
Executive Summary
In the fast-evolving landscape of telecommunications, automation of networks and
services is paramount as telecom operators seek to streamline operations and build
agile service platforms. This whitepaper delves into how communications services
providers (CoSPs) can use artificial intelligence (AI) to revolutionize the analysis of
network performance and health, eliminating static rules and thresholds significantly
improving root cause analysis, and paving the way toward autonomous networks.

Testing done for this paper optimized the entire AI pipeline (see Figure 1), from data
ingestion and preparation to training and inference. These tests reminded us that
the often-overlooked data pre-processing stage consumes considerable compute
resources of an overall AI workload.

Through concrete examples and measurements, this paper illuminates how each
stage of the pipeline can be fine-tuned to achieve maximum cost-efficiency. With
a specific focus on telecom network AI workloads, that are dominated by large
amounts of time-series data, the research underscores the critical role of ETL in a
machine learning (ML) pipeline and how to leverage Intel® oneAPI Runtime Libraries
to achieve nearly linear scaling.

The result of the fine-tuning described is an impressive 57% reduction in total runtime
and a 17% reduction in data size. Together these translate into reduced power
consumption for an on premises deployment or substantial cost savings, when
deployed on cloud infrastructure. Remarkably, these outcomes were achieved with
just a few simple code changes, showcasing the immense potential for enhancing
both software and hardware aspects of AI pipelines on Intel® architecture servers.

The optimizations described in this paper:

•	 Investigate hotspots across the entire pipeline, including data ingestion, pre-
processing, training and inference.

•	 Consider data formats and compression schemes for optimal storage size vs.
compute time.

•	 Leverage Intel oneAPI Runtime Libraries for optimal performance.

•	 For improved total cost of operation (TCO) identify optimal hardware profile
or cloud instance types and size for deployment:

	- Memory vs. compute bound, number of cores.

	- Scaling the application with larger datasets.

	- Evaluating the need for accelerators.

Companies work together to fine-tune each stage of a telecom network AI pipeline
for maximum cost-efficiency and reduced power consumption. The results include a
57% reduction in total runtime and a 17% reduction in data size.

Authors
Sylvain Nadeau

Director – Strategic Innovation, EXFO

Ludovik Mondou
Applied ML Engineer, EXFO

Michael Burkardsmaier
Solution Architect, Intel

Herve Mer
Segment lead OSS/BSS, Intel

Anas Ahouzi
AI/ML Engineer, Intel

Contributors
Jerome Thiery

Software Specialist, EXFO

Loic Le Gal
Software Specialist, EXFO

Dmitry Chigarev
AI Frameworks Engineer, Intel

Iaroslav Igoshev
AI Frameworks Engineer, Intel

Andreas Huber
AI Frameworks Engineer, Intel

Dmitry Razdoburdin Ph.D
AI Frameworks Engineer, Intel

EXFO Accelerates AI Pipelines with
Intel® Xeon® Scalable Processors and
Optimized Software Framework

CoSP, TEMs, ISVs, SIs
Telecommunication

White Paper

1

EXFO is an Intel® Network Builders ecosystem partner and
develops smarter test, monitoring and analytics solutions for
the global communications industry. The company is a trusted
adviser to fixed and mobile network operators, hyperscalers,
and leaders in the manufacturing, development and research
sector. EXFO customers count on the company to deliver
superior visibility and insights into network performance,
service reliability and user experience.

This paper details the company’s work with Intel to further
enhance EXFO’s Adaptive Service Assurance (ASA) platform
by optimizing the AI/ML workloads across the data analytics
pipeline.

Problem Statement
The advent of 5G is accelerating the replacement of purpose-
built network equipment with the vir tualization and
cloudification of network functions. The value of cloud-native
networks lies in decoupling network and service topologies
from the underpinning hardware infrastructure. While bringing
immense new flexibility to telecom network design, there is a
corresponding loss of visibility due to hardware abstraction,
making it more difficult to troubleshoot network performance
issues. Performance of the cloud is added to network coverage
and performance as key determinants of end-user experience.

Cloud infrastructure abstraction
Cloud infrastructure abstraction decouples the capability of
associating elements of the network and service topologies
to specific hardware. While cloud-native principles simplify
deployment, provisioning and maintenance, the resulting
visibility constraints make it difficult to correlate customer
quality-of-experience (QoE) issues with cloud infrastructure
issues.

