
Network automation for communications service providers (CoSP) has evolved to
keep pace with the complexity of network designs. Many networks support service
delivery using thousands of routers, switches, customer premises equipment (CPE)
devices, network interface devices (NIDs), firewalls, and other systems. Configuring
and reconfiguring all of these devices in support of a new service, protocol change,
or other update is daunting.

Today’s network configuration automation technology counts on device models and
service models using languages such as YANG and JSON to automatically translate
the network administrator’s network design into configurations for the affected
network devices. Even with these models, there is complexity as some network
devices support only one of the proliferation of network modeling languages, and
some older products don’t support any models—relying instead on a command line
interface (CLI) for configuration.

FRINX offers its FRINX Machine, a new generation of network configuration tool
that adds an abstraction layer that allows for communications with the network
devices using any supported modeling language or CLI that is native to the network
device. FRINX Machine also supports service model development that simplifies
a new service deployment by translating these requirements into device models
based on YANG and CLI commands that are pushed to the devices.

FRINX Machine is based on open source components and consists of the following
products: UniConfig for network control, UniFlow for creating and operating
workflows, and UniResource for managing an inventory of physical and logical
assets and resources.

The performance of the solution lies with UniConfig, the network control element,
which communicates with the network devices. To demonstrate its control
performance, FRINX, an Intel® Network Builders ecosystem partner, tested its
UniConfig software in the Intel Network Builders lab using Intel® Xeon® Scalable
processors to determine how responsive is the controller.

FRINX UniConfig Network Controller
The UniConfig software consists of three layers that network managers can access
individually or via the UniConfig node manager API.

The southbound layer provides connectivity to a wide range of network devices
using NETCONF or a command line interface (CLI) via Telnet and secure shell (SSH).
This layer provides transparent access to CLI devices, and it includes an open
source device library (translation units) that maps data in OpenConfig format to
vendor-specific CLI implementations and vice versa. OpenConfig is an open source
API for network telemetry and automation.²

Table of Contents

FRINX UniConfig Network 	
Controller. . 1

UniConfig Test Setup. 2

Test Results: Application 	
Response Time. 4

	 Test Results with 20,000 CPE 	
	 Devices (A1 & A2). 5

	 Test Results with 50,000 CPE 	
	 Devices (B1 & B2). 5

	 Test Results with 2,000 Service . . 	
	 Provider Routers (C1 & C2). 5

	 Persistence and High 	
	 Availability. . 6

Conclusion. . 6

Tests using Intel® Xeon® Scalable processor-based servers show FRINX UniConfig can
scale to 50,000 CPE devices or 2,000 service provider routers with all updates to the
config data store performed in 29 msec or less in 95% of the tests¹

FRINX Tests Performance of
Model-Driven Network Automation

Communications Service Providers
Network Automation

White Paper

The unified layer combines all the devices regardless of how
they were mounted (e.g., NETCONF and CLI). These devices
are then accessible under a unified mount point to the
UniConfig layer. This provides a layer of abstraction between
the southbound protocols and the user intent (top layer)
that is to be applied to the network. The unified layer also
provides native YANG models as well as OpenConfig YANG
models to vendor-specific YANG translation capabilities.

The UniConfig layer enables reading and writing of YANG-
based configurations to and from devices. It also adds the
capability to create configuration snapshots that can be
committed and can be rolled back by the system in the event
of a failure. The UniConfig layer can compare network intent
from profiles located in the configuration data store. The
software analyzes the differences between intended state and
actual state from data located in the operational data store. It
then applies the new state to the devices connected through
lower layers via atomic operations (commit). This functionality
saves resources and enables very high transaction throughput
by sending only the changed configuration elements from the
most recent operation and not the complete configuration.

The UniConfig layer can also build snapshots of all or a subset
of devices and move them from the current configuration to
any snapshot in a single transaction. Finally, the UniConfig
layer includes the “dry-run manager” that allows testing of

NETCONF and CLI configuration changes before they are
applied to the network.

The functionality of the UniConfig layer is accessible via a
REST interface and client libraries. Those client libraries make
the UniConfig API available through popular programming
languages and allow users to build applications using the
UniConfig functionality without having to interact with the
REST API directly.

UniConfig Test Setup
To determine performance of the controller, one server
was used as the UniConfig device under test (DUT) and two
other servers were used to generate packets and provide
test analytics and reports (see Table 1 and Figure 2). Three
scenarios were tested: one with 20,000 mounted CPE devices,
one with 50,000 mounted CPE devices, and one with 2,000
complex service provider routers. The smaller CPE devices
required less configuration by the controller (about 1,000 lines
of JSON configuration) whereas the service provider routers
had much more complex configurations (about 600,000 lines
of JSON configuration).

