PERFORMANCE BENCHMARK REPORT :

Intel Corporation

Software Defined Datacenter Solutions Group

Enhanced Platform Awareness in

Kubernetes

Intel® Xeon® Scalable Processors

Contents

1.0 Executivesummarycceuunnn 1
2.0 Introductionccivviiiinann 2
3.0 Performance test scenarios......... 3
4.0 Platform specifications............. 5

5.0 Setting up the DPDK application
performance test in containers using
SR-10V virtual functions............ 6

6.0 Setting up the test of kernel network
application performance in containers

using SR-10V virtual functions 1
7.0 Kubernetes cluster deployment....15
8.0 Testexecution 15
0.0 SUMMArY....vvvvrrnnnnnnnnnrennns 18
Appendix A: Configuration files 19
Appendix B: Test results for all container
CASES . vvnnnnnnnsrssannnnnnnnnnnrsnnns 24
Appendix C: Abbreviations............. 29

Appendix D: Reference documents..... 30

1.0 Executive Summary

Enhanced Platform Awareness (EPA) represents a methodology targeting
intelligent platform capability, configuration and capacity consumption. EPA
delivers improved and deterministic application performance, and input/output
throughput.

EPA underpins a three-fold objective of the discovery, scheduling and isolation
of server hardware capabilities. Intel® and partners have worked together to
make the following technologies available in Kubernetes?*, the leading container
orchestration engine (COE) for production-grade container scheduling and
management:

» Node Feature Discovery (NFD) enables Intel Xeon® Processor-based platform
capability discovery in Kubernetes

« CPU Manager for Kubernetes (CMK) provides a mechanism for CPU core pinning
and CPU core isolation of containerized workloads

» Huge page support (a native feature in Kubernetes v 1.8) enables the discovery,
scheduling and allocation of huge pages as a native first-class resource

« Single Root I/O Virtualization (SR-10V) for networking

This performance benchmarking report demonstrates how using the above
technologies can enhance container application performance. The aim of the
benchmarking was two-fold:

» To demonstrate data plane performance for containerized DPDK enabled
application (testpmd*) and non-DPDK-enabled applications (using qperf*) using
the following EPA features: CPU Pinning and Isolation, SR-I0V; Huge Pages.

» To show how CPU core pinning and isolation prevent application impact from
"noisy neighbor" applications (using stress-ng*) that consume many CPU cycles
for both DPDK (testpmd) and kernel TCP/IP (gperf) applications.

To conduct the benchmark tests, a Kubernetes environment was setup on servers
powered by Intel Xeon Gold Processors 6138T with 20 physical cores (40 hardware
threads). A detailed list of software and hardware ingredients is available in Section
4.0

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

Highlights from the benchmark tests include:

« EPA enables DPDK applications to achieve 96% line-rate of a 25 GbE link for packet sizes larger than 512 bytes.
Performance results were similar for DPDK applications running in containers versus running in the host.

o Using SR-10V for networking, huge pages and core pinning, the DPDK (testpmd) application in a container passed data
at more than 20Gbit/s (40% line rate) of the 50 Gbps (dual 25 GbE NICs) network throughput for 64-byte packets (See
Section 5.3.1). These results scale to more than 48Gbit/s (96% line rate) for 512-byte and larger packets for all container
use cases. EPA thus enables DPDK applications to get similar performance in a container as compared to running in the
host.

« Core pinning and core isolation improves predictability of the target workloads in both DPDK-based applications and non-
DPDK applications in the presence of a noisy neighbor workload, i.e. stress-ng.

o DPDK-based applications: When the DPDK testpmd application is run with stress-ng in a container without core isolation,
the network throughput fluctuates significantly and drops more than 75% and packet latency increases more than 10
times for most packet sizes. (See Section 5.3.2)

o Non DPDK-based applications: When the kernel network-based gperf runs inside a container with stress-ng without core
pinning and core isolation features, network throughput and packet latency vary widely. Network throughput drops by
more than 60%, while packet latency increases by more than 40 times for most message sizes for both TCP and UDP
traffic types. (See Section 6.2)

Note: The system used for this performance benchmarking report was based on the Intel Xeon Gold Processor 6138T CPU
running at 2.00 GHz with 20 physical cores (40 hardware threads). Intel also offers CPUs with a higher number of cores,
including the Intel Xeon Platinum Processor 8180 with 28 cores (56 hardware threads) running at 2.50 GHz. The aggregated
system throughput in this test report is limited by the number of NIC ports used (2x25G). Xeon Scalable Processor-based
systems, like the one used in this report, are capable of scaling to much higher network throughput as shown in a number of
DPDK performance benchmarking reports available at http://dpdk.org/doc. Higher performance should be achievable when
using more NIC ports and available cores in the system.

2.0 Introduction

For high-performance workloads that require particular hardware capabilities to achieve their target performance, the
container orchestration layer needs to discover and match platform capability with workload requirements. EPA for
Kubernetes allows these workloads to run on the optimal available platform and achieve the required service level objectives
and key performance indicators (KPlIs).

This document will describe the tested benefits of the following technologies:
« CPU Manager for Kubernetes (CMK) provides a mechanism for CPU pinning and isolation of containerized workloads
» Node Feature Discovery (NFD) enables Intel Xeon Processor server hardware capability discovery in Kubernetes

« Huge page support is native in Kubernetes v1.8 and enables the discovery, scheduling and allocation of huge pages as a
native first-class resource

To simulate real application performance for these tests, the following software tools were used:
1. testpmd, a Data Plane Development Kit (DPDK)-based application, configured in I/O forwarding mode.
Note: CPU pinning and huge pages are required in order to run DPDK applications like testpmd in a container (or VM).
2. gperf,a non-DPDK Linux kernel network-based traffic generation application, configured for TCP and UDP traffic.

3. Stress-ng, an application used to simulate a noisy neighbor workload. Stress-ng is designed to exercise various physical
subsystems of a computer as well as various operating system interfaces. For these tests, stress-ng is used to generate
CPU load on all the cores available to the stress-ng application.

This document is written for software architects and developers who are implementing and optimizing container-based
applications on bare metal hosts using Kubernetes and Docker. It is part of the Container Experience Kits for EPA. Container
Experience Kits are collections of user guides, application notes, feature briefs and other collateral that provide a library of
best-practice documents for engineers who are developing container-based applications. Other documents in this Experience
Kit can be found online at: https://networkbuilders.intel.com/network-technologies/container-experience-kits.

An additional list of resources is located in Appendix D: along with links for downloading. The appendix also lists links to
GitHub repositories for the software required to enable EPA for Kubernetes.

http://dpdk.org/doc
https://networkbuilders.intel.com/network-technologies/container-experience-kits

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

3.0 Performance Test Scenarios

A total of eight performance test scenarios (see summary in Table 3-1) were designed in order to demonstrate how
applications using EPA can achieve optimal performance in a container environment running on Intel's Xeon Scalable
Processors. Furthermore, these test scenarios show that using core pinning and core isolation can negate the noisy neighbor
impact and achieve consistent results for a target application.

The following software applications were used for these test scenarios:

« testpmd DPDK user-mode application. DPDK is a set of libraries providing a programming framework to enable high-
speed data packet networking applications. Applications using DPDK libraries and interfaces run in user mode and
directly interface with NIC functions, skipping slow, kernel layer components to boost packet processing performance and
throughput. These applications process raw network packets without relying on protocol stack functionality provided by
kernel. For more information on DPDK go to http://www.dpdk.org.

« Linux gperf kernel network application. Applications using the kernel network stack are designed to utilize protocol and
driver stack functionality built into the kernel.

Figure 3-1 shows the container environment, including application stacks running inside containers. The figure shows
stacks that are using DPDK libraries in addition to the Linux kernel network stack. In addition, the image shows the stress-ng
application that does not need to use the networking stack to generate the stress load on system cores.