Operations silos
Network and service operations teams manage quality of
service (QoS) and QoE issues in the virtualized cloud-native
network. IT and cloud operations teams manage the cloud
infrastructure. They traditionally use different tools and
measure different metrics, making it challenging to address
cross-domain issues.

Data tsunami
5G cloud-native networks generate a lot of performance
data—more than 40 petabytes per hour. Combine this with
infrastructure observability data and the result is a data
tsunami. Moving, storing, processing, and extracting
actionable insight from this data will be cost prohibitive without
a significant rethink of assurance in cloud networks.

Cross-domain analysis
In collaboration with Intel, EXFO has developed a full-stack
service assurance solution that combines infrastructure
observability with telecom-specific key performance
indic ator s for AI - enabled analy tics . Thanks to this
collaboration, EXFO’s ASA platform is now closing the
visibility gap in cloud-native networks, delivering true bare-
metal-to-customer-experience visibility (see Figure 2).

EXFO leverages Intel® Platform Telemetry Insights to achieve
service-to-infrastructure cross-domain analysis, giving
operators an integrated view of services and underlying
infrastructure performance. Using correlated visibility across
network, service and cloud infrastructure layers, combined
with automated diagnostic tests, we were able to pinpoint the
origin of degradations.

White Paper | EXFO Accelerates AI Pipelines with Intel® Xeon® Scalable Processors and Optimized Software Framework

Figure 1. Overview of how AI process fine tuning was conducted.

IInndduussttrryy
Telecommunications

UUssee ccaassee
Assurance

LLeeaarrnn mmoorree
EXFO

Key Features

Telecom Network
AI Analytics

Accelerate ETL
and Training

Intel® Xeon®
Performance Gains

2

Using the capabilities of EXFO’s ASA platform, it is possible
to locate performance issues across domain layers and
accelerate troubleshooting by focusing on customer-
impacting network degradations.

The cross-domain analysis module can detect typical
degradation use cases related to:

•	 Performance monitoring: resource utilization and
exhaustion

•	 Fault monitoring: networking congestion, unstable
software components

•	 Power monitoring: impact of power management

Additionally, EXFO and Intel jointly collaborated to optimize
the entire AI/ML pipeline of the ASA platform cross-domain
analysis module.

Pipeline Testing Methodology
Every stage of the pipeline was thoroughly examined (see
Figure 3), starting with data ingestion and conversion (from
JSON to Parquet), followed by the discovery of features and
dimensions, and ultimately encompassing training and model
interpretation. During this analysis, it became obvious there
was potential for improvements in all three pipeline stages.

It's crucial to emphasize that all the data utilized in this analysis
originates from real, live data sources and is not synthetic
data.

White Paper | EXFO Accelerates AI Pipelines with Intel® Xeon® Scalable Processors and Optimized Software Framework

Figure 2. EXFO and Intel have developed Full Stack Assurance that provides visibility into cloud-native networks resulting
in the ability to see network issues from the bare metal server all the way to the customer’s services.

© 2023 EXFO Inc.

Bare Metal

Containers

Cloud-Native 5G

5G Services

Cross-Domain
Analysis

Telecom
KPI(s)

Detect
Anomaly

Full Stack Assurance

Diagnosis:

CPU Power Limitations on Host X

Platform Telemetry
Insights

Figure 3. Diagram of AI pipeline stages and their relative time to execute.

White Paper | EXFO Accelerates AI Pipelines with Intel® Xeon® Scalable Processors and Optimized Software Framework

Data ingestion
(json payload)

Parquet storage

Parquet loading

Feature and
Dimensionality discovery

Data pre-processing

Train model

Model interpretation

Ingestion pipeline

Processing pipeline

Training pipeline

Execution time

10%

60%

30%

© 2023 EXFO Inc.

Figure 3 shows the steps invoked in the pipeline and their
associated percentage of execution time.

Even though this analysis shows that the highest potential
performance gains reside in the pre-processing pipeline, the goal
was to accelerate the entire AI pipeline. Note that the ingestion
and processing pipeline is constantly injected with new data
while the training is only triggered a dozen times per day.

