
1.0 Executive Summary
Enhanced Platform Awareness (EPA) represents a methodology targeting 
intelligent platform capability, configuration and capacity consumption. EPA 
delivers improved and deterministic application performance, and input/output 
throughput.

EPA underpins a three-fold objective of the discovery, scheduling and isolation 
of server hardware capabilities. Intel® and partners have worked together to 
make the following technologies available in Kubernetes*, the leading container 
orchestration engine (COE) for production-grade container scheduling and 
management:

•	Node Feature Discovery (NFD) enables Intel Xeon® Processor-based platform 
capability discovery in Kubernetes

•	CPU Manager for Kubernetes (CMK) provides a mechanism for CPU core pinning 
and CPU core isolation of containerized workloads

•	Huge page support (a native feature in Kubernetes v 1.8) enables the discovery, 
scheduling and allocation of huge pages as a native first-class resource

•	Single Root I/O Virtualization (SR-IOV) for networking 

This performance benchmarking report demonstrates how using the above 
technologies can enhance container application performance. The aim of the 
benchmarking was two-fold:

•	To demonstrate data plane performance for containerized DPDK enabled 
application (testpmd*) and non-DPDK-enabled applications (using qperf*) using 
the following EPA features: CPU Pinning and Isolation, SR-IOV; Huge Pages.

•	To show how CPU core pinning and isolation prevent application impact from 
"noisy neighbor" applications (using stress-ng*) that consume many CPU cycles 
for both DPDK (testpmd) and kernel TCP/IP (qperf) applications.

To conduct the benchmark tests, a Kubernetes environment was setup on servers 
powered by Intel Xeon Gold Processors 6138T with 20 physical cores (40 hardware 
threads). A detailed list of software and hardware ingredients is available in Section 
4.0
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Highlights from the benchmark tests include:

•	EPA enables DPDK applications to achieve 96% line-rate of a 25 GbE link for packet sizes larger than 512 bytes. 
Performance results were similar for DPDK applications running in containers versus running in the host. 

∘∘ Using SR-IOV for networking, huge pages and core pinning, the DPDK (testpmd) application in a container passed data 
at more than 20Gbit/s (40% line rate) of the 50 Gbps (dual 25 GbE NICs) network throughput for 64-byte packets (See 
Section 5.3.1). These results scale to more than 48Gbit/s (96% line rate) for 512-byte and larger packets for all container 
use cases. EPA thus enables DPDK applications to get similar performance in a container as compared to running in the 
host.

•	Core pinning and core isolation improves predictability of the target workloads in both DPDK-based applications and non-
DPDK applications in the presence of a noisy neighbor workload, i.e. stress-ng. 

∘∘ DPDK-based applications: When the DPDK testpmd application is run with stress-ng in a container without core isolation, 
the network throughput fluctuates significantly and drops more than 75% and packet latency increases more than 10 
times for most packet sizes. (See Section 5.3.2)

∘∘ Non DPDK-based applications: When the kernel network-based qperf runs inside a container with stress-ng without core 
pinning and core isolation features, network throughput and packet latency vary widely. Network throughput drops by 
more than 60%, while packet latency increases by more than 40 times for most message sizes for both TCP and UDP 
traffic types. (See Section 6.2)

Note: The system used for this performance benchmarking report was based on the Intel Xeon Gold Processor 6138T CPU 
running at 2.00 GHz with 20 physical cores (40 hardware threads). Intel also offers CPUs with a higher number of cores, 
including the Intel Xeon Platinum Processor 8180 with 28 cores (56 hardware threads) running at 2.50 GHz. The aggregated 
system throughput in this test report is limited by the number of NIC ports used (2x25G). Xeon Scalable Processor-based 
systems, like the one used in this report, are capable of scaling to much higher network throughput as shown in a number of 
DPDK performance benchmarking reports available at http://dpdk.org/doc. Higher performance should be achievable when 
using more NIC ports and available cores in the system.

2.0 Introduction
For high-performance workloads that require particular hardware capabilities to achieve their target performance, the 
container orchestration layer needs to discover and match platform capability with workload requirements. EPA for 
Kubernetes allows these workloads to run on the optimal available platform and achieve the required service level objectives 
and key performance indicators (KPIs).

 This document will describe the tested benefits of the following technologies:

•	CPU Manager for Kubernetes (CMK) provides a mechanism for CPU pinning and isolation of containerized workloads

•	Node Feature Discovery (NFD) enables Intel Xeon Processor server hardware capability discovery in Kubernetes

•	Huge page support is native in Kubernetes v1.8 and enables the discovery, scheduling and allocation of huge pages as a 
native first-class resource 

To simulate real application performance for these tests, the following software tools were used:

1.	 testpmd, a Data Plane Development Kit (DPDK)-based application, configured in I/O forwarding mode. 

Note: CPU pinning and huge pages are required in order to run DPDK applications like testpmd in a container (or VM).

2.	 qperf, a non-DPDK Linux kernel network-based traffic generation application, configured for TCP and UDP traffic.

3.	 Stress-ng, an application used to simulate a noisy neighbor workload. Stress-ng is designed to exercise various physical 
subsystems of a computer as well as various operating system interfaces. For these tests, stress-ng is used to generate 
CPU load on all the cores available to the stress-ng application.