Linux Network
DPDK Application Application Linux Application
Container Container Container

DPDK Application qperf Server AS;:,T,scsa_{:cg,n

Containers DPDK Libraries

vfio-pci Driver

user mode

Kernel mode

Linux Kernel

NIC Driver NIC Driver
PF VF

Core Core Core Core Core Core Core

El EX ES NIC with SR-IOV

Visual Ethernet Bridge (Hardware L2 Switch)

25 Gigabits
Intel* Ethernet XXV710

Figure 3-1 Layered stack for DPDK application container and kernel network application containers

Without CPU core pinning and CPU core isolation, Kubernetes may place the noisy neighbor container on the same physical
core as the container hosting the target application, thus impacting application performance. The performance impact
will vary depending on the CPU processing required by the noisy neighbor container on the assigned cores. The stress-ng

application generates a workload equal to 50% of the processing available in each core, thus reducing the processing available
to the application under test.

http://www.dpdk.org

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

Table 3-1 summarizes the eight test case scenarios performed, the platform capabilities used in each scenario and the test
configurations. A detailed list of software and hardware ingredients are listed in Section 4.0.

Table 3-1 Performance Test Scenarios

Test Application DPDK user mode application (testpmd) Kernel network driver application (gperf)
Test Scenarios No- CMK No-CMKw/ CMK w/ No- CMK No-CMKw/ CMK w/

CMK Noisy Neighbor Noisy Neighbor CMK Noisy Neighbor Noisy Neighbor
SR-10V v v v v v v v v
Huge Pages v v v v
Core pinning v v v v v v
Core isolation v v v v

PF driver (Host) i40e v2.0.30

VF driver vfio-pci i40evf v2.0.30.

DPDK (container) RANAE)

Number of flow 256 bidirectional flows per container 1 uni-directional flow per container.

Traffic type IPv4 Traffic UDP and TCP

Ubuntu* 16.04.2 x86_64 (Server) Kernel: 4.4.0-62-generic

No of containers 1,2,4,8& 16

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

4.0 Platform Specifications

Table 4-1 & Table 4-2 list the hardware and software components used for the performance tests.

4.1 Hardware ingredients

Table 4-1 Hardware ingredients used in performance tests

Item Description Notes

Platform Intel Server Board S2600WFQ Intel Xeon processor-based dual-
processor server board with 2 x 10 GbE
integrated LAN ports

Processor 2x Intel Xeon Gold Processor 6138T (formerly Skylake) 2.0 GHz; 125 W; 27.5 MB cache per
processor
20 cores, 40 hyper-threaded cores per
processor

Memory 192GB Total; Micron* MTA36ASF2G72PZ 12x16GB DDR4 2133MHz
16GB per channel, 6 Channels per socket

NIC Intel Ethernet Network Adapter XXV710-DA2 (2x25G) 2 x1/10/25 GbE ports

(formerly Fortville) Firmware version 5.50

Storage Intel DC P3700 SSDPE2MD800G4 SSDPE2MD800G4 800 GB SSD 2.5in
NVMe/PCle

BIOS Intel Corporation Hyper-Threading - Enable

SE5C620.86B.0X.01.0007.060920171037
Release Date: 06/09/2017

Boot performance Mode — Max
Performance

Energy Efficient Turbo - Disabled
Turbo Mode - Disabled

C State - Disabled

P State - Disabled

Intel VT-x Enabled

Intel VT-d Enabled

4.2 Software ingredients

Table 4-2 Software ingredients used in performance tests

Software Component

Description

References

Host Operating
System

Ubuntu 16.04.2 x86_64 (Server)
Kernel: 4.4.0-62-generic

https://www.ubuntu.com/download/server

NIC Kernel Drivers i40e v2.0.30 https://sourceforge.net/projects/e1000
i40evf v2.0.30 files/i40e%?20stable
DPDK DPDK 17.05 http://fast.dpdk.org/rel/dpdk-17.05.tar.xz
CMK V1.0.1 https://github.com/Intel-Corp/CPU-
Manager-for-Kubernetes
Ansible* Ansible 2.3.1.0 https://github.com/ansible/ansible/releases

Bare Metal Container
RA scripts

Includes Ansible* scripts to deploy Kubernetes v1.6.4

https://github.com/intel-onp/on

Docker* v1.13.1 https://docs.docker.com/engine/
installation/
SR-10OV-CNI v0.2-alpha. commit ID: https://www.ubuntu.com/download/server

a2b6a7e03d8da456f3848a96c6832e6aefc968a6

https://www.ubuntu.com/download/server
https://sourceforge.net/projects/e1000/files/i40e%20stable/
https://sourceforge.net/projects/e1000/files/i40e%20stable/
http://fast.dpdk.org/rel/dpdk-17.05.tar.xz
https://github.com/Intel-Corp/CPU-Manager-for-Kubernetes
https://github.com/Intel-Corp/CPU-Manager-for-Kubernetes
https://github.com/ansible/ansible/releases
https://github.com/intel-onp/onp
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://www.ubuntu.com/download/server

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

5.0 Setting up the DPDK application performance test in containers using SR-I0OV virtual
functions

5.1 Test setup

The test setup for running testpmd as a workload inside a container is shown in Figure 5-1. The traffic is generated by Ixia
IxNetwork test system (version 8.10.1046.6 EA; Protocols: 8.10.1105.9, IxOS 8.10.1250.8 EA-Patch1) running RFC 2544.

Up to 16 containers, each running the testpmd application, are instantiated using Kubernetes. Each container pod is assigned
one virtual function (VF) instance from each physical port of the dual-port 25 GbE NIC for a total of two VFs per container
pod. The maximum aggregated theoretical system throughput is thus 50Gbps for bidirectional traffic. Two ports are paired,
one as ingress and other as egress in each direction (i.e., one 25 Gbps bidirectional flow consumes two ports), and traffic with
256 bidirectional flows is run through the system under test (SUT). All results are measured for 0% packet loss. A separate
container running the stress-ng application is used to simulate a noisy neighbor application.

Management Interface

v v

Kubernetes Minion Node

pod1
stress-ng

Noisy
Neighbor
container

Kubernetes
Master Node

VF1 | VF2 -m E VF1

25 Gigabits
Intel* Ethernet
XXV710

Port 1

Figure 5-1 High-Level Overview of DPDK performance setup with SR-IOV VF using testpmd.

5.2 Traffic profiles
The IP traffic profiles used in these tests conform to RFC 2544:
 Packet sizes (bytes): 64, 128, 256, 512, 1024 and 1518
« L3 protocol: IPv4
» 256 bidirectional flows per container. Each flow has a different source and destination IP address.

« Bidirectional traffic with the same data rate being offered in each direction for 60 seconds.

http://RFC 2544

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

5.3 Test results

5.3.1 Results of DPDK application performance in containers with EPA

The test results in Figure 5-2 compare the DPDK performance using testpmd in both a container and a host. Tests were run in
each of these environments of the performance of physical functions (PF) and SR-10V VFs. Tests are run in the host for PF-PF
and VF-VF traffic using 2 x25G ports and testpmd that is assigned two logical sibling cores with hyper threading enabled.
These results are compared to testpmd performance in container for VF-VF traffic. The results show that Kubernetes can

run DPDK applications inside a container and get almost similar performance to when itis run inside the host, providing the
benefit of EPA features SR-IOV, core pinning and huge pages to container-based environments.

Testpmd is assigned two hyper threaded sibling cores in each case. Results show the performance as system throughput in
millions of packets per second (Mpps) and packet latency when running RFC 2544 tests with 0% frame loss for 2 25G ports.

The following is key to understanding the test codes:

« 2P_1C_2T_HOST_PF (gray bar) indicates the test configuration run with 2x25G ports and are assigned 1Core/2Threads with
hyper thread enabled. The test is run inside host without container between PF-PF.

« 2P_1C_2T HOST_VF (light blue bar) indicates the test configuration run with 2x25G ports and are assigned 1Core/2Threads
with hyper thread enabled. The test is run inside a host without container between VF-VF.

« 2P_1C_2T_HOST_Container (dark grey bar) indicates the test configuration where the test is run with 2x25G ports and are
assigned 1Core/2Threads with hyper thread enabled. The test is run inside container between VF-VF.