Pipeline Optimizations and Benchmarks

Data conversion and compression
In historical performance management contexts, SNMP, XML,
and CSV data have been collected at time intervals from
appliances and/or EMS systems. The collected data was then
typically analyzed through fixed statistical functions. This
process aimed to yield key performance indicators (KPIs),
typically necessitating a batch processing architecture to
collect and process data.

While these traditional data sources continue to be valuable,
the integration of various other data sources from decomposed
network functions on highly virtualized infrastructure
enhances its utility providing new problem diagnosis
possibilities for telecom networks. The multiplication of data
sources converging in near-real time prompts a shift in
architectural requirements toward streaming data processing.

The convergence of multiple data sources not only facilitates
more robust analysis but also opens avenues for employing
advanced techniques such as machine learning. While data
can be continuously ingested and processed in order to
continuously train machine learning models, this makes
implementation more difficult, costly and harder to scale. Thus,
adopting a periodic (or on-demand) training approach makes
the implementation more effective.

In the AI pipeline described in this paper, the data is ingested
from Kafka as a stream of JSON payloads and then converted
and stored periodically as files to disk. Apache Parquet was
selected as the storage format due to its ability to load
individual columns and its advantages in terms of size, speed,
and schema enforcement, making it better suited for high-
performance live feed applications.

For the data conversion and storage, the impact of different
compression algorithm standards was considered in terms of
compression ratio and the time to compress and write back
to disk.

The pyarrow.parquet function pq.write _ table()
allows the selection of various compression algorithms, i.e.
none, Snappy, GZIP, Brotli, LZ4 and ZSTD:

4

Figure 4. Tests of various compression standards comparing compression ratio and time to compress and write ratio
(lower is better).

White Paper | EXFO Accelerates AI Pipelines with Intel® Xeon® Scalable Processors and Optimized Software Framework

0.00

0.50

1.00

1.50

2.00

2.50

no compression Snappy GZIP Brotli LZ4 ZSTD

S
iz

e/
D

ur
at

io
n

(r
at

io
)

(lo
w

er
 is

 b
et

te
r)

Compare compressions (baseline = none = 1.0)

Compression ratio (file) Time to compress & write ratio

Compression standard results
For our dataset (mostly double float format), ZSTD is the best
fit of compression ratio vs. time to compress and write (see
Figure 4). With that, the Parquet file was reduced in size by
17% (vs. Snappy default) with only minimal increase in time to
compress (+ 3%).

Overall, this conversion reduces the ingested JSON payload
size to Parquet file size from 950 MB to 30 MB (using ZSTD).

Since the time to write varies significantly, another goal of the
testing was to understand the impact of a par ticular
compression for loading the compressed file again at the
subsequent pre-processing stage. For that the source data
files were read and written back using different codecs. After
this, the time to load the files was measured.

As opposed to writing, the impact for file loading is negligible.
Snappy and ZSTD formatted files took minimal more time as
without any compression. GZIP (which was the hardest for
writing) only took approximately 10% more time (None 19.6s,
Snappy 19.9s, ZSTD 20s, GZIP 22s).

The test conclusion is that the compression codec used
primarily impacts the conversion stage but does not
significantly affect subsequent data frame loading during
pre-processing.

Finally, the workload was run on three AWS EC2 memory
optimized instances based on three generations of Intel Xeon
Scalable processors. These tests measured the runtime
performance against these generations:

1.00

1.53

1.90

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

m5 m6i m7i

R
el

at
iv

e
pe

rf
or

m
an

ce
(h

ig
he

r i
s

be
tte

r)

Intel® Xeon® Scalable processor gen-over-gen performance

JSON to Parquet conversion and compression

Figure 5. Gen-on-gen comparison: parsing + compressing (ZSTD) and writing on the 2nd Gen Intel® Xeon® Scalable processor,
the 3rd Gen Intel® Xeon® Scalable processor and the 4th Gen Intel® Xeon® Scalable processor using ZSTD compression.

5

White Paper | EXFO Accelerates AI Pipelines with Intel® Xeon® Scalable Processors and Optimized Software Framework

The use of the m6i.16xlarge instance² is 53% faster than the
m5.16xlarge instance¹ to complete JSON/Parquet data
conversion and ZSTD compression.

