872.4

rte_thash_gfni (cycles)
11.8

11.8

19.4

19.4

Ratio (higher is better)
15.1

26.6

39.9

45.0

Table 4 System configuration

ITEM DESCRIPTION

Time Thursday Feb 17 01:01:54 PM MST 2022

Board Manufacturer Supermicro

Product Name Intel® Xeon® Platinum 8352Y CPU @ 2.20GHz

BIOS Version Supermicro 1.1

OS Ubuntu 20.04.3 LTS (Focal Fossa)

Kernel 5.4.0-67-generic

Microcode 0xd000280

CPU Model Intel® Xeon® Platinum 8352Y CPU @ 2.20GHz

Base Frequency 2.2GHz

Maximum Frequency N/A

All-core Maximum Frequency N/A

CPU(s) 32

Thread(s) per Core 2

Core(s) per Socket 32

Socket(s) 1

NUMA Node(s) 1

Prefetchers All enabled

Turbo Disabled

PPIN(s) d884619cb203e802

Power & Perf Policy Default (Balanced Performance)

TDP 205W

Frequency Driver intel_pstate

Frequency Governer Performance

Frequency (MHz) 2.1

Max C-State 6

Technology Guide | Method for Calculating Toeplitz Hash Using Galois Fields New Instructions

 8

Installed Memory 64GB (4x16GB DDR4 3200MT/s [2933MT/s])

Huge Pages Size 1GB

Transparent Huge Pages madvise

Automatic NUMA Balancing Disabled

Drive Summary SanDisk SD8SBAT2 240GB

Table 5 Software configuration

ITEM DESCRIPTION
Workload and version DPDK 21.11 thash_perf_autotest
Compiler gcc 9.3
Config force-max-simd-bitwidth=512

5 Data Plane Development Kit (DPDK) API
To prove the concept, the following DPDK APIs were used:

static inline uint32_t

rte_thash_gfni(uint64_t *m, uint8_t *tuple, int len);

void

rte_thash_complete_matrix(uint64_t *matrixes, uint8_t *rss_key, int size);

rte_thash_complete_matrix() – prepares matrices from the given RSS hash
key

rte_thash_gfni() – calculates Toeplitz hash value

6 Summary
Toeplitz hash is used in a wide area of network applications and this proposed method can improve overall performance and
execution predictability, which can be very important especially for real-time or time-critical environment.

In this guide, we demonstrated two main benefits of using Galois Fields New Instructions for Toeplitz hash implementations. The
first one is the fast computation speed with up to 40x speedup compared to existing implementations depending on the input size
and the second benefit is the predictable constant time of computation due to removing dependencies of distribution of ‘0’ and ‘1’
bits in the input tuple.

Technology Guide | Method for Calculating Toeplitz Hash Using Galois Fields New Instructions

 9

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may
be claimed as the property of others.

 0522/DN/WIPRO/PDF 723537-001US

http://www.intel.com/PerformanceIndex

	1 Introduction
	1.1 Terminology
	1.2 Reference Documentation

	2 Overview
	2.1 Existing Implementations and Limitations
	2.2 Overview of Galois Fields New Instructions (GFNI)
	2.3 GFNI-Based Toeplitz Hash Algorithm

	3 Implementation
	4 Performance
	5 Data Plane Development Kit (DPDK) API
	6 Summary