Host v/s Container Host v/s Container
DPDK testpmd - Throughput (packets/sec) DPDK testpmd - Agg Latency (us)

(4]

40
k3 30
o'-u" 35
30 3
o e
g% 2"
=2 9
£ _: 15
s 15 £10
210 4
i, Mm .

64 128 256 512 1024 1518 64 128 256 512 1024 1518

Packet Size (Bytes) Packet Size (Bytes)
H2P_1C_2T Host PF m2P_1C_2T Host VF m2P_1C_2T Container VF B2P_1C_2T Host_PF W 2P_1C_2T_Host_VF M2P_I1C_2T Container_VF

Figure 5-2 DPDK testpmd performance comparison for host versus container with EPA using 2 25G ports.

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

The test results in Figure 5-3 & Figure 5-4 below show DPDK performance running testpmd application in containers with
up to 16 containers running concurrently in the same physical host and sharing the SR-10V VFs from same 2x25 physical
NIC ports. The results show that using SR-10V, huge pages, core pinning and core isolation, provides more than 20Gbits/sec
performance for 64-byte packets that scales to 48Gbits/sec (96% line rate) for packet sizes of 512 bytes and above for all
container cases.

Testpmd in each container is assigned two separate hyper threaded sibling cores. Results show the performance as system
throughput in packets/sec and Gbits/sec when running RFC 2544 test with 0% frame loss.

DPDK testpmd Performance (Containers)
Throughput (Packets/sec)

40000000
35000000
§ 30000000]
25000000 | |
=S
& 20000000 =
5
£ 15000000 bl
3 10000000 =
£=
=
5000000 - - - ; IIII
o | __ ._ “EENn
64 128 256 512 1024 1518

Packet Size (Bytes)
M | Container M 2 Containers M4 Containers B8 Containers ™M 16 Containers

Figure 5-3 DPDK testpmd performance shown as packets/sec with multiple containers using EPA.

DPDK testpmd Performance (Containers)
Throughput (Gbits/sec)

50
as
a0
(5]
8 35
£ 30
=)
9 25
2
2 20
¥
3 15
£ 10
5
(]
64 128 256 512 1024 1518

Packet Size (Bytes)
M| Container M2 Containers M4 Containers M8 Containers ™16 Containers

Figure 5-4 DPDK testpmd performance as Gbits/sec with multiple containers using EPA.

Note: The system used for this performance benchmarking report was based on the Intel Xeon Gold Processor 6138T CPU
running at 2.00 GHz with 20 physical cores (40 hardware threads). Intel also offers CPUs with a higher number of cores,
including the Intel Xeon Platinum Processor 8180 with 28 cores (56 hardware threads) running at 2.50 GHz. The aggregated
system throughput in this test report is limited by the number of NIC ports used (2x25G). Xeon Scalable Processor-based
systems, like the one used in this report, are capable of scaling to much higher network throughput as shown in a number of
DPDK performance benchmarking reports available at http://dpdk.org/doc. Higher performance should be achievable when
using more NIC ports and available cores in the system.

Detailed results for all container test cases are provided in Appendix B.1 & B.2. DPDK test results for all packet sizes for host
tests are available in Appendix B.1

http://dpdk.org/doc.

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

5.3.2 Test results of DPDK application performance in containers with and without CMK

The test results in this section show network throughput and packet latency for 16 containers running the testpmd application
with and without a noisy neighbor container present and also when using CPU core pinning and CPU core isolation and when
not using CPU core pinning and CPU core isolation.

The application containers are deployed using Kubernetes. CMK assigns two hyper-threaded sibling cores to each container
application from its dataplane core pool. When running testpmd with CMK, the cores that are isolated and assigned via CMK
are used to run the application. When running testpmd without CMK, two separate hyper-thread sibling cores are assigned to
each testpmd instance manually.

Without CMK, Kubernetes may place the noisy neighbor container on the same physical core where the container under test

is running. In this scenario, the noisy application may share the cores assigned to the application under test, thus impacting
target application performance. The performance impact will vary depending on the load placed by the noisy container on the
application assigned cores. In these tests, a load of 50% is generated on all available cores using stress-ng.

Tests data is collected and compared for the following use cases:

1. Without CMK and no noisy neighbor

2. With CMK and no noisy neighbor

3. Without CMK in presence of noisy neighbor
4. With CMK in presence of noisy neighbor

The results show a detrimental impact of having a noisy neighbor container when no CMK functionality is available compared
to when CPU core isolation and CPU core pinning are available. This demonstrates how this technology alleviates the impact of
noisy neighbors on application performance.

DPDK testpmd performance 16 Containers
Throughput (Packets/sec)

35000000
L=
g 30000000
S
2
2 25000000
[1-]
[~
& 20000000
j=5
-
S 15000000
£
= 10000000
5000000 I I II
5 il N ks i
64 128 256 512 1024 1518

Packet Size (Bytes)
H No-CMK = No-CMK NN HmE CMK ®ECMKNN

Figure 5-5 testpmd packets/sec with and without CMK and noisy neighbor for 16 containers.

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

As shown in Figure 5-6 & Figure 5-7:

« When running testpmd without CMK, the presence of a noisy neighbor container caused network throughput to degrade
by more than 70% for packet sizes 512 bytes and smaller while the throughput is ~25% less for larger packet sizes.

« Similarly, packet latency increased by more than 20 times for most packet sizes.

« When running the testpmd using CMK, the performance is not impacted by having a noisy neighbor container in the
system due the cores being isolated. As a result, running testpmd with CMK gets consistent performance. Detailed results
for all container test cases are provided in appendices B.1 & B.2.

DPDK testpmd performance 16 Containers
Throughput (Gbits/sec)

256 1024 1518
Packet Size (Bytes}

HNo-CMK HENo-CMKNN ®CMK ®ECMKNN

50
4
4
3
3
2
2
1
1

Throughput Gbits/sec
U o o 1 o o un

o

Figure 5-6 testpmd throughput with and without CMK and noisy neighbor for 16 containers.

DPDK testpmd performance 16 Containers
Avg packet latency (us)

1024 1518

1000

100

1

o

Avg Packet Latency (us)

[y

Packet Size (Bytes)
H No-CMK mCMK m No-CMKNN mCMK NN

Figure 5-7 testpmd average packet latency with and without CMK and noisy neighbor for 16 containers.

10

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

6.0 Setting Up the Test of Kernel Network Application Performance in Containers Using
SR-IOV Virtual Functions

©.1.1 Test setup

The test setup for running gperf server workload is shown in Figure 6-1. The gperf clients run on a separate physical

server connected to SUT using a single 25 GbE NIC port. Both client and server processes run on Intel Xeon Gold Processor
6138T-based servers. Up to 16 containers, each running qperf server, are instantiated and connected to gperf clients. There is
one gperf client instance for each gperf server and one flow between client and server. Each container pod is assigned one VF
instance from the same 25Gbe NIC port. The maximum theoretical system throughput is thus 25Gbps bidirectional. The tests
are run with unidirectional traffic where the client is sending and the server is receiving for a maximum of 25Gbps network
throughput. A container running stress-ng is used to simulate a noisy neighbor scenario.

Management Interface

Kubernetes Minion Node

pod1 pod?2 pod3 podn
stress-ng testpmd testpmd testomd
Noisy container container container

Neighbor
container

Kubernetes
Master Node

25 Gigabits
Intel* Ethernet
XXV710

Port 0
Client
Server running multiple gperf clients

Figure 6-1 High-level overview of kernel driver performance setup with SR-IOV VF using gperf.

6.1.2 Traffic profiles

The traffic profile used for gperf tests are as follows:
 Packet sizes (bytes): 64, 128, 256, 512, 1024 and 1472
« L3 protocol: IPv4
* L4: UDP & TCP

« 1 flow per container in one direction where client is sending the data to the gperf server

11

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

6.2 Test results

The performance test results in this section show the network throughput and packet latency for 16 containers running gperf
server with and without noisy neighbor container present. The gperf containers are deployed using Kubernetes* and gperf
application is run with and without CMK. When gperf is run using CMK, CMK isolates and assigns two hyper threaded sibling
cores to a gperf server instance inside a container from its dataplane core pool.