This document is written for software architects and developers who are implementing and optimizing container-based 
applications on bare metal hosts using Kubernetes and Docker. It is part of the Container Experience Kits for EPA. Container 
Experience Kits are collections of user guides, application notes, feature briefs and other collateral that provide a library of 
best-practice documents for engineers who are developing container-based applications. Other documents in this Experience 
Kit can be found online at: https://networkbuilders.intel.com/network-technologies/container-experience-kits. 

An additional list of resources is located in Appendix D: along with links for downloading. The appendix also lists links to 
GitHub repositories for the software required to enable EPA for Kubernetes.
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3.0 Performance Test Scenarios
A total of eight performance test scenarios (see summary in Table 3-1) were designed in order to demonstrate how 
applications using EPA can achieve optimal performance in a container environment running on Intel’s Xeon Scalable 
Processors. Furthermore, these test scenarios show that using core pinning and core isolation can negate the noisy neighbor 
impact and achieve consistent results for a target application.

The following software applications were used for these test scenarios: 

•	testpmd DPDK user-mode application. DPDK is a set of libraries providing a programming framework to enable high-
speed data packet networking applications. Applications using DPDK libraries and interfaces run in user mode and 
directly interface with NIC functions, skipping slow, kernel layer components to boost packet processing performance and 
throughput. These applications process raw network packets without relying on protocol stack functionality provided by 
kernel. For more information on DPDK go to http://www.dpdk.org.

•	Linux qperf kernel network application. Applications using the kernel network stack are designed to utilize protocol and 
driver stack functionality built into the kernel. 

Figure 3-1 shows the container environment, including application stacks running inside containers. The figure shows 
stacks that are using DPDK libraries in addition to the Linux kernel network stack. In addition, the image shows the stress-ng 
application that does not need to use the networking stack to generate the stress load on system cores.

Figure 3-1 Layered stack for DPDK application container and kernel network application containers
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Without CPU core pinning and CPU core isolation, Kubernetes may place the noisy neighbor container on the same physical 
core as the container hosting the target application, thus impacting application performance. The performance impact 
will vary depending on the CPU processing required by the noisy neighbor container on the assigned cores. The stress-ng 
application generates a workload equal to 50% of the processing available in each core, thus reducing the processing available 
to the application under test.
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Table 3-1 summarizes the eight test case scenarios performed, the platform capabilities used in each scenario and the test 
configurations. A detailed list of software and hardware ingredients are listed in Section 4.0. 

Test Application DPDK user mode application (testpmd) Kernel network driver application (qperf)

Test Scenarios  No-
CMK

CMK No-CMK w/ 
Noisy Neighbor

CMK w/
Noisy Neighbor

 No-
CMK

CMK No-CMK w/ 
Noisy Neighbor

CMK w/ 
Noisy Neighbor

SR-IOV ü ü ü ü ü ü ü ü

Huge Pages ü ü ü ü

Core pinning ü ü ü ü ü ü

Core isolation ü ü ü ü

PF driver (Host) i40e v2.0.30

VF driver vfio-pci i40evf v2.0.30.

DPDK (container) v17.05

Number of flow 256 bidirectional flows per container 1 uni-directional flow per container. 

Traffic type IPv4 Traffic UDP and TCP

Host OS Ubuntu* 16.04.2 x86_64 (Server) Kernel: 4.4.0-62-generic

No of containers 1, 2, 4, 8 & 16

Table 3-1 Performance Test Scenarios
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Item Description Notes

Platform Intel Server Board S2600WFQ Intel Xeon processor-based dual-
processor server board with 2 x 10 GbE 
integrated LAN ports 

Processor 2x Intel Xeon Gold Processor 6138T (formerly Skylake) 2.0 GHz; 125 W; 27.5 MB cache per 
processor

20 cores, 40 hyper-threaded cores per 
processor

Memory 192GB Total; Micron* MTA36ASF2G72PZ 12x16GB DDR4 2133MHz

16GB per channel, 6 Channels per socket

NIC Intel Ethernet Network Adapter XXV710-DA2 (2x25G) 
(formerly Fortville)

2 x 1/10/25 GbE ports

Firmware version 5.50

Storage Intel DC P3700 SSDPE2MD800G4 SSDPE2MD800G4 800 GB SSD 2.5in 
NVMe/PCIe 

BIOS Intel Corporation

SE5C620.86B.0X.01.0007.060920171037

Release Date: 06/09/2017

Hyper-Threading  - Enable

Boot performance Mode – Max 
Performance

Energy Efficient Turbo – Disabled

Turbo Mode - Disabled

C State - Disabled

P State - Disabled

Intel VT-x Enabled

Intel VT-d Enabled

Software Component Description References

Host Operating 
System

Ubuntu 16.04.2 x86_64 (Server)

Kernel: 4.4.0-62-generic

https://www.ubuntu.com/download/server

NIC Kernel Drivers i40e v2.0.30

i40evf v2.0.30

https://sourceforge.net/projects/e1000/
files/i40e%20stable

DPDK DPDK 17.05 http://fast.dpdk.org/rel/dpdk-17.05.tar.xz

CMK V1.0.1 https://github.com/Intel-Corp/CPU-
Manager-for-Kubernetes

Ansible* Ansible 2.3.1.0 https://github.com/ansible/ansible/releases

Bare Metal Container 
RA scripts

Includes Ansible* scripts to deploy Kubernetes v1.6.4 https://github.com/intel-onp/onp

Docker* v1.13.1 https://docs.docker.com/engine/
installation/

SR-IOV-CNI v0.2-alpha. commit ID: 
a2b6a7e03d8da456f3848a96c6832e6aefc968a6

https://www.ubuntu.com/download/server

4.0 Platform Specifications 
Table 4-1 & Table 4-2 list the hardware and software components used for the performance tests. 