The m7i.16xlarge instance³ is 90% faster than m5.16xlarge in
the time it takes to complete the JSON/Parquet data
conversion and ZSTD compression.

Note that in this example, datasets arrive periodically from
subsystems and are being converted on-the-fly as they arrive.
Hence, there is no need for massive parallel processing
services that are supported by these instance types. However,
this can certainly be a requirement in other scenarios, where
you may want to batch process a large set of historical data.
In this case, you’ll need to consider multiprocessing options
such as pool.map() and also provision for high IOPS disks to
make optimal use of the compute resources available.

Important considerations:

•	 Data source formats vs. ideal file/storage formats (here
JSON -> Parquet).

•	 Best fit compression algorithm (depends on your datatype
and formats).

•	 Minimum / optimal compute resources (# of cores,
memory, disk IOPS) depending on amount of data.

	- Note that high IOPS disks have a considerable charge
on cloud, e.g. AWS EC2-other.

Pre-processing stage
Now that the ingested raw data has been successfully
converted, the Parquet-formatted data files are ready for pre-
processing. For this test scenario, real world datasets were used
consisting of 7, 14, 28, and 56 days of data. For the largest
dataset, this accounts for 24,000 Parquet files with a total file
size of 3.78 GB.

Timestamps
server pod process cpu core

nb

dimensions features

cpu idle cpu freq container
cpu

process
load

server A 43 10 2500

server A 254644 2

Timestamps
kpi type

dimensions features

kpi1

kpi2

File example for telemetry
data source

2023-01-22
00:00

2023-01-22
00:00

2023-01-22
00:00

2023-01-22
00:00

server A

value

12

2

Timestamps
ping host

dimensions features

12.234.0.14

delay

51

64

2023-01-22
00:00

2023-01-22
00:00

2023-01-22
00:00

2023-01-22
00:00

12.234.0.15

12.234.0.14 47

68

2023-01-22
00:01

2023-01-22
00:01

12.234.0.15

2023-01-22
00:01

2023-01-22
00:01

kpi1

kpi2

11

7

46mariadb

server A anti-virus 25

server B 43 10 2512

server B 250744 2

server B 455G Func1

2023-01-22
00:00

2023-01-22
00:00

2023-01-22
00:00

server A 43 10

server A 44 2

2023-01-22
00:01

2023-01-22
00:01

2023-01-22
00:01

server A 44mariadb

server B 43 10

server B 44 2

server B 43

2023-01-22
00:01

2023-01-22
00:01

2023-01-22
00:01

2500

2546

2513

2508

5G Func1

File example for telecom tests
data source

File example for network delay tests
data source

2023-01-22
00:01

2023-01-22
00:01

kpi1

kpi2

10

12

© 2023 EXFO Inc.

Figure 6. File inputs used in the pre-processing pipeline.

6

White Paper | EXFO Accelerates AI Pipelines with Intel® Xeon® Scalable Processors and Optimized Software Framework

Challenges
The pre-processing pipeline takes multiple files of data (from
different sources) and converts them into a timeseries format
before training the model. Because of the changing nature of
the data sources, the features and dimensionality aren’t
constant, thus requiring special care and maintenance.

The goals of the pre-processing pipeline are:

•	 Merge multiple sources of data.

•	 Convert the format of data to make it trainable.

•	 Clean data sources that don’t contain enough information
to be valuable for the model.

•	 Limit cardinality of certain fields.

•	 Reduce the overall dataset (in our example by ~10x).

Figure 6 shows a sample of file inputs used in the pre-
processing pipeline.

In this pre-processing step, code optimizations were used to
reduce the quite significant time for dataset loading, dimension
calculation, flattening and saving.

These functions are all part of the pandas library, such as
pandas.groupby, pandas.concat, etc. [https://pandas.
pydata.org/docs/reference/index.html]

However, most pandas functions are single threaded, so they
only execute on a single core. Intel has developed and open-
sourced Modin*, which substitutes many pandas functions
into multi-threaded workers, allowing them to scale out as
dataframes grow in size. The following bullet points show
details of optimizations:

•	 Modifying the Python code can be as simple as importing
the Modin library and replacing select function calls with
their Modin equivalents.

•	 It is essential to always install the most recent versions.
During our testing, the environment settings were using
an outdated version (0.17.0) which, when upgraded to
Modin 0.20.1 showed a 10% improvement.