Dataplane cores are exclusive and only one workload can acquire a pair of hyper threaded cores. When gperf is run without
CMK, it is not pinned to any specific cores and thus is free to use any available cores in the system. Tests are run for both TCP
and UDP traffic types. Each test iteration is run for a duration of five minutes.

Without CMK, Kubernetes may place the noisy neighbor container on the same physical system where the container under test
is running. In this scenario, the noisy application may share the cores assigned to the application under test, thus impacting
the target application's performance. Performance impact will vary depending on the load placed by the noisy container on
the application assigned cores. In these tests, a load of 50% is generated on all available cores using stress-ng application.

Test data is collected and benchmarked for the following test cases:

1. Without CMK and no noisy neighbor

2. With CMK and no noisy neighbor

3. Without CMK in presence of noisy neighbor

4. With CMK in presence of noisy neighbor
The results show a detrimental impact of having a noisy neighbor container when no CMK functionality is available compared
when CPU core isolation and CPU core pinning are available. This demonstrates how this technology alleviates the impact of
noisy neighbors on application performance.

6.2.1 Qperf container TCP throughput performance with and without CMK

The test results in this section show the system performance for TCP traffic for a 16-container test case. There is one
connection per container which means there are a total 16 TCP connections altogether.

The test results are described below and also shown in Figure 6-2 & Figure 6-3:

« With SR-IOV enabled for the gperf container, more than 23Gbits/sec throughput is achieved for both CMK and non-CMK
test cases as reported by gperf clients. Note: The throughput reported by gperf clients does not account for TCP header
(32 bytes), IP header (20 bytes) and Ethernet header (14 bytes) for each packet, thus reducing the effective line rate.

» When running gperf without CMK, the presence of a noisy neighbor container caused network throughput to degrade by
more than 70% for 64 and 128-byte size packets and ~20% lower for packet sizes greater than 512 bytes. The latency
increased more than 70 times for most packet sizes.

Qperf(TCP) Performance - 16 Containers
Throughput (Gbits/sec)

25.00
(S
2 20.00
b .
£
(U]
£ 15.00
[=1
=
[+1]
=
2 10.00
L
|_

5.00 I

0.00 I

64 128 256 512 1024 1472

Message Size (Bytes)
®H NoCMK mCMK ®mNoCMKNN mCMKNN
Figure 6-2 gperf TCP throughput comparison with and without CMK and noisy neighbor for 16 containers.

12

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

* When running the gperf server using CMK, the performance is not impacted by having a noisy neighbor container running
in the system, as the cores are now isolated and assigned to the gperf server and are not available to other containers.

« Detailed results for all container test cases for gperf TCP are presented in Appendices B.3 & B.4

Qperf(TCP) Performance - 16 Containers
Avg packet latency (us)

10000.00
2 1000.00
-
(%]
c
&
= 100.00
0
-
(=]
i)
o
2
2 1000
1.00
64 128 256 512 1024 1472

MessageSize (Bytes)
® No CMK B CMK ® No CMKNN B CMK NN

Figure 6-3 gperf TCP latency comparison with and without CMK and noisy neighbor for 16 containers.

6.2.2 Qperf container UDP throughput performance measured with and without CMK

The test results in this section show the system performance for UDP traffic for the 16-container test case. There is one flow
per container, which means there are a total of 16 UDP flows altogether.

The test results are described below and also shown in Figure 6-4 & Figure 6-5:

« With SR-IOV enabled for the gperf container, more than 20Gbits/sec throughput is achieved for both CMK and non-CMK
test cases as reported by gperf clients. Note: The throughput reported by gperf clients does not account for UDP header
(20 bytes), IP header (20 bytes) and Ethernet header (14 bytes) for each packet thus reducing the effective line rate of
25Gbits/sec.

« When running qgperf without CMK, the presence of a noisy neighbor container caused network throughput to drop more
than 50% for 64-byte packet size and more than 70% for all other packet sizes and latency increased more than 70 times
for most packet sizes.

» When running the gperf server using CMK, the performance is not significantly impacted by having a noisy neighbor
container running in the system. For certain packet sizes and container cases, non-CMK tests seems to perform better than
CMK test case. This is due to the current limitation of CMK where only two hyper threaded sibling cores can be assigned to
the container application. When not using CMK, the application is free to use any available cores. This limitation is expected
to be addressed in future releases of CMK.

13

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

« UDP performance for 64-byte packet sizes is lower compared to TCP. This is because TCP/IP improves network efficiency
by reducing the number of packets that need to be sent over the network by combining a number of small outgoing
messages and sending them all at once (Nagle's algorithm) thus reducing the packet headers overhead on the wire as well
server processing overhead.

« Detailed results for all container cases for qperf UDP tests are available in Appendices B.5 & B.6.

Qperf(UDP) Performance - 16 Containers
Throughput (Gbits/sec)
25.00

15.00

10.00

00 I I
0.00 IIlllllIl III.II II

512 1024 1472
Message Size (Bytes)

B NoCMK ECMK ®ENoCMKNN mCMKNN

N
o
=]
o

Throughput Gbit/sec

Figure 6-4 gperf UDP throughput comparison with and without CMK and noisy neighbor for 16 containers.

Qperf(UDP) Performance - 16 Containers
Avg packet latency (us)
10000.00

1000.00

100.00

1.00

1024 1472

Avg packet latency (us)

Message Size (Bytes)
B NoCMK ECMK B NoCMKNN mCMKNN

Figure 6-5 gperf UDP latency comparison with and without CMK and noisy neighbor for 16 containers.

14

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

7.0 Kubernetes Cluster Deployment

The test setup and methodology follows the user guide titled: Installation and Configuration Guide for Kubernetes and
Container Bare Metal Platform. This document is also part of the Container Experience Kit and provides instructions on how
to deploy a Kubernetes cluster including one master node and one minion node. This document can be downloaded from the
link found in Appendix D.

Note: The SR-IOV CNI plugin for Kubernetes needs to be installed in the minion node as per the user guide instructions as VFs
are used for networking for the containers. All container workloads run on the minion node that is referred to in this document
as the system under test (SUT).

After the instructions in the user guide are complete, three container images will be created: one for DPDK testpmd, one for
the gperf server and another one for stress-ng.

8.0 Test Execution

In this section, detailed steps are provided for conducting a series of tests to demonstrate the positive impact of huge pages
and CPU core pinning and CPU core isolation. The first series of tests use testpmd to demonstrate EPA benefits for the
throughput of DPDK-enabled applications.

The second series of tests uses gperf to generate the traffic for throughput and latency tests for non-DPDK applications. In the
last series of tests, stress-ng is used to represent a noisy neighbor application in order to show how CPU core pinning and CPU
core isolation can provide deterministic application performance for a target application.

8.1 DPDK application container test execution
8.1.1 Running testpmd without CMK

The following are the necessary steps to take in order to run testpmd without CMK.
Deploy DPDK pods and connect to it using a terminal window.

kubectl create -f no-cmk-dpdk-pod<x>.yaml
kubectl exec no-cmk-dpdk-pod<x> -ti - bash
1. Each pod is assigned two VFs, one from each physical port from 2x25Gbe NIC.

2. Use container ID (CID) to get the PCl address of each VF assigned to the container.

kubectl exec dpdk-pod-cl-ml -ti - bash

export cid="S$(sed -ne ‘/hostname/p’ /proc/l/task/l/mountinfo | awk -F /' ‘{print
$6}’)-north0”

export PCIADDR1="$(awk —-F '’/ ‘{print $4}’ /sriov-cni/$cid)”

export cid="S$(sed -ne ‘/hostname/p’ /proc/l/task/l/mountinfo | awk -F ‘// ‘{print
$6}")-south0”

export PCIADDR2="$(awk —-F ‘7’ ‘{print $4}’ /sriov-cni/$cid)”
3. Run the DPDK testpmd app in each container.
x86 64-native-linuxapp-gcc/app/testpmd —file-prefix=<name>--socket-mem=1024,1024 -1
<corel, core2> -w S$PCIADDR]1 -w S$PCIADDR2 -n 4 -- -I -txgflags=0xf0l -txd=2048 - rxd=2048
testpmd> start
Note: To run testpmd, at least two logical cores must be assigned to the application. One core for control plane and one

for data plane. These cores should be separate cores for each testpmd instance. Two hyper threaded sibling cores are used
in the above command.