4.1 Hardware ingredients
Table 4-1 Hardware ingredients used in performance tests

4.2 Software ingredients
Table 4-2 Software ingredients used in performance tests
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5.0 Setting up the DPDK application performance test in containers using SR-IOV virtual 
functions 

5.1 Test setup
The test setup for running testpmd as a workload inside a container is shown in Figure 5-1. The traffic is generated by Ixia 
IxNetwork test system (version 8.10.1046.6 EA; Protocols: 8.10.1105.9, IxOS 8.10.1250.8 EA-Patch1) running RFC 2544. 

Up to 16 containers, each running the testpmd application, are instantiated using Kubernetes. Each container pod is assigned 
one virtual function (VF) instance from each physical port of the dual-port 25 GbE NIC for a total of two VFs per container 
pod. The maximum aggregated theoretical system throughput is thus 50Gbps for bidirectional traffic. Two ports are paired, 
one as ingress and other as egress in each direction (i.e., one 25 Gbps bidirectional flow consumes two ports), and traffic with 
256 bidirectional flows is run through the system under test (SUT). All results are measured for 0% packet loss. A separate 
container running the stress-ng application is used to simulate a noisy neighbor application.

Figure 5-1 High-Level Overview of DPDK performance setup with SR-IOV VF using testpmd.

5.2 Traffic profiles
The IP traffic profiles used in these tests conform to RFC 2544:

•	Packet sizes (bytes): 64, 128, 256, 512, 1024 and 1518

•	L3 protocol: IPv4

•	256 bidirectional flows per container. Each flow has a different source and destination IP address.

•	Bidirectional traffic with the same data rate being offered in each direction for 60 seconds.

6
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5.3 Test results
5.3.1 Results of DPDK application performance in containers with EPA 
The test results in Figure 5-2 compare the DPDK performance using testpmd in both a container and a host. Tests were run in 
each of these environments of the performance of physical functions (PF) and SR-IOV VFs. Tests are run in the host for PF-PF 
and VF-VF traffic using 2 x25G ports and testpmd that is assigned two logical sibling cores with hyper threading enabled. 
These results are compared to testpmd performance in container for VF-VF traffic. The results show that Kubernetes can 
run DPDK applications inside a container and get almost similar performance to when it is run inside the host, providing the 
benefit of EPA features SR-IOV, core pinning and huge pages to container-based environments. 

Testpmd is assigned two hyper threaded sibling cores in each case. Results show the performance as system throughput in 
millions of packets per second (Mpps) and packet latency when running RFC 2544 tests with 0% frame loss for 2 25G ports. 

The following is key to understanding the test codes:

•	2P_1C_2T_HOST_PF (gray bar) indicates the test configuration run with 2x25G ports and are assigned 1Core/2Threads with 
hyper thread enabled. The test is run inside host without container between PF-PF.

•	2P_1C_2T_HOST_VF (light blue bar) indicates the test configuration run with 2x25G ports and are assigned 1Core/2Threads 
with hyper thread enabled. The test is run inside a host without container between VF-VF.

•	2P_1C_2T_HOST_Container (dark grey bar) indicates the test configuration where the test is run with 2x25G ports and are 
assigned 1Core/2Threads with hyper thread enabled. The test is run inside container between VF-VF. 

Figure 5-2 DPDK testpmd performance comparison for host versus container with EPA using 2 25G ports.
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Figure 5-3 DPDK testpmd performance shown as packets/sec with multiple containers using EPA.

The test results in Figure 5-3 & Figure 5-4 below show DPDK performance running testpmd application in containers with 
up to 16 containers running concurrently in the same physical host and sharing the SR-IOV VFs from same 2x25 physical 
NIC ports. The results show that using SR-IOV, huge pages, core pinning and core isolation, provides more than 20Gbits/sec 
performance for 64-byte packets that scales to 48Gbits/sec (96% line rate) for packet sizes of 512 bytes and above for all 
container cases.

Testpmd in each container is assigned two separate hyper threaded sibling cores. Results show the performance as system 
throughput in packets/sec and Gbits/sec when running RFC 2544 test with 0% frame loss.

Figure 5-4 DPDK testpmd performance as Gbits/sec with multiple containers using EPA.

Note: The system used for this performance benchmarking report was based on the Intel Xeon Gold Processor 6138T CPU 
running at 2.00 GHz with 20 physical cores (40 hardware threads). Intel also offers CPUs with a higher number of cores, 
including the Intel Xeon Platinum Processor 8180 with 28 cores (56 hardware threads) running at 2.50 GHz. The aggregated 
system throughput in this test report is limited by the number of NIC ports used (2x25G). Xeon Scalable Processor-based 
systems, like the one used in this report, are capable of scaling to much higher network throughput as shown in a number of 
DPDK performance benchmarking reports available at http://dpdk.org/doc. Higher performance should be achievable when 
using more NIC ports and available cores in the system.

Detailed results for all container test cases are provided in Appendix B.1 & B.2. DPDK test results for all packet sizes for host 
tests are available in Appendix B.1
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5.3.2 Test results of DPDK application performance in containers with and without CMK
The test results in this section show network throughput and packet latency for 16 containers running the testpmd application 
with and without a noisy neighbor container present and also when using CPU core pinning and CPU core isolation and when 
not using CPU core pinning and CPU core isolation. 