The results came in less than the expected: between two and
10 times, which inspired further analysis of the code structure.
When profiling the code using Intel® Granulate™ gProfiler and
comparing pandas vs. Modin, it was clear that most functions
still defaulted back to pandas.

Solution / Optimizations
Researchers at EXFO and Intel jointly worked to analyze and
refactor the original code, while in parallel also improved
some Modin functions (now available in Modin from versions
0.24.1 on):

•	 Load dataframes directly in Modin all at once
Instead of reading Parquet files one by one at the loading
stage, it now passes the directory with the required files
directly to 'pd.read _ parquet(dir _ with _ files)'. This
allows efficient reading of all files in one go for parallel
processing.

•	 Avoid heavy Modin function calls in loops
Remove as many for-loops as possible. Loops are processed
sequentially and thus cannot be parallelized by Modin. It's
better to make one big function call instead of multiple
smaller ones. Example:

Similarly, a sequential groupby aggregation was
transformed into a native 'groupby.apply()' call inside
of ‘flattenToColumnsNames’ function

•	 Provision sufficient memory and disk space
For the smallest dataset (7 days) a minimum of 64 GB
memory was needed to allow ~32 GB for Ray /dev/shm 	
tmpfs	 31G	 0	 31G	 0%	 /dev/shm

•	 Optimize use of multithreading
To configure the software to use as many threads as there
are datafiles to be loaded.

Changes made in Modin to make all this work can be seen in
Appendix A.

Results
By substituting pandas with Modin libraries (including some
fixes) up to 4.10 times total performance gain was achieved
over the original pandas code (see Figure 7).

7

https://pandas.pydata.org/docs/reference/index.html
https://pandas.pydata.org/docs/reference/index.html

White Paper | EXFO Accelerates AI Pipelines with Intel® Xeon® Scalable Processors and Optimized Software Framework

Figure 7. Relative performance to execute pre-processing stage for largest dataset (higher is better).

1.00

4.10

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Pandas Modin

R
el

at
iv

e
pe

rf
or

m
an

ce
(h

ig
he

r i
s

be
tte

r)

Total Modin vs. Pandas

1.00 1.00 1.00 1.00

3.20

5.00

5.95

0.20

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

loading dimensions flattening saving
R

el
at

iv
e

pe
rf

or
m

an
ce

(h
ig

he
r i

s
be

tte
r)

Breakdown Modin vs. Pandas

Pandas Modin

It is important to understand, that the benefits of Modin’s multiprocessing will increase with the number and size of datasets
to process. Figure 8 shows how Modin outperforms pandas with larger datasets:

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

7 days 14 days 28 days 56 days

R
el

at
iv

e
pe

rf
or

m
an

ce
(h

ig
he

r i
s

be
tte

r)

Modin vs. Pandas for increasing datasets

Pandas Modin

Figure 8. Relative performance to execute pre-processing stage for increasing datasets (higher is better).

Lastly, this workload was run again on three different memory-optimized AWS EC2 instances using the three most recent
Intel Xeon Scalable processor generations (see Figure 9). These tests measured the gen-over-gen runtime performance:

8

White Paper | EXFO Accelerates AI Pipelines with Intel® Xeon® Scalable Processors and Optimized Software Framework

Figure 9. Shows pre-processing stage performance using Modin (higher is better) across cloud instances powered by
2nd Gen Intel® Xeon® Scalable processors, 3rd Gen Intel® Xeon® Scalable processors, 4th Gen Intel® Xeon® Scalable
processors (from left to right).

1.00

1.28

1.58

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

m5 m6i m7i

R
el

at
iv

e
pe

rf
or

m
an

ce
(h

ig
he

r i
s

be
tte

r)

Intel® Xeon® Scalable processor gen-over-gen performance

Pre-processing using Modin

The m6i.16xlarge instance² is 28% faster than m5.16xlarge¹
and m7i.16xlarge instance³ is 58% faster than m5.16xlarge¹ to
complete.

The test results show substantial performance improvements
on the various generations of Intel Xeon Scalable processors.
Considering equal EC2 rates for m5 and m6i and only marginal
(5%) increased cost for m7i, the resulting TCO benefit is
significant.