4. Start RFC2544 test on Ixnetwork with 256 flows for each container running testpmd. Flows are specified by DMAC address
matching to the virtual function’s MAC address assigned to the container.

15

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

8.1.2 Running testpmd with CMK

The following are the necessary steps to take to run testpmd with CMK.

1. Deploy DPDK pods and connect to it using a terminal window.

kubectl create -f cmk-dpdk-pod<x>.yaml

kubectl exec cmk-dpdk-pod<x> -ti - bash
2. Each pod is assigned two VFs, one from each physical port from 2x25G NIC.
3. Create /etc/kcm/use_cores.sh file with the following content:

#!/bin/bash

export CORES='printenv KCM CPUS ASSIGNED

COMMAND=${Q//" $CORES’/$CORES}

SCOMMAND

Note: The above script uses CMK to assign the cores from temporary environment variable ‘KCM_CPUS_ASSIGNED' to
its local variable CORES. Then, this variable substitutes $CORES phrase in command provided below as argument to this
script and executes it with the correct cores selected.

4. Make this an executable script:
chmod +x /etc/kcm/use cores.sh
5. Use container ID (CID) to get the PCl address of each VF assigned to the container.

kubectl exec dpdk-pod-cl-ml -ti - bash

export cid="S$(sed -ne ‘/hostname/p’ /proc/l/task/l/mountinfo | awk -F Y/ ‘{print
$6}’)-north0”

export PCIADDRI="$(awk —-F ‘7' ‘{print $4}’ /sriov-cni/S$cid)”

export cid="S$(sed -ne ‘/hostname/p’ /proc/l/task/l/mountinfo | awk -F Y/ ‘{print
$6}’)-south0”

export PCIADDR2="$(awk -F '"' '"{print $4}' /sriov-cni/S$cid)"
6. Start testpmd using use_cores.sh script:

/opt/bin/kcm isolate --conf-dir=/etc/kcm --pool=dataplane /etc/kcm/use cores.sh 'testpmd
——file-prefix=<name> --socket-mem=1024,1024 -1 \SCORES - -w SPCIADDR]1 -w S$PCIADDR2 -n 4 -- -i
——txgflags=0xf01 --txd=2048 --rxd=2048"

testpmd> start
7. Start RFC2544 test on Ixnetwork with 256 flows for each container running testpmd. Flows are specified by DMAC address
matching to the VF's MAC address assigned to the container.
8.2 Non-DPDK application container test execution

When i40evf kernel mode driver is loaded in the container for a VF, the driver doesn't set the MAC address filter correctly. This
issue is expected to be addressed in a future driver release. The following workaround is needed with the current version of
driver before VF can start to receive traffic.

1. Find MAC addresses assigned to the VF in dmesg:

#dmesg | grep “MAC Address:”
[54.297588] 140evf 0000:18:02.0: MAC address: 52:54:00:10:6d:64

2. Set VF MAC to the MAC address seen above:

#ip link set dev virtual-1 vf n <mac>

16

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

8.2.1 Running gperf tests without CMK
The following are the necessary steps to take to run gperf without CMK.
1. Deploy gperf pods and connect to it using a terminal window.
kubectl create -f no-cmk-gperf-pod<x>.yaml
kubectl exec no-cmk-gperf-pod<x> -ti - bash
2. Each container is assigned 1 VF from the same physical port of the 2x25Gbe NIC.
3. Turning off adaptive interrupts for VF driver and adjust ring size.
ethtool -G southO rx 256
ethtool -G southO tx 256
ethtool -C southO adaptive-rx off
ethtool -C southO adaptive-tx off
4. Run the gperf server in each container.
gperf
5. Start gperf TCP tests on gperf client system one client per gperf server instantiated.

gperf <server ip> tcp bw tcp lat ud lat ud bw

8.2.2 Running gperf tests with CMK

For kernel network application performance tests using SR-I0OV VF driver, CMK assigns an isolated core to the container
application. However, the kernel VF driver runs inside the host and its interrupt affinity is not managed by CMK. As a result,
the VF driver uses cores that may be different than the ones assigned to container application. Each VF driver has four queues
and interrupts for these queues, by default, use cores 0-3. CMK does not isolate these cores for VF driver. A workaround is

to manually add these cores to the list of isolated cores in the file /boot/grub/grub.cfg after deploying cluster on the minion
node.

1. To implement the workaround, update /boot/grub/grub.cfg file to add VF driver interrupt cores to the list of isolated cores
as below.

GRUB _ CMDLINE LINUX="SGRUB CMDLINE LINUX intel iommu=on" # added by onp sriov role
GRUB _CMDLINE LINUX="SGRUB CMDLINE LINUX
isolepus=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,40,41,42,43,44,45,46,47,48,49, 50,
51,52,53,54,55,56,57,58,59,60" # added by onp isolcpus role

GRUB CMDLINE LINUX="SGRUB CMDLINE LINUX default hugepagesz=1G hugepagesz=1G hugepages=16"
added by onp hugepages role

2. Save /boot/grub/grub.cfg and run grub-update and reboot the system.
3. Deploy gperf pods and connect to it using a terminal window.
kubectl create -f cmk-gperf-pod<x>.yaml
kubectl exec cmk-gperf-pod<x> -ti - bash
4. Each container is assigned one VF from the same physical port of the 2x25Gbe NIC.
5. Turn off adaptive interrupts for VF driver and adjust ring size.

ethtool -G southO rx 256
ethtool -G southO tx 256
ethtool -C southO adaptive-rx off
ethtool -C southO adaptive-tx off

6. Run the gperf server in each container using use_cores.sh script:
/opt/bin/kcm isolate —--conf-dir=/etc/kcm --pool=dataplane gperf
7. Start gperf TCP tests on gperf client system one client per gperf server instantiated.

qgperf <server ip> tcp bw tcp lat ud lat ud bw

17

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

9.0 Summary

The results of performance benchmarks detailed in this report demonstrate the improved data plane and application
performance that comes from utilizing EPA (CPU pinning and isolation, SR-IOV and huge pages) with DPDK on servers based
on Intel Xeon Gold Processor 6138T.

As shown in the executive summary, using SR-10V for networking, huge pages, core pinning and DPDK allowed for improved
data throughput in a containerized application (testpmd).

Application performance predictability was also achieved utilizing core pinning and isolation, which negated the impact of a
noisy neighbor application (stress-ng). This performance was significant in non-DPDK applications; but the performance when
DPDK applications were used was close to the performance delivered when the applications are running in the host.

Network performance and application performance predictability are critical performance metrics for containerized
applications. This benchmark performance report gives developers the tools to maximize both metrics for their applications.

To access more information that is part of the Intel Container Experience Kits (user guides, application notes, feature briefs
and other collateral) go to: https://networkbuilders.intel.com/network-technologies/container-experience-Kkits.