The application containers are deployed using Kubernetes. CMK assigns two hyper-threaded sibling cores to each container 
application from its dataplane core pool. When running testpmd with CMK, the cores that are isolated and assigned via CMK 
are used to run the application. When running testpmd without CMK, two separate hyper-thread sibling cores are assigned to 
each testpmd instance manually.

Without CMK, Kubernetes may place the noisy neighbor container on the same physical core where the container under test 
is running. In this scenario, the noisy application may share the cores assigned to the application under test, thus impacting 
target application performance. The performance impact will vary depending on the load placed by the noisy container on the 
application assigned cores. In these tests, a load of 50% is generated on all available cores using stress-ng.

Tests data is collected and compared for the following use cases:

1.	 Without CMK and no noisy neighbor

2.	 With CMK and no noisy neighbor

3.	 Without CMK in presence of noisy neighbor

4.	 With CMK in presence of noisy neighbor

The results show a detrimental impact of having a noisy neighbor container when no CMK functionality is available compared 
to when CPU core isolation and CPU core pinning are available. This demonstrates how this technology alleviates the impact of 
noisy neighbors on application performance. 

Figure 5-5 testpmd packets/sec with and without CMK and noisy neighbor for 16 containers.
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As shown in Figure 5-6 & Figure 5-7:

•	When running testpmd without CMK, the presence of a noisy neighbor container caused network throughput to degrade 
by more than 70% for packet sizes 512 bytes and smaller while the throughput is ~25% less for larger packet sizes. 

•	Similarly, packet latency increased by more than 20 times for most packet sizes. 

•	When running the testpmd using CMK, the performance is not impacted by having a noisy neighbor container in the 
system due the cores being isolated. As a result, running testpmd with CMK gets consistent performance. Detailed results 
for all container test cases are provided in appendices B.1 & B.2.

Figure 5-6 testpmd throughput with and without CMK and noisy neighbor for 16 containers.

Figure 5-7 testpmd average packet latency with and without CMK and noisy neighbor for 16 containers.
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6.0 Setting Up the Test of Kernel Network Application Performance in Containers Using 
SR-IOV Virtual Functions
6.1.1 Test setup
The test setup for running qperf server workload is shown in Figure 6-1. The qperf clients run on a separate physical 
server connected to SUT using a single 25 GbE NIC port. Both client and server processes run on Intel Xeon Gold Processor 
6138T-based servers. Up to 16 containers, each running qperf server, are instantiated and connected to qperf clients. There is 
one qperf client instance for each qperf server and one flow between client and server. Each container pod is assigned one VF 
instance from the same 25Gbe NIC port. The maximum theoretical system throughput is thus 25Gbps bidirectional. The tests 
are run with unidirectional traffic where the client is sending and the server is receiving for a maximum of 25Gbps network 
throughput. A container running stress-ng is used to simulate a noisy neighbor scenario.

Figure 6-1 High-level overview of kernel driver performance setup with SR-IOV VF using qperf.

6.1.2 Traffic profiles
The traffic profile used for qperf tests are as follows:

•	Packet sizes (bytes): 64, 128, 256, 512, 1024 and 1472

•	L3 protocol: IPv4

•	L4: UDP & TCP

•	1 flow per container in one direction where client is sending the data to the qperf server

11
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6.2 Test results 
The performance test results in this section show the network throughput and packet latency for 16 containers running qperf 
server with and without noisy neighbor container present. The qperf containers are deployed using Kubernetes* and qperf 
application is run with and without CMK. When qperf is run using CMK, CMK isolates and assigns two hyper threaded sibling 
cores to a qperf server instance inside a container from its dataplane core pool. 

Dataplane cores are exclusive and only one workload can acquire a pair of hyper threaded cores. When qperf is run without 
CMK, it is not pinned to any specific cores and thus is free to use any available cores in the system. Tests are run for both TCP 
and UDP traffic types. Each test iteration is run for a duration of five minutes.

Without CMK, Kubernetes may place the noisy neighbor container on the same physical system where the container under test 
is running. In this scenario, the noisy application may share the cores assigned to the application under test, thus impacting 
the target application's performance. Performance impact will vary depending on the load placed by the noisy container on 
the application assigned cores. In these tests, a load of 50% is generated on all available cores using stress-ng application.

Test data is collected and benchmarked for the following test cases:

1.	 Without CMK and no noisy neighbor

2.	 With CMK and no noisy neighbor

3.	 Without CMK in presence of noisy neighbor

4.	 With CMK in presence of noisy neighbor 

The results show a detrimental impact of having a noisy neighbor container when no CMK functionality is available compared 
when CPU core isolation and CPU core pinning are available. This demonstrates how this technology alleviates the impact of 
noisy neighbors on application performance. 

6.2.1 Qperf container TCP throughput performance with and without CMK 
The test results in this section show the system performance for TCP traffic for a 16-container test case. There is one 
connection per container which means there are a total 16 TCP connections altogether. 

The test results are described below and also shown in Figure 6-2 & Figure 6-3:

•	With SR-IOV enabled for the qperf container, more than 23Gbits/sec throughput is achieved for both CMK and non-CMK 
test cases as reported by qperf clients. Note: The throughput reported by qperf clients does not account for TCP header 
(32 bytes), IP header (20 bytes) and Ethernet header (14 bytes) for each packet, thus reducing the effective line rate.