Model training and interpretation
The use of machine learning models makes it possible to
discover patterns inside multiple sources of data and possibly
learn about relationships between them. Because live telecom
network systems are very dynamic and always changing,
models need to be updated frequently. The process of
retraining machine learning models is time consuming and
requires thorough validation.

This is why the training and validation process has been
automated in a pipeline, which is triggered each time a model
needs to be created or updated. As a part of validating these
models, SHapley Additive exPlanations (SHAP)⁴ was used to
interpret the models. The use of SHAP values provides a
standardized and consistent method for understanding and
comparing model behaviors, thus identifying if the models
perform as expected.

Gradient boosting on decision trees is one of the most accurate
and efficient machine learning algorithms for classification
and regression. There are many implementations of gradient
boosting, but the most popular are the Intel® Optimization for
XGBoost* and LightGBM frameworks. Although these
frameworks provide good performance out of the box, their
runtime can still be improved.

Solution / Optimizations
This section describes how we improved EXFO’s LightGBM
model runtimes up to 26% with the Intel® oneAPI Data
Analytics Library (oneDAL).

We can use Model Builders to convert a LightGBM model to
oneDAL for faster predictions. Only minimal code changes
are required:

import daal4py

d4p _ model = daal4py.mb.convert _ model(model)

 shapA = d4p _ model.predict(df, pred _
contribs=True)[:,:-1]

 dfShap = pandas.DataFrame(shapA,
columns=featureList)

Other important considerations:

•	 Setting number of cores/threads to max available (e.g. 16)

•	 LGBM parameters (or XGBoost equivalents):

	- ‘num_leaves’: 100

	- 'max_depth': 10
The max_depth parameter controls the maximum depth
of the trees. That is, the maximum number of consecutive
splits. Deeper trees can capture more complex patterns
in the training data but are also prone to overfitting.
Moreover, the oneDAL model performs most efficiently
when the maximum depth "max_depth " and number of
leaves "max_leaves" are related as 2max_depth 𐅽 max_
leaves.

-

9

https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
https://github.com/microsoft/LightGBM
https://github.com/oneapi-src/oneDAL
https://github.com/oneapi-src/oneDAL

White Paper | EXFO Accelerates AI Pipelines with Intel® Xeon® Scalable Processors and Optimized Software Framework

Figure 10. Training and SHAP computation with and without oneDAL optimization using different datasets.

Results
The training is used to discover pattern and relationship
between metrics. As part of the training the application is
calculating SHAP values to interpret the model outcomes.

For benchmarking, the datasets generated in the previous
pre-processing steps were used, i.e. the same 7/14/28 and 56
days of data.

In running the original setup, the SHAP calculation time (see
Figure 10) significantly contributes to the overall runtime and
grows over-proportionally with larger data.

It was therefore beneficial to optimize the SHAP calculations,
which are supported through the oneDAL libraries as part of
[scikit-learn-intelex]

1.00

1.26

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

LightGBM stock LightGBM w/ oneDAL

R
el

at
iv

e
pe

rf
or

m
an

ce
(h

ig
he

r i
s

be
tte

r)

Total Training & Interpretation (56 days)

Figure 11. Relative performance gain for 56 days of data on m7i.16xlarge.

Using oneDAL optimized libraries, it is possible to significantly
reduce the SHAP portion, leading to a total improvement of
26%.

For even larger datasets or to further reduce run time, the
SHAP calculation also nicely scales with the number of threads
assigned to the application:

10

0

5

10

15

20

25

30

35

40

45

50

LightGBM oneDAL LightGBM oneDAL LightGBM oneDAL LightGBM oneDAL

7 days 14 days 28 days 56 days

D
ur

at
io

n
(s

)
(lo

w
er

 is
 b

et
te

r)

SHAP contribution

training shapSHAP

White Paper | EXFO Accelerates AI Pipelines with Intel® Xeon® Scalable Processors and Optimized Software Framework

Figure 12. Relative performance for 56 days of data for different instance sizes (number of threads).