18

https://networkbuilders.intel.com/network-technologies/container-experience-kits

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

Appendix A: Configuration files
A.1 Configuration file to create a pod without CMK

apiVersion: vl
kind: Pod
metadata:
annotations:
scheduler.alpha.kubernetes.io/tolerations:
name: <pod-name>
spec:
containers:
- name: <pod-name>
image: <containerImage>
volumeMounts:
- mountPath: /sriov-cni
name: cni-volume
- mountPath: /mnt/huge
name: hugepage-volume
command: ["/bin/sleep","infinity"]
ports:
- containerPort: 81
protocol: TCP
securityContext:
privileged: true
runAsUser: 0
volumes:
- name: cni-volume
hostPath:
path: /var/lib/cni/sriov/
- name: hugepage-volume
hostPath:
path: /mnt/huge
securityContext:
runAsUser: 0
restartPolicy: Never

nodeSelector: kubernetes.io/<hostname>

19

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

A.2 Configuration file to create a pod with CMK
apiVersion: vl
kind: Pod
metadata:
labels:
app: <app-name>
annotations:
"scheduler.alpha.kubernetes.io/tolerations":
name: <pod-name>
spec:
containers:
- command:
- "sleep"
- "infinity"
env:
- name: CMK PROC FS
value: "/host/proc"
image: <container image>
name: <app-name>
resources:

requests:

v [{"key":"cmk",

pod.alpha.kubernetes.io/opaque-int-resource-cmk: 'l'

volumeMounts:
- mountPath: "/sriov-cni"
name: cni-volume
- mountPath: "/host/proc"
name: host-proc
readOnly: true
- mountPath: "/opt/bin"
name: cmk-install-dir
- mountPath: "/etc/cmk"
name: cmk-conf-dir
- mountPath: /dev/hugepages
name: hugepage-volume
securityContext:
privileged: true
runAsUser: 0
volumes:
- hostPath:
path: "/var/lib/cni/sriov/"
name: cni-volume
- hostPath:
path: "/opt/bin"
name: cmk-install-dir
- hostPath:
path: "/proc"
name: host-proc
- hostPath:
path: "/etc/cmk"
name: cmk-conf-dir
- hostPath:
path: /dev/hugepages
name: hugepage-volume

20

"value":"true"}]"'

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

A.3 Configuration file to create a stress-ng pod
kind: Pod

apiVersion: vl
metadata:
name: stress-ng
labels:
pod-1l: true
spec:
containers:
- name: stress-ng
image: lorel/docker-stress-ng:latest
imagePullPolicy: IfNotPresent
args:
- "-—cpu 0"
- "-p 50"
"-t 800m"
restartPolicy: Never

nodeSelector: kubernetes.io/<hostname>

21

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

A.4 Multus configuration file (pre-requisite for SR-10V)

cat /etc/cni/net.d/10-multus.conf
{
"name": "multus-demo-network",
"type": "multus",
"delegates": [
{

"type": "sriov",
"if0": "enpl34s0£f0",
"ifOname": "southO",
"dpdk": {

"kernel driver":"id0evf",
"dpdk driver":"vfio-pci",
"dpdk tool":"/opt/dpdk/install/share/dpdk/usertools/dpdk-devbind.py"
}
b
{

"type": "sriov",
"ifO": "enpl34sO0f1",
"ifOname": "north0",
"dpdk": {

"kernel driver":"id0evf",
"dpdk driver":"vfio-pci",
"dpdk tool":"/opt/dpdk/install/share/dpdk/usertools/dpdk-devbind.py"

"name": "cbr0",
"type": "flannel",
"masterplugin": true,
"delegate": {

"isDefaultGateway": true

22

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

A.5 ops_config.yml configuration file changes
Num of hugepages:

ovs num hugepages: 32

select one of the network types:
ovs type: multus

Enable sriov: true or false

use sriov: true

num virtual funcions:20

CMK - below 3 configurations required only when using CMK
Enable cmk: true

num dp cores = 17

Il
-

num _cp _ cores

use udev: false

use cmk: false

cmk img: "quay.io/charliekang/cmk:v1.0.1"
num dp cores: 16

num cp cores: 1

use udev: true

proxy _env:

http proxy: <http proxy configurations>

https proxy: <https proxy configurations>

socks proxy: http://proxy.example.com:1080

no proxy: "localhost,{{ inventory hostname }}"

23

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

Appendix B: Test results for all container cases

B.1 DPDK application results: Host versus container

i. Network throughput

Framesize DPDK testpmd Host v/s Container - Throughput (Gbits/sec)
2P_1C_2T_ Host_PF|2P_1C_2T_Host_VF | 2P_1C_2T_Container_VF
64 24.64842821 24.32977668 24.05972522
128 40.62500346 40.1951145 39.44886463
256 46.17185735 44.58343785 43.66716512
512 48.82810354 48.80729427 47.87857407
1024 48.55467972 48.54364922 48.24191225
1518 48.35811681 48.40570553 48.24191311

Frames per second

Framesize DPDK testpmd Host v/s Container - Throughput (Packets/sec)
2P_1C_2T_Host_PF|2P_1C_2T_Host_VF | 2P_1C_2T_Container_VF
64 36679208.64 36205024.82 35803162.52
128 34311658.33 33948576.44 33318297.83
256 20911167.28 20191774.39 19776795.8
512 11472768.69 11467879.29 11249664.96
1024 5813539.239 5812218.537 5776091.026
1518 3933527.049 3934143.85 3920831.69

iii. Packet latency

Framesize DPDK testpmd Host v/s Container - Avg Latency (us)
2P_1C_2T Host PF|2P_1C 2T Host VF [2P_1C 2T Container VF
64 7.58 7.192 7.242
128 8.9045 9.189 8.143
256 10.421 10.7235 9.0815
512 12.111 14.4315 12.9585
1024 16.9575 16.984 17.515
1518 23.8845 23.9235 24.29

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

B.2 DPDK application test results without CMK

i. Network throughput

Framesize

Testpmd - No CMK Agg Throughput

Gbits/sec)

| Container

2 Containers

4 Containers

8 Containers

16 Containers

1 Container
w/o NN

1
Container
w/ NN

2 Container
w/o NN

2 Container
w/ NN

4
Container
w/ NN

4 Container
w/o NN

8 8
Container | Container
w/o NN w/ NN

16
Container
w/o NN

16 Container
w/ NN

64

23.9864789

2.956358

23.2811492

4.497602968

20.82020865| 4.671146

20.46867| 5.219799

18.8597816

5.351472821

128

39.8000917

3.170548

40.5075808

4.600321255

37.34359043 5.1826

35.93734| 5.333913

35.0096055

5.351532942

256

44.0183599

4.831747

47.5389932

4.917708682

47.89048544| 5.316495

47.89042| 5.351523

44.5676855

14.84368586

512

47.1873714

5.248079

48.5934734

5.331246433

48.59354134| 5.351303

48.59352| 14.14057

48.5935432

14.14055012

1024

48.2420463

5.291707

48.2421166

5.351491758

48.24198052| 5.859356

48.24198| 33.12474

48.2419861

30.66392079

1518

48.2419144

5.350782

48.2419811

5.351478493

48.2419798| 8.496041

48.24196| 35.58582

48.2419794

44.02327597

Frames per second

Framesize

Testpmd - No CMK Agg Throughput (Packets/sec)

| Container

2 Containers

4 Containers

8 Containers

16 Containers

1 Container
w/o NN

1
Container
w/ NN

2 Container
w/o NN

2 Container
w/ NN

4
Container
w/ NN

4 Container
w/o NN

8 8
Container | Container
w/o NN w/ NN

16
Container
w/o NN

16 Container
w/ NN

64

35694165.1

4399343

34644567.2

6692861.56

30982453.35| 6951110

30459328| 7767557

28065151.3

7963501.221

128

33614942.4

2677828

34212483.8

3885406.465

31540194.62| 4377196

30352483| 4504994

29568923.6

4519875.796

256

19935851.4

2188291

21530341.1

2227223.135

21689531.45| 2407833

21689501| 2423697

20184640.2

6722683.815

512

11087258.3

1233101

11417639.4

1252642.489

11417655.39| 1257355

11417651| 3322503

11417655.8

3322497.678

1024

5776107.07

633585.7

5776115.49

640743.745

5776099.2| 701551.3

5776099| 3966085

5776099.87

3671446.455

1518

3920831.8

434881.5

3920837.21

434938.109

3920837.11| 690510.5

3920836| 2892215

3920837.08

3577964.562

iii. Packet latency

Framesize

Tesppmd - NO CMK Avg Latenc

(us)