•	When running qperf without CMK, the presence of a noisy neighbor container caused network throughput to degrade by 
more than 70% for 64 and 128-byte size packets and ~20% lower for packet sizes greater than 512 bytes. The latency 
increased more than 70 times for most packet sizes. 

Figure 6-2 qperf TCP throughput comparison with and without CMK and noisy neighbor for 16 containers.
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•	When running the qperf server using CMK, the performance is not impacted by having a noisy neighbor container running 
in the system, as the cores are now isolated and assigned to the qperf server and are not available to other containers. 

•	Detailed results for all container test cases for qperf TCP are presented in Appendices B.3 & B.4

6.2.2 Qperf container UDP throughput performance measured with and without CMK 
The test results in this section show the system performance for UDP traffic for the 16-container test case. There is one flow 
per container, which means there are a total of 16 UDP flows altogether.

The test results are described below and also shown in Figure 6-4 & Figure 6-5: 

•	With SR-IOV enabled for the qperf container, more than 20Gbits/sec throughput is achieved for both CMK and non-CMK 
test cases as reported by qperf clients. Note: The throughput reported by qperf clients does not account for UDP header 
(20 bytes), IP header (20 bytes) and Ethernet header (14 bytes) for each packet thus reducing the effective line rate of 
25Gbits/sec.

•	When running qperf without CMK, the presence of a noisy neighbor container caused network throughput to drop more 
than 50% for 64-byte packet size and more than 70% for all other packet sizes and latency increased more than 70 times 
for most packet sizes. 

•	When running the qperf server using CMK, the performance is not significantly impacted by having a noisy neighbor 
container running in the system. For certain packet sizes and container cases, non-CMK tests seems to perform better than 
CMK test case. This is due to the current limitation of CMK where only two hyper threaded sibling cores can be assigned to 
the container application. When not using CMK, the application is free to use any available cores. This limitation is expected 
to be addressed in future releases of CMK. 

Figure 6-3 qperf TCP latency comparison with and without CMK and noisy neighbor for 16 containers.
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Figure 6-4 qperf UDP throughput comparison with and without CMK and noisy neighbor for 16 containers.

Figure 6-5 qperf UDP latency comparison with and without CMK and noisy neighbor for 16 containers.

•	UDP performance for 64-byte packet sizes is lower compared to TCP. This is because TCP/IP improves network efficiency 
by reducing the number of packets that need to be sent over the network by combining a number of small outgoing 
messages and sending them all at once (Nagle's algorithm) thus reducing the packet headers overhead on the wire as well 
server processing overhead.

•	Detailed results for all container cases for qperf UDP tests are available in Appendices B.5 & B.6.
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7.0 Kubernetes Cluster Deployment
The test setup and methodology follows the user guide titled: Installation and Configuration Guide for Kubernetes and 
Container Bare Metal Platform. This document is also part of the Container Experience Kit and provides instructions on how 
to deploy a Kubernetes cluster including one master node and one minion node. This document can be downloaded from the 
link found in Appendix D.

Note: The SR-IOV CNI plugin for Kubernetes needs to be installed in the minion node as per the user guide instructions as VFs 
are used for networking for the containers. All container workloads run on the minion node that is referred to in this document 
as the system under test (SUT).

After the instructions in the user guide are complete, three container images will be created: one for DPDK testpmd, one for 
the qperf server and another one for stress-ng. 

8.0 Test Execution
In this section, detailed steps are provided for conducting a series of tests to demonstrate the positive impact of huge pages 
and CPU core pinning and CPU core isolation. The first series of tests use testpmd to demonstrate EPA benefits for the 
throughput of DPDK-enabled applications. 

The second series of tests uses qperf to generate the traffic for throughput and latency tests for non-DPDK applications. In the 
last series of tests, stress-ng is used to represent a noisy neighbor application in order to show how CPU core pinning and CPU 
core isolation can provide deterministic application performance for a target application. 

8.1 DPDK application container test execution
8.1.1 Running testpmd without CMK
The following are the necessary steps to take in order to run testpmd without CMK.

Deploy DPDK pods and connect to it using a terminal window.

# kubectl create –f no-cmk-dpdk-pod<x>.yaml

# kubectl exec no-cmk-dpdk-pod<x> -ti – bash

1.	 Each pod is assigned two VFs, one from each physical port from 2x25Gbe NIC.

2.	 Use container ID (CID) to get the PCI address of each VF assigned to the container.

# kubectl exec dpdk-pod-c1-m1 –ti – bash

# export cid=”$(sed –ne ‘/hostname/p’ /proc/1/task/1/mountinfo | awk –F ‘/’ ‘{print 
$6}’)-north0”

# export PCIADDR1=”$(awk –F ‘”’ ‘{print $4}’ /sriov-cni/$cid)”

# export cid=”$(sed –ne ‘/hostname/p’ /proc/1/task/1/mountinfo | awk –F ‘/’ ‘{print 
$6}’)-south0”

# export PCIADDR2=”$(awk –F ‘”’ ‘{print $4}’ /sriov-cni/$cid)”

3.	 Run the DPDK testpmd app in each container.

# x86 _ 64-native-linuxapp-gcc/app/testpmd –file-prefix=<name>--socket-mem=1024,1024 –l

<core1, core2> -w $PCIADDR1 –w $PCIADDR2 –n 4 -- -I –txqflags=0xf01 –txd=2048 – rxd=2048

# testpmd> start

Note: To run testpmd, at least two logical cores must be assigned to the application. One core for control plane and one 
for data plane. These cores should be separate cores for each testpmd instance. Two hyper threaded sibling cores are used 
in the above command.