1.00

1.52

2.021.00

1.89

3.60

0.00

1.00

2.00

3.00

4.00

5.00

6.00

m7i.4x (16) m7i.8x (32) m7i.16x (64)

R
el

at
iv

e
pe

rf
or

m
an

ce
(h

ig
he

r i
s

be
tte

r)

Scaling with number of threads

oneDAL training oneDAL shapSHAP

The results show how training and the SHAP interpretation
task in particular scales with the number of threads using
different instance sizes. So, it is possible to easily scale up for
faster results or to train on larger datasets.

Make sure you configure your environment accordingly, i.e.:

set NB _ CPU _ CORES = int(os.getenv("NB _ CPU _
CORES", 64))

1.00

1.44

1.99

0.00

0.50

1.00

1.50

2.00

2.50

m5 m6i m7i

R
el

at
iv

e
pe

rf
or

m
an

ce
(h

ig
he

r i
s

be
tte

r)

Intel® Xeon® Scalable processor gen-over-gen performance

Training & Interpretation

Figure 13. For the largest dataset (56 days) the tests show a gain of 44% and 99% respectively using cloud services based
on newer Intel® Xeon® Scalable CPU generations.

And finally, it is again imperative to use latest generation
Intel Xeon Scalable Processor family providing the best
performance / TCO (see Figure 13).

Conclusion
With this paper we described important considerations for
building telco AI analytics applications. This representative
implementation of a data pipeline to ingest, convert, pre-

process, train and interpret time series data streams can serve
as a blueprint for many network analytics use cases.

While data sources and the desired analysis results may vary,
the principles remain very similar and require some thorough
understanding of the implications of choosing appropriate AI/
ML software frameworks and libraries.

Sample diagram:

11

White Paper | EXFO Accelerates AI Pipelines with Intel® Xeon® Scalable Processors and Optimized Software Framework

Figure 14. Typical Telco AI/ML pipeline.

Data Sources Machine Learning Model Model Outputs

NNeettwwoorrkk KKPPIIss

§ Tput, Latency, Jitter

§ Call / session drops

§ UE sessions

§ ...

IInntteell®® PPllaattffoorrmm TTeelleemmeettrryy IInnssiigghhttss

§ CPU, Memory, Disk, NIC

§ Cache

§ Power mgmt.

§ …

Anomalies

Correlation

Optimized by Intel® oneAPI toolkit

For data ingestion and conversion, it is important to evaluate
optimal data structures, including compression schemes and
storage formats. In our example, we sourced data of
approximately 1 TByte to ultimately create compact training
data of a few hundreds of MBytes.

The obligatory and, often most compute-intensive, pre-
processing stage will likely require multiprocessing capabilities
to scale with increasing data volumes to create suitable
datasets for training and inference.

Finally, even model training and interpretation can perfectly run
on AI optimized CPUs, where optimized libraries will take
advantage of specific instruction sets and hardware accelerated
functions, such as Intel® Advanced Vector Extensions 512
(Intel® AVX-512), Intel® Advanced Matrix Extensions (Intel®
AMX) and others.

oneAPI provides a full suite of libraries supporting all common
ML and DL frameworks and can significantly improve the
runtime on latest generation Intel Xeon Scalable processors
but also GPUs and other accelerators.

By improving runtimes for the entire pipeline, customers will
not only benefit from much faster time-to-result and/or scale
out for larger data, but they can also reduce the overall
footprint and ultimately power consumption of AI workloads.
These improvements can result in orders of magnitude of
savings considering the frequency of running these different
tasks, i.e. permanent, hourly, daily etc.

The following picture summarizes the improvements made
across the entire AI/ML pipeline:

§ Determined optimal compression (17% less datasize)

60 %

30 %

10 % Ingestion/Conversion

Pre-processing

Training &
Interpretation

Ingestion/Conversion

Training &
Interpretation

Pre-processing

~57 % faster

§ 4.10x acceleration for largest dataset using Modin
§ This is significant since pre-processing runs hourly
§ Calculation time from 15.53 mins to 3.78 mins

–> save ~140 hours/month

§ 26% total gain using oneDAL

14.6 %

18.2 %

10 %

Figure 15. Final pipeline optimizations result in two times the total runtime improvement.