1 Container

2 Containers

4 Containers

8 Containers

16 Containers

1
Container
w/ NN

1 Container
w/o NN

2 Container
w/o NN

2 Container
w/ NN

4 Container
w/o NN

4
Container
w/ NN

8 8
Container | Container
w/o NN w/ NN

16
Container
w/o NN

16 Container
w/ NN

64

7.4305] 445.943

17.7

281.7515

18.11325

502.4273

14.22288| 633.7204

12.213233

707.409813

128

8.643 705.71

17.421

507.52625

23.24475

474.3229

14.89829| 888.4254

35.367533

345.893406

256

9.927| 240.672

11.48

701.109

31.347

648.8365

74.86669| 731.5077

32.558267

338.452438

512

13.774] 144.039

14.712

131.732

12.15375

384.4215

13.65444| 297.7683

17.381375

226.432344

1024

17.1575| 1249.679

13.345

854.34825

12.41225

146.629

14.93881| 229.7188

21.373313

725.870875

1518

24.3795| 1090.054

14.37725

222.583

14.676125

495.6538

19.74025| 530.6776

29.4615

790.713406

25

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

B.3 DPDK test results with CMK

i. Network throughput
Framesize Testpmd - CMK - Agg Throughput (Gbits/sec)
| Container 2 Containers 4 Containers 8 Containers 16 Containers
1 4 8 8 16
1 Container | Container | 2 Container| 2 Container | 4 Container | Container | Container | Container | Container |16 Container
w/o NN w/ NN w/o NN w/ NN w/o NN w/ NN w/o NN w/ NN w/o NN w/ NN
64| 24.0597252| 24.05973| 23.2811448| 23.28100723| 20.82019483| 20.82022| 20.46864| 20.46865| 20.1171019| 20.11709444
128| 39.4488646| 39.44886| 40.5076415| 40.50763991| 37.34356512| 37.69514| 36.64047| 36.64047| 35.9373399| 36.64045408
256| 43.6671651| 43.66717| 47.5388593| 47.53879068| 47.89041649| 47.89042| 47.8904| 47.89045| 47.8904382| 47.53887255
512| 47.8785741| 46.83568| 48.5936118| 48.59354296| 48.59357334| 48.5935| 48.59356| 48.59352| 48.5935627| 48.59353304
1024| 48.2419122| 48.24192| 48.2419833| 48.24211707| 48.24194863| 48.24195| 48.24199| 48.24203| 48.2419266| 48.24198114
1518| 48.2419131| 48.24192| 48.2420503| 48.24191423| 48.2419867| 48.24198| 48.24202| 48.24195| 48.2419764| 48.24200544
ii. Frames per second
Framesize Testpmd - CMK Agg Throughput Packets/sec)
| Container 2 Containers 4 Containers 8 Containers 16 Containers
1 4 8 8 16
1 Container | Container | 2 Container| 2 Container | 4 Container | Container | Container | Container | Container |16 Container
w/o NN w/ NN w/o NN w/ NN w/o NN w/ NN w/o NN w/ NN w/o NN w/ NN
64| 35803162.5| 35803163| 34644560.8| 34644355.99| 30982432.78| 30982467| 30459290| 30459299| 29936163.5| 29936152.44
128| 33318297.8| 33318298| 34212535| 34212533.71| 31540173.24| 31837112| 30946343| 30946345 30352483 30946329.46
256| 19776795.8| 19776796| 21530280.5| 21530249.4| 21689500.22| 21689503| 21689495| 21689516| 21689510.1| 21530286.48
512| 11249665| 11004623| 11417671.9| 11417655.77| 11417662.91| 11417645| 11417661| 11417651| 11417660.4| 11417653.44
1024| 5776091.03| 5776091| 5776099.53| 5776115.55| 5776095.382| 5776095| 5776100| 5776105| 5776092.75| 5776099.274
1518| 3920831.69| 3920832| 3920842.84| 3920831.781| 3920837.671| 3920837| 3920840| 3920834| 3920836.83| 3920839.194
iii. Packet latency
Framesize Testpmd - CMK - Avg Latency (us)
1 Container 2 Containers 4 Containers 8 Containers 16 Containers
1 4 8 8 16
1 Container | Container | 2 Container| 2 Container | 4 Container | Container | Container | Container | Container |16 Container
w/o NN w/ NN w/o NN w/ NN w/o NN w/ NN w/o NN w/ NN w/o NN w/ NN
64 7.242 7.2985 15.84725 14.78275 17.836 16.823| 13.56663| 12.44631| 12.579156 12.754469
128 8.143 8.2545 17.5305 17.41525 23.788125| 23.4625| 14.88494| 14.73481| 26.077688| 25.511469
256 9.0815 9.5795 11.561 11.989 30.598375| 29.95588| 40.06263| 39.96363| 20.082781| 21.660906
512 12.9585| 13.9295 14.8605 15.0185 12.11325| 12.12513| 13.62781| 13.62588| 16.962094 17.400375
1024 17.515 17.492| 13.35525 13.50825 12.52625 12.688| 14.99931| 15.0505| 21.497781| 21.803938
1518 24.29 24.309| 14.42975 14.45075 14.53875 14.679| 19.62313| 19.77031| 29.346406| 29.550031

26

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

B.4 Non-DPDK (TCP) test results without CMK

Network throughput as reported by gperf client

Framesize Qperf(TCP) - No CMK Agg Throughput (Gbits/sec)
| Container 2 Containers 4 Containers 8 Containers 16 Containers
1 Container | 1 Container | 2 Container | 2 Container | 4 Container |4 Container|8 Container|8 Container|16 Container| 16 Container
wjfo NN w/ NN w/o NN w/ NN wjfo NN w/ NN wjo NN w/ NN wjfo NN w/ NN
64 1.01 0.303 2.05 0.689 3.80 1.002 7.46 2.786 14.44 3.402
128 1.95 0.612 3.71 1.174 7.01 2.834 13.84 3.391 23.49 6.322
256 3.11 1.176 6.41 2.288 11.54 3.400 22.68 3.970 23.54 10.362
512 6.20 1.992 12.33 2.936 19.96 2.800 23.52 7.438 23.55 16.617
1024 10.01 1.816 18.84 3.416 22.51 6.368 23.54 11.272 23.55 18.256
1472 12.64 2.032 19.66 3.896 23.53 8.392 23.54 11.416 23.56 19.264
Packet latency as reported by gperf client
Framesize Qperf(TCP) - NO CMK Avg Latency (us)
| Container 2 Containers 4 Containers 8 Containers 16 Containers
| Container | | Container | 2 Container | 2 Container | 4 Container |4 Container|8 Container|8 Container|16 Container| |16 Container
wjfo NN w/ NN w/o NN w/ NN wjfo NN w/ NN wjo NN w/ NN wjfo NN w/ NN
64 12.32 2000 14.88 1985 16.64 1998 16.29 1988 22.09 1987
128 12.34 2000 15.88 1740 16.08 1918 18.20 2000 19.24 1993
256 14.89 2000 15.70 1910 14.22 1998 18.93 1998 19.08 1994
512 22.40 2000 20.75 1975 20.26 2000 21.67 2000 24.08 1821
1024 25.38 2000 25.50 2000 25.68 2000 25.74 2000 26.20 1949
1472 38.96 2000 38.94 2000 40.94 2000 41.44 2000 44.80 1883