4.	 Start RFC2544 test on Ixnetwork with 256 flows for each container running testpmd. Flows are specified by DMAC address 
matching to the virtual function’s MAC address assigned to the container.
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8.1.2 Running testpmd with CMK 
The following are the necessary steps to take to run testpmd with CMK. 

1.	 Deploy DPDK pods and connect to it using a terminal window.

# kubectl create –f cmk-dpdk-pod<x>.yaml

# kubectl exec cmk-dpdk-pod<x> -ti – bash

2.	 Each pod is assigned two VFs, one from each physical port from 2x25G NIC.

3.	 Create /etc/kcm/use_cores.sh file with the following content:

#!/bin/bash

export CORES=̀ printenv KCM _ CPUS _ ASSIGNED̀

COMMAND=${@//’$CORES’/$CORES}

$COMMAND

Note: The above script uses CMK to assign the cores from temporary environment variable ‘KCM_CPUS_ASSIGNED’ to 
its local variable CORES. Then, this variable substitutes $CORES phrase in command provided below as argument to this 
script and executes it with the correct cores selected. 

4.	 Make this an executable script:

# chmod +x /etc/kcm/use _ cores.sh

5.	 Use container ID (CID) to get the PCI address of each VF assigned to the container.

# kubectl exec dpdk-pod-c1-m1 –ti – bash

# export cid=”$(sed –ne ‘/hostname/p’ /proc/1/task/1/mountinfo | awk –F ‘/’ ‘{print 
$6}’)-north0”

# export PCIADDR1=”$(awk –F ‘”’ ‘{print $4}’ /sriov-cni/$cid)”

# export cid=”$(sed –ne ‘/hostname/p’ /proc/1/task/1/mountinfo | awk –F ‘/’ ‘{print 
$6}’)-south0”

# export PCIADDR2="$(awk -F '"' '{print $4}' /sriov-cni/$cid)"

6.	  Start testpmd using use_cores.sh script:

# /opt/bin/kcm isolate --conf-dir=/etc/kcm --pool=dataplane /etc/kcm/use _ cores.sh 'testpmd 
--file-prefix=<name> --socket-mem=1024,1024 -l \$CORES - -w $PCIADDR1 -w $PCIADDR2 -n 4 -- -i 
--txqflags=0xf01 --txd=2048 --rxd=2048’

# testpmd> start

7.	 Start RFC2544 test on Ixnetwork with 256 flows for each container running testpmd. Flows are specified by DMAC address 
matching to the VF’s MAC address assigned to the container.

8.2 Non-DPDK application container test execution
When i40evf kernel mode driver is loaded in the container for a VF, the driver doesn’t set the MAC address filter correctly. This 
issue is expected to be addressed in a future driver release. The following workaround is needed with the current version of 
driver before VF can start to receive traffic.

1.	 Find MAC addresses assigned to the VF in dmesg:

#dmesg | grep “MAC Address:”

[   54.297588] i40evf 0000:18:02.0: MAC address: 52:54:00:10:6d:64

2.	  Set VF MAC to the MAC address seen above:

#ip link set dev virtual-1 vf n <mac>
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8.2.1 Running qperf tests without CMK 
The following are the necessary steps to take to run qperf without CMK. 

1.	 Deploy qperf pods and connect to it using a terminal window.

# kubectl create -f no-cmk-qperf-pod<x>.yaml

# kubectl exec no-cmk-qperf-pod<x> -ti – bash

2.	 Each container is assigned 1 VF from the same physical port of the 2x25Gbe NIC.

3.	 Turning off adaptive interrupts for VF driver and adjust ring size.

# ethtool -G south0 rx 256

# ethtool -G south0 tx 256

# ethtool -C south0 adaptive-rx off

# ethtool -C south0 adaptive-tx off

4.	 Run the qperf server in each container.

#  qperf

5.	 Start qperf TCP tests on qperf client system one client per qperf server instantiated.

#  qperf <server _ ip> tcp _ bw tcp _ lat ud _ lat ud _ bw

8.2.2 Running qperf tests with CMK 
For kernel network application performance tests using SR-IOV VF driver, CMK assigns an isolated core to the container 
application. However, the kernel VF driver runs inside the host and its interrupt affinity is not managed by CMK. As a result, 
the VF driver uses cores that may be different than the ones assigned to container application. Each VF driver has four queues 
and interrupts for these queues, by default, use cores 0-3. CMK does not isolate these cores for VF driver. A workaround is 
to manually add these cores to the list of isolated cores in the file /boot/grub/grub.cfg after deploying cluster on the minion 
node.

1.	 To implement the workaround, update /boot/grub/grub.cfg file to add VF driver interrupt cores to the list of isolated cores 
as below. 