Performance is also impacted by the number of applications
that are seeking to concurrently configure the devices on the
network. The tests were configured for both five threads and
10 threads, two levels that are common in real world networks.

White Paper | FRINX Tests Performance of Model-Driven Network Automation

Figure 1. UniConfig’s three layers

2

Southbound Layer

FRINX UniConfig Layer

UniConfig Node Manager

FRINX Unified Layer

NETCONF SSH / Telnet

NODE NAME RAM CORES CPU SOFTWARE

zs25 376 GB 80 cores Intel® Xeon® Gold 6230N CPU @ 2.30 GHz UniConfig

zs24 187 GB 72 cores Intel® Xeon® Gold 6140 CPU @ 2.30 GHz Netconf Test Tool 1 (TT1); jmeter scripts

zb19 251 GB 88 cores Intel® Xeon® CPU E5-2699 v4 @ 2.20 GHz Netconf Test Tool 2 (TT2)

Table 1. Hardware setup: DUT (Node zs25) and additional servers used to generate packets and provide test analytics and
reports

White Paper | FRINX Tests Performance of Model-Driven Network Automation

Three test cases were designed to explore the scale and
performance behavior of a single instance of the UniConfig
network controller. Key test case parameters included the
following:

•	 Number of mounted devices: 20,000 CPE connections
were emulated in two test cases; 50,000 CPE connections
were emulated in two of the test cases and 2,000 service
provider router connections were emulated in two of the
test cases.

•	 Number of JSON lines: This is an indication of the
complexity of the configuration; 1,000 configuration lines
were used in the four CPE use cases and 600,000 lines of
configuration were used in the two service provider use
cases.

•	 Concurrent application threads: These are top-down
application requests/threads to the controller and were
either 5 or 10 concurrent requests.

Table 2 summarizes the different test cases.

Test cases A1 and A2 were designed to test behavior with
20,000 devices under control with a small sized configuration
each. This was designed to test the behavior of the controller
for customer premises equipment (CPE) configurations
where typically thousands or tens of thousands of devices
with discrete configurations have to be managed and
reconfigured efficiently. Two test case variations (A1 and A2)
are differentiated by changing the number of concurrent
application threads that are requesting configuration changes
on the controller from 5 to 10.

Test cases B1 and B2 were designed to demonstrate the
impact of scaling up the number of devices under control to
50,000 devices while the number of configured devices stays
the same as the 20,000 devices configured in tests A1 and
A2. The difference is that 50,000 devices are mounted on the
controller and 20,000 of those are being configured by the test
script. The B1 and B2 test variations reflect a change in the
number of concurrent application threads that are requesting
configuration changes on the controller from 5 to 10.

3

Figure 2. Lab test topology

TEST CASE NUMBER TEST CASE PARAMETERS

Test A1 20,000 devices mounted; 20,000 devices configured with 1,000 lines of config each – 5 concurrent application
threads

Test A2 20,000 devices mounted; 20,000 devices configured with 1,000 lines of config each – 10 concurrent application
threads

Test B1 50,000 devices mounted; 20,000 devices configured with 1,000 lines of config each – 5 concurrent application
threads

Test B2 50,000 devices mounted; 20,000 devices configured with 1,000 lines of config each – 10 concurrent application threads

Test C1 2,000 devices mounted, 2,000 configured with 600,000 lines of config each – 5 concurrent application threads

Test C2 2,000 devices mounted, 2,000 configured with 600,000 lines of config each – 10 concurrent application threads

Table 2. Test case number and description

White Paper | FRINX Tests Performance of Model-Driven Network Automation

4

Test cases C1 and C2 were designed to test the controller scale and performance when connecting to 2,000 service provider
routers with very large configurations. The configurations were built based on actual routers in use in a production network.
The configuration file size was 200,000 lines of CLI commands, which is represented by 600,000 JSON-based configuration
lines in UniConfig. Similar to the previous test cases, the number of concurrent application threads that are requesting
information is either 5 or 10.

Test Results: Application Response Time
Table 3 summarizes the in-depth test results for all six test cases.

TEST CASE A1 A2 B1 B2 C1 C2

Devices mounted on
controller

20,000 20,000 50,000 50,000 2,000 2,000

Lines of JSON config per
device

1,000 1,000 1,000 1,000 600,000 600,000

Devices configured 20,000 20,000 19,995 19,990 1,995 1,990

Threads 5 10 5 10 5 10

Total requests 160,000 160,000 159,960 159,920 15,960 15,920

Duration 00:31:08 00:31:02 00:30:29 00:30:17 02:56:51 02:20:45

Errors 0 0 0 0 0 0

Requests per second 85.6 85.9 87.5 88.0 1.5 1.9

PUT if [ms]
(95th percentile/max)

19/220 19/207 19/231 20/212 22/345 23/382

PUT vrf [ms]
(95th percentile/max)

19/200 19/246 19/199 19/197 22/345 22/80

PUT bgp [ms]
(95th percentile/max)

20/200 20/268 20/198 21/198 22/440 23/402

POST: RPC calculate-diff
(PUT) [ms]
(95th percentile/max)

301/475 867/1,248 283/465 827/1,104 15,963/21,939 24,693/25,592

POST: RPC commit (PUT)
[ms]
(95th percentile/max)

217/842 509/1,000 214/453 500/789 16,276/22,703 25,153/26,102

GET if present [ms]
(95th percentile/max)

24/171 24/245 24/211 25/288 28/98 29/88

GET vrf present [ms]
(95th percentile/max)

24/161 23/268 23/195 24/293 26/1,075 27/366

GET bgp present [ms]
(95th percentile/max)

24/148 24/167 24/209 24/202 27/85 28/343

UC Max used cores
[% CPU]

1,048 878 800 800 1,654 2,226

UC used heap before
[GB]

54 54 127 127 162 162

UC used heap after
[GB]

56 56 138 138 269 269

Table 3. Test results by test case¹

Test Results with 20,000 CPE Devices (A1 & A2)
The key takeaway from the A1 test is that the 95th percentile
of all updates to the config data store (the combination of
all GET and PUT operations—see results in Table 4) are
performed in less than 24 msec, with the average being
19.33 msec and the maximum response time 220 msec. The
most critical value for UniConfig RPCs is the performance
of the commit operation (commit RPC). The 95th percentile
of all commit operations in test A1 were observed to be
finished in under 217 msec and the maximum observed
time was 842 msec (see Table 4) out of 160,000 requests.

Test A2 added five additional threads with minor changes
to the performance (see Table 4). The 95th percentile of all
updates to the config data store (all GET and PUT operations)
are performed in less than 24 msec with an average of 19.33
msec and the maximum response time being 268 msec. The
most critical value for UniConfig RPCs is the performance
of the commit operation. The 95th percentile of all commit
operations in test A2 were observed to be finished in under
509 msec and the maximum observed time was 1,000 msec
out of 160,000 requests.

Test Results with 50,000 CPE Devices (B1 & B2)
The key takeaway from the test B1 (see Table 5) is that the
95th percentile of all updates to the config data store (all GET
and PUT operations) are performed in less than 24 msec with
an average of 19.33 msec and a maximum response time of
231 msec. The most critical value for UniConfig RPCs is the
performance of the commit operation. The 95th percentile of
all commit operations in test B1 were observed to be finished
in under 214 msec and the maximum observed time was 453
msec out of 160,000 requests.

The key takeaway from the test B2 (see Table 5) is that the
95th percentile of all updates to the config data store (all
GET and PUT operations) are performed in less than 25
msec with an average performance of 24.33 msec and the
maximum response time being 293 msec. The most critical
value for UniConfig RPCs is the performance of the commit
RPC operation. The 95th percentile of all commit operations
in test B2 were observed to be finished in under 500 msec
and the maximum observed time was 789 msec out of
160,000 requests.

Test Results with 2,000 Service Provider Routers 	
(C1 & C2)
The key takeaway from the test C1 (see Table 6) is that the
95th percentile of all updates to the config data store (all
GET and PUT operations) are performed in less than 28
msec with an average performance of less than 23 msec
and the maximum response time being 1,075 msec. The
most critical value for UniConfig RPCs is the performance
of the commit operation. The 95th percentile of all commit
operations in test C1 were observed to be finished in under
16,276 msec and the maximum observed time was 22,703
msec (see Table 6) out of 16,000 requests.

The key takeaway from the test C2 is that the 95th percentile
of all updates to the config data store (all GET and PUT
operations) are performed in less than 29 msec with the
maximum response time being 402 msec. The most critical
value for UniConfig RPCs is the performance of the commit
operation. The 95th percentile of all commit operations in
test C1 were observed to be finished in under 25,153 msec
and the maximum observed time was 26,102 msec out of
16,000 requests.

White Paper | FRINX Tests Performance of Model-Driven Network Automation

5

TEST CASE A1 A2

Devices mounted on
controller

20,000 20,000

Lines of JSON config per
device

1,000 1,000

Devices configured 20,000 20,000

Threads 5 10

Average PUT operations 95th
percentile (msec)

19.33 19.33

Average GET operations 95th
percentile (msec)

24 23.67

Average Commit RPC 95th
percentile (msec)

217 509

Table 4. Test results for 20,000-device configurations
(tests A1 & A2)¹

TEST CASE B1 B2

Devices mounted on
controller

50,000 50,000

Lines of JSON config per
device

1,000 1,000

Devices configured 20,000 20,000

Threads 5 10

Average PUT operations 95th
percentile (msec)

19.33 20

Average GET operations 95th
percentile (msec)

23.67 24.33

Average Commit RPC 95th
percentile (msec)

217 500

Table 5. Test results for 50,000-device configurations
(tests B1 & B2)¹

TEST CASE C1 C2

Devices mounted on
controller

2,000 2,000

Lines of JSON config per
device

600,000 600,000

Devices configured 2,000 2,000

Threads 5 10

Average PUT operations 95th
percentile (msec)

22.00 22.67

Average GET operations 95th
percentile (msec)

27.00 28.00

Average Commit RPC 95th
percentile (msec)

16,276 25,153

Table 6. Test results for 2,000-device configurations (tests
C1& C2)¹

White Paper | FRINX Tests Performance of Model-Driven Network Automation

6

Persistence and High Availability
All tests were performed with the UniConfig in-memory data
store. UniConfig also provides an option to store device and
configuration data in an external database (PostgreSQL). The
stored data is used to provide high availability in cases where
an instance of the controller goes down and another instance
takes over without the need to perform a full reconciliation
from the network.

The tests showed an impact of external persistence from
the PostgreSQL. This impact was less than 5 percent of
additional median response time for small configurations
(tests A and B) and less than 40 percent of additional median
response time for large configurations (tests C) with up to 50
concurrent threads.

Conclusion
Remote and edge networks are a big part of the future of
CoSP service delivery plans, which makes automating the
updating of network configurations an essential tool for
cost-effective server operation. The time and complexity of
maintaining and updating these networks is growing as more
uCPEs are deployed and more backbone routers are needed
to aggregate that traffic.

As shown in these test results, FRINX UniConfig is fast at
upgrading tens of thousands of low-complexity devices and
thousands of highly complex systems. CPE systems take only
milliseconds to update and a whole network of 20,000 devices
can be updated in just over a half hour. For routers with 600
times the code complexity, updating a complex service on a
router takes place in about 4.2 seconds or less. Whether its
CPE or backbone routers or any other network equipment,
UniConfig, running on Intel Xeon Scalable processor-based
servers, can provide CoSPs with a significant speed advantage
in updating and maintaining their networks.¹

Learn More
FRINX

Intel® Xeon® Scalable processors

Intel® Network Builders

		 Notices & Disclaimers

	¹	Testing done by FRINX between November 2020 and February 2021. The zs25 server used four Intel® Xeon® Gold 6230N processors (microcode: 0x5002f01) with 20 cores each,
operating at 2.3 GHz. The server featured 376 GB of RAM. Intel® Hyper-Threading Technology was enabled, as was Intel® Turbo Boost Technology 2.0. BIOS version was SE5C620.8
6B.02.01.0012.070720200218. Intel® Ethernet Network Adapter X722 (10GBASE-T) provided network access. The operating system was Ubuntu Linux release 20.04.1 LTS with kernel
5.4.0-42-generic. Postgre SQL database v12.5 was used. Compiler GCC was version 9.3.0. The workload was UniConfig v.4.2.5

	²	https://www.openconfig.net

		 The zs24 server utilized four Intel Xeon Gold 6140 processors (microcode: 0x2006906) each with 18 cores operating at 2.3 GHz. The server featured 187 GB of RAM. Intel Hyper-Threading
Technology was enabled, as was Intel Turbo Boost Technology 2.0. BIOS version was SE5C620.86B.02.01.0012.070720200218. Intel Ethernet Network Adapter X722 (10GBASE-T) provided
network access. The operating system was Ubuntu Linux version 20.04.1 LTS with kernel 5.4.0-42-generic. Compiler GCC was version 9.3.0. Apache jMeter 5.3 was used for load testing. The
workload was Netconf-testtool v.1.4.2.

		 The zb19 server utilized four Intel Xeon processor E-5-2699 v4 (microcode: 0xb000038) each with 22 cores operating at 2.2 GHz. The server featured 251 GB of RAM. Intel Hyper-Threading
Technology was enabled, as was Intel Turbo Boost Technology 2.0. BIOS version was SE5C610.86B.01.01.0029.052820200607. Intel Ethernet Network Adapter X722 (10GBASE-T) provided
network access. The operating system was Ubuntu Linux release 20.04.1 LTS with kernel 5.4.0-42-generic. Compiler GCC was version 9.3.0. The workload was Netconf-testtool v.1.4.2.

		 Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.
		 Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component

can be absolutely secure.
		 Your costs and results may vary.
		 Intel technologies may require enabled hardware, software or service activation.
		 Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

		© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
		 0521/DO/H09/PDF	  Please Recycle	 347007-001US

https://frinx.io
https://www.intel.com/content/www/us/en/products/details/processors/xeon/scalable.html
https://networkbuilders.intel.com
https://www.openconfig.net
http://www.Intel.com/PerformanceIndex