B.5 Non-DPDK (TCP) test results with CMK

Network throughput as reported by gperf client

Framesize Qperf(TCP) - CMK Agg Throughput (Gbits/sec)
| Container 2 Containers 4 Containers 8 Containers 16 Containers
1 Container | 1 Container | 2 Container | 2 Container | 4 Container |4 Container|8 Container|8 Container|16 Container| 16 Container
wjfo NN w/ NN w/o NN w/ NN wjfo NN w/ NN wjo NN w/ NN wjfo NN w/ NN
64 1.065 1.064 2.029 2.037 3.867 3.951 7.473 7.556 14.116 13.112
128 1.976 1.996 3.836 3.834 7.369 7.337 13.798 13.554 23.524 23.510
256 3.591 3.629 6.820 6.767 12.902 13.021 21.951 21.525 23.544 23.532
512 6.205 6.291 10.835 11.825 22.156 19.713 23.543 23.532 23.550 23.550
1024 10.178 10.421 18.560 13.493 23.533 23.534 23.538 23.518 23.561 23.537
1472 12.928 12.939 23.509 19.040 23.538 23.532 23.545 23.538 23.546 23.538
Packet latency as reported by gperf client
Framesize Qperf(TCP) - CMK Avg Latency (us)
| Container 2 Containers 4 Containers 8 Containers 16 Containers
| Container |1 Container| 2 Container | 2 Container | 4 Container |4 Container|8 Container|8 Container|16 Container| 16 Container
wjfo NN w/ NN w/o NN w/ NN wjfo NN w/ NN wjo NN w/ NN wjfo NN w/ NN
64 22.432 19.007 23.677 18.915 18.803 20.200 21.853 22.599 25.007 25.652
128 16.674 20.071 20.980 20.341 21.181 20.133 22.062 23.641 27.719 27.916
256 16.197 20.076 20.560 18.077 20.925 21.051 24.776 24.886 26.995 27.185
512 24.552 25.141 22.846 24.020 24.407 24.440 26.271 26.164 29.318 29.230
1024 26.138 26.217 25.704 25.978 26.235 26.775 27.563 27.673 30.386 30.593
1518 41.730 43.808 42.317 44.781 43.559 46.019 47.521 49.794 53.191 51.097

27

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

B.6 Non-DPDK (UDP) test results without CMK

i. Network throughput as reported by gperf client

Framesize Qperf(UDP) - No CMK Agg Throughput (Gbits/sec)
| Container 2 Containers 4 Containers 8 Containers 16 Containers
1 Container |1 Container| 2 Container | 2 Container | 4 Container | 4 Container | 8 Container | 8 Container | 16 Container |16 Container
wjfo NN w/ NN w/o NN w/ NN wjfo NN w/ NN w/o NN w/ NN w/o NN w/ NN
64 0.311 0.005 0.309 0.096 0.860 0.086 1.413 0.426 3.178 0.862
128 0.624 0.007 0.598 0.181 2.200 0.586 3.334 0.799 6.963 1.512
256 1.199 0.006 1.189 0.150 4.387 0.487 8.402 0.960 13.516 1.547
512 2.352 0.014 4.206 0.365 6.657 0.974 14.975 1.792 21.853 3.318
1024 4.779 0.045 4.500 1.073 16.703 1.787 22.284 6.958 23.520 3.119
1472 6.979 0.110 11.351 0.034 18.110 0.174 23.709 0.709 23.996 3.724
ii. Packet latency as reported by gperf client
Framesize Qperf(UDP) - No CMK Avg Latency (us)
| Container 2 Containers 4 Containers 8 Containers 16 Containers
1 Container | | Container | 2 Container | 2 Container | 4 Container | 4 Container | 8 Container | 8 Container | 16 Container |16 Container
wjfo NN w/ NN w/o NN w/ NN wjfo NN w/ NN w/fo NN w/ NN w/fo NN w/ NN
64 12.08 1940 19.91 2000 14.58 1960 22.32 1898 21.47 1961
128 12.05 1970 12.15 2000 21.46 1903 17.77 1960 23.17 1934
256 24.96 1990 26.94 1975 23.61 1993 24.58 1989 24.77 1845
512 25.11 1980 26.04 2000 26.13 1993 25.21 1983 26.02 1954
1024 26.97 2000 26.95 2000 26.83 1988 26.87 2000 27.07 1988
1472 27.10 1990 27.10 1955 27.13 1813 27.22 1921 27.28 2001
B.7 Non-DPDK (UDP) test results with CMK
i. Network throughput as reported by gperf client
Framesize Qperf(UDP) - CMK Agg Throughput (Gbits/sec)

| Container 2 Containers 4 Containers 8 Containers 16 Containers
1 Container |1 Container| 2 Container | 2 Container | 4 Container |4 Container | 8 Container | 8 Container | 16 Container |16 Container
w/fo NN w/ NN w/fo NN w/ NN w/fo NN w/ NN w/fo NN w/ NN w/fo NN w/ NN
64 0.289 0.303 0.507 0.557 0.981 1.041 0.902 0.984 1.271 1.131
128 0.563 0.575 1.179 0.792 1.812 1.318 2.132 1.964 5.310 2.618
256 1.136 1.108 1.516 1.403 3.434 2.415 5.945 4.814 8.233 5.347
512 2.334 2.469 4.302 2.814 6.878 6.729 10.805 9.080 15.634 11.578
1024 4.632 4.968 7.320 9.136 12.652 9.732 16.326 15.225 22.788 18.616
1472 6.952 7.061 12.729 7.085 18.579 19.169 20.175 20.521 23.926 23.948
ii. Packet latency results as reported by gperf client
Framesize erf(UDP) - CMK Avg Latency (us)
| Container 2 Containers 4 Containers 8 Containers 16 Containers
1 Container |1 Container| 2 Container | 2 Container | 4 Container |4 Container | 8 Container | 8 Container | 16 Container |16 Container
w/fo NN w/ NN w/fo NN w/ NN w/fo NN w/ NN w/fo NN w/ NN w/fo NN w/ NN
64 12.521 24.977 19.728 26.961 13.639 26.972 21.079 24.215 25.497 26.225
128 19.131 24,968 17.009 19.836 18.051 21.001 23.966 25.165 24.974 25.327
256 25.006 26.976 24.996 26.973 25.489 24.361 25.438 25.697 26.064 26.958
512 26.984 26.972 26.9659 27.002 26.532 26.545 25.452 26.208 26.947 27.716
1024 26.967 26.964 26.974 26.977 26.983 27.080 27.151 27.592 28.314 28.196
1472 27.100 27.113 27.112 27.103 27.108 27.125 27.228 27.355 27.886 28.060

28

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

Appendix C: Abbreviations

Abbreviation

Description

CMK

CPU Manager for Kubernetes

COE Container orchestration engine
CPU Central Processing Unit

DPDK Data Plane Development Kit
DUT Device Under Test

EPA Enhanced Platform Awareness
NFD Node Feature Discovery

NFV Network Functions Virtualization
PF Physical Function

PMD DPDK Poll Mode Driver

p-state CPU performance state

SDI Software Defined Infrastructure
SDN Software Defined Networking
SKU Stock Keeping Unit

SLA Service Level Agreement
SR-IOV single root input/output virtualization
SUT System Under Test

VF Virtual Function

VIM Virtual Infrastructure Manager
VNF Virtual Network Function

29

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

Appendix D: Reference Documents

Title Reference

1 Kubernetes Overview https://kubernetes.io/docs/concepts/overview/what-is-kubernetes

2 Kubernetes API Server https://kubernetes.io/docs/admin/kube-apiserver,

3 Kubernetes Pod Overview https://k rnetes.i ncepts/workl -overview

4 Multus CNI Plugin https://github.com/Intel-Corp/multus-cni

5 SR-10V https://www.intel.com/content/dam/www, li n ment

technology-briefs/sr-iov-nfv-tech-brief.pdf

SR-IOV CNI Plugin https://github.com/Intel-Corp/sriov-cni

7 Enhanced Platform Awareness https://builders.intel.com/docs/networkbuilders/EPA_Enablement_Guide_

V2.pdf

Node Feature Discovery https://github.com/Intel-Corp/node-feature-discover
CPU Manager for Kubernetes https://github.com/Intel-Corp/CPU-Manager-for-Kubernetes

10 Use cases for Kubernetes https://thenewstack.io/dls/ebooks/TheNewStack_UseCasesForKubernetes.pdf

11 Kubernetes Components https://kubernetes.i ncepts/overview/component

12 Containers vs Virtual Machines https://docs.docker.com/get-started/ - containers-vs-virtual-machines

13 Intel Ethernet Converged Network http://ark.intel.com/products/83964/Intel-Ethernet-Converged-Network-
Adapter