GRUB _ CMDLINE _ LINUX="$GRUB _ CMDLINE _ LINUX intel _ iommu=on" # added by onp sriov role

GRUB _ CMDLINE _ LINUX="$GRUB _ CMDLINE _ LINUX 

isolcpus=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,40,41,42,43,44,45,46,47,48,49,50,

51,52,53,54,55,56,57,58,59,60" # added by onp isolcpus role

GRUB _ CMDLINE _ LINUX="$GRUB _ CMDLINE _ LINUX default _ hugepagesz=1G hugepagesz=1G hugepages=16"  
# added by onp hugepages role

2.	 Save /boot/grub/grub.cfg and run grub-update and reboot the system.

3.	 Deploy qperf pods and connect to it using a terminal window.

# kubectl create -f cmk-qperf-pod<x>.yaml

# kubectl exec cmk-qperf-pod<x> -ti – bash

4.	 Each container is assigned one VF from the same physical port of the 2x25Gbe NIC.

5.	 Turn off adaptive interrupts for VF driver and adjust ring size.

# ethtool -G south0 rx 256

# ethtool -G south0 tx 256

# ethtool -C south0 adaptive-rx off

# ethtool -C south0 adaptive-tx off

6.	 Run the qperf server in each container using use_cores.sh script:

# /opt/bin/kcm isolate --conf-dir=/etc/kcm --pool=dataplane qperf

7.	 Start qperf TCP tests on qperf client system one client per qperf server instantiated.

#  qperf <server _ ip> tcp _ bw tcp _ lat ud _ lat ud _ bw
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9.0 Summary
The results of performance benchmarks detailed in this report demonstrate the improved data plane and application 
performance that comes from utilizing EPA (CPU pinning and isolation, SR-IOV and huge pages) with DPDK on servers based 
on Intel Xeon Gold Processor 6138T.

As shown in the executive summary, using SR-IOV for networking, huge pages, core pinning and DPDK allowed for improved 
data throughput in a containerized application (testpmd).

Application performance predictability was also achieved utilizing core pinning and isolation, which negated the impact of a 
noisy neighbor application (stress-ng). This performance was significant in non-DPDK applications; but the performance when 
DPDK applications were used was close to the performance delivered when the applications are running in the host.

Network performance and application performance predictability are critical performance metrics for containerized 
applications. This benchmark performance report gives developers the tools to maximize both metrics for their applications.

To access more information that is part of the Intel Container Experience Kits (user guides, application notes, feature briefs 
and other collateral) go to: https://networkbuilders.intel.com/network-technologies/container-experience-kits.

18

https://networkbuilders.intel.com/network-technologies/container-experience-kits


Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

Appendix A: Configuration files

A.1 Configuration file to create a pod without CMK
apiVersion: v1

kind: Pod

metadata:

  annotations:

    scheduler.alpha.kubernetes.io/tolerations:

  name: <pod-name>

spec:

  containers:

  - name: <pod-name>

    image: <containerImage>

    volumeMounts:

    - mountPath: /sriov-cni

      name: cni-volume

    - mountPath: /mnt/huge

      name: hugepage-volume

    command: ["/bin/sleep","infinity"]

 ports:

    - containerPort: 81

      protocol: TCP

    securityContext:

        privileged: true

        runAsUser: 0

  volumes:

  - name: cni-volume

    hostPath:

      path: /var/lib/cni/sriov/

  - name: hugepage-volume

    hostPath:

      path: /mnt/huge

  securityContext:

    runAsUser: 0

  restartPolicy: Never

  nodeSelector: kubernetes.io/<hostname>
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A.2 Configuration file to create a pod with CMK
apiVersion: v1

kind: Pod
metadata:
  labels:
    app: <app-name>
  annotations:
    "scheduler.alpha.kubernetes.io/tolerations": '[{"key":"cmk", "value":"true"}]'
  name: <pod-name>
spec:
  containers:
 - command:
  - "sleep"
  - "infinity"
    env:
    - name: CMK _ PROC _ FS
      value: "/host/proc"
    image: <container _ image>
    name: <app-name>
    resources:
      requests:
        pod.alpha.kubernetes.io/opaque-int-resource-cmk: '1'
    volumeMounts:
    - mountPath: "/sriov-cni"
      name: cni-volume
    - mountPath: "/host/proc"
      name: host-proc
      readOnly: true
    - mountPath: "/opt/bin"
      name: cmk-install-dir
    - mountPath: "/etc/cmk"
      name: cmk-conf-dir
    - mountPath: /dev/hugepages
      name: hugepage-volume
  securityContext:
    privileged: true
    runAsUser: 0
  volumes:
  - hostPath:
      path: "/var/lib/cni/sriov/"
    name: cni-volume
  - hostPath:
      path: "/opt/bin"
    name: cmk-install-dir
  - hostPath:
      path: "/proc"
    name: host-proc
  - hostPath:
      path: "/etc/cmk"
    name: cmk-conf-dir
  - hostPath:
      path: /dev/hugepages
    name: hugepage-volume
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A.3 Configuration file to create a stress-ng pod
kind: Pod 

apiVersion: v1 

metadata: 

name: stress-ng 

labels: 

pod-1: true 

spec: 

containers: 

- name: stress-ng 

image: lorel/docker-stress-ng:latest 

imagePullPolicy: IfNotPresent 

args: 

- "--cpu 0" 

- "-p 50" 

- "-t 800m" 

restartPolicy: Never 

nodeSelector: kubernetes.io/<hostname> 
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A.4 Multus configuration file (pre-requisite for SR-IOV)
# cat /etc/cni/net.d/10-multus.conf

{

  "name": "multus-demo-network",

  "type": "multus",

  "delegates": [

    {

      "type": "sriov",

      "if0": "enp134s0f0",

      "if0name": "south0",

      "dpdk": {

      "kernel _ driver":"i40evf",

      "dpdk _ driver":"vfio-pci",

      "dpdk _ tool":"/opt/dpdk/install/share/dpdk/usertools/dpdk-devbind.py"