12

White Paper | EXFO Accelerates AI Pipelines with Intel® Xeon® Scalable Processors and Optimized Software Framework

Learn More

EXFO Website

Intel® Network Builders

Intel® Xeon® Scalable Processors

Faster XGBoost*, LightGBM, and CatBoost Inference on the CPU

Intel® Optimization for XGBoost*

Intel® Distribution of Modin*

Video: Full-stack assurance overview and use cases

13

Disclaimers

Code and data provided by EXFO
All tests conducted by Intel in January 2024

Hardware and Software references1,2,3

All tests performed on AWS EC2 instances (region Ohio):
•	 1-instance m5.16xlarge: 64 vcpu (2nd Gen Intel Xeon Scalable processor), 256 GB total memory, Ubuntu 22.04.3 LTS,

GNU/Linux 6.2.0-1017-aws x86_64, (software/libraries see below)
•	 2-instance m6i.16xlarge: 64 vcpu (3rd Gen Intel Xeon Scalable processor), 256 GB total memory, Ubuntu 22.04.3 LTS,

GNU/Linux 6.2.0-1017-aws x86_64, (software/libraries see below)
•	 3-instance m7i.16xlarge: 64 vcpu (4th Gen Intel Xeon Scalable processor), 256 GB total memory, Ubuntu 22.04.3 LTS,

GNU/Linux 6.2.0-1017-aws x86_64, (software/libraries see below)

Additional software environment and versions

Python 3.9.18
Anaconda3-2023.03-1-Linux-x86_64
Numpy 1.26.2
Pandas 2.1.4
Pyarrow 14.0.2
Modin 0.26.0
Ray 2.9.0
XGBoost 2.03
LightGBM 4.2.0
Shap 0.44.0
scikit-learn 1.3.2
scikit-learn-intelex 2024.011
daal 2024.011
daal4py 2024.011

https://www.exfo.com/
https://networkbuilders.intel.com/
https://www.intel.com/content/www/us/en/products/details/processors/xeon/scalable.html
https://www.intel.com/content/www/us/en/developer/articles/technical/faster-xgboost-light-gbm-catboost-inference-on-cpu.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/optimization-for-xgboost.html#gs.0vumcd
https://www.intel.com/content/www/us/en/developer/tools/oneapi/distribution-of-modin.html#gs.4dwfr0
https://content.jwplatform.com/previews/OmaZVSDK

White Paper | EXFO Accelerates AI Pipelines with Intel® Xeon® Scalable Processors and Optimized Software Framework

	⁴	https://shap.readthedocs.io/en/latest/index.html

		 Legal Notices and Disclaimers

		 Performance varies by use, configuration and other factors. Learn more on the Performance Index site.
		 Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. No product or component can be absolutely secure.
		 Your costs and results may vary.
		 Intel technologies may require enabled hardware, software or service activation.
		 Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.
		 © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
		 0224/LV/H09/PDF	  Please Recycle 	 358256-001US

14

Appendix A: Modin changes

Changes made in Modin to make all this work (these changes were contributed to Modin and expected in release 0.24.0):

1.	 Initially, the newly introduced ‘groupby.apply()’ call has failed since the aggregation function was pretty complex
and required group's shape transformation. This was considered as a bug and has been fixed in Modin (modin-
project#6506)

2.	Next was the problem of low cardinality of the grouping columns. Modin used to process such cases quite inefficiently,
which resulted in poor performance. The following improvement being introduced to Modin helped to reduce the total
time spent in groupby by ~40% (modin-project#6535) for this workload.

3.	Introduced a new more optimal implementation of ‘.dropna()’ to Modin which helped to speed-up the ‘dim detection’
stage ~1.7x (modin-project#6472)

4.	Improved performance of the ‘.read_parquet()’ method when multiple files were given (there’s no PR yet in Modin, so
linking the issue modin-project#5723)

5.	The workload also revealed some inefficient mechanisms of meta-data handling in Modin, these were fixed by: modin-
project#6481, modin-project#6491, modin-project#6525

https://shap.readthedocs.io/en/latest/index.html
https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/
https://github.com/modin-project/modin/pull/6506
https://github.com/modin-project/modin/pull/6506
https://github.com/modin-project/modin/pull/6535
https://github.com/modin-project/modin/pull/6472
https://github.com/modin-project/modin/pull/5723
https://github.com/modin-project/modin/pull/6481
https://github.com/modin-project/modin/pull/6481
https://github.com/modin-project/modin/pull/6491
https://github.com/modin-project/modin/pull/6525