     }

    },

    {

      "type": "sriov",

      "if0": "enp134s0f1",

      "if0name": "north0",

      "dpdk": {

      "kernel _ driver":"i40evf",

      "dpdk _ driver":"vfio-pci",

      "dpdk _ tool":"/opt/dpdk/install/share/dpdk/usertools/dpdk-devbind.py"

     }

    },

    {

      "name": "cbr0",

      "type": "flannel",

      "masterplugin": true,

      "delegate": {

        "isDefaultGateway": true

      }

    }

  ]

}
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A.5 ops_config.yml configuration file changes
# Num of hugepages:

ovs _ num _ hugepages: 32

# select one of the network types:

ovs _ type: multus

# Enable sriov: true or false

use _ sriov: true

num _ virtual _ funcions:20

# CMK – below 3 configurations required only when using CMK

Enable cmk: true

num _ dp _ cores = 17

num _ cp _ cores = 1

use _ udev: false

use _ cmk: false

cmk _ img: "quay.io/charliekang/cmk:v1.0.1"

num _ dp _ cores: 16

num _ cp _ cores: 1

use _ udev: true

proxy _ env:

http _ proxy: <http proxy configurations>

https _ proxy: <https proxy configurations>

#  socks _ proxy: http://proxy.example.com:1080

no _ proxy: "localhost,{{ inventory _ hostname }}"
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Appendix B: Test results for all container cases

B.1 DPDK application results: Host versus container 
i.	  Network throughput

ii.	 Frames per second 

iii.	 Packet latency  
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B.2 DPDK application test results without CMK
i.	 Network throughput 

ii.	 Frames per second 

iii.	 Packet latency
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B.3 DPDK test results with CMK
i.	 Network throughput

ii.	 Frames per second

iii.	 Packet latency 
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B.4 Non-DPDK (TCP) test results without CMK
i.	 Network throughput as reported by qperf client

ii.	 Packet latency as reported by qperf client 

B.5 Non-DPDK (TCP) test results with CMK
i.	 Network throughput as reported by qperf client

ii.	 Packet latency as reported by qperf client
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B.6 Non-DPDK (UDP) test results without CMK
i.	 Network throughput as reported by qperf client

ii.	 Packet latency as reported by qperf client

B.7 Non-DPDK (UDP) test results with CMK
i.	 Network throughput as reported by qperf client

ii.	 Packet latency results as reported by qperf client
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Appendix C: Abbreviations

Abbreviation Description

CMK CPU Manager for Kubernetes

COE Container orchestration engine

CPU Central Processing Unit

DPDK Data Plane Development Kit 

DUT Device Under Test

EPA Enhanced Platform Awareness

NFD Node Feature Discovery 

NFV Network Functions Virtualization 

PF Physical Function 

PMD DPDK Poll Mode Driver

p-state CPU performance state 

SDI Software Defined Infrastructure 

SDN Software Defined Networking

SKU Stock Keeping Unit 

SLA Service Level Agreement 

SR-IOV single root input/output virtualization

SUT System Under Test

VF Virtual Function 

VIM Virtual Infrastructure Manager 

VNF Virtual Network Function 
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# Title Reference

1 Kubernetes Overview https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

2 Kubernetes API Server https://kubernetes.io/docs/admin/kube-apiserver/

3 Kubernetes Pod Overview https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/

4 Multus CNI Plugin https://github.com/Intel-Corp/multus-cni

5 SR-IOV https://www.intel.com/content/dam/www/public/us/en/documents/
technology-briefs/sr-iov-nfv-tech-brief.pdf

6 SR-IOV CNI Plugin https://github.com/Intel-Corp/sriov-cni

7 Enhanced Platform Awareness https://builders.intel.com/docs/networkbuilders/EPA_Enablement_Guide_
V2.pdf

8 Node Feature Discovery https://github.com/Intel-Corp/node-feature-discovery

9 CPU Manager for Kubernetes https://github.com/Intel-Corp/CPU-Manager-for-Kubernetes

10 Use cases for Kubernetes https://thenewstack.io/dls/ebooks/TheNewStack_UseCasesForKubernetes.pdf

11 Kubernetes Components https://kubernetes.io/docs/concepts/overview/components/

12 Containers vs Virtual Machines https://docs.docker.com/get-started/ - containers-vs-virtual-machines

13 Intel Ethernet Converged Network 
Adapter X710-DA2

http://ark.intel.com/products/83964/Intel-Ethernet-Converged-Network-
Adapter-X710-DA2

14 Intel Ethernet Network Adapter 
XXV710-DA2

http://ark.intel.com/products/95260/Intel-Ethernet-Network-Adapter-
XXV710-DA2

15 Intel Server Board S2600WT2 http://ark.intel.com/products/82155/Intel-Server-Board-S2600WT2

17 Intel Xeon GOLD 6138T Processor http://ark.intel.com/products/123542/Intel-Xeon-Gold-6138T-Processor-
27_5M-Cache-2_00-GHz

18 RFC 2544 Benchmarking 
Methodology

https://tools.ietf.org/html/rfc2544

19 Installation and Configuration 
Guide for Kubernetes and 
Container Bare Metal Platform

https://networkbuilders.intel.com/network-technologies/container-
experience-kits

Appendix D: Reference Documents
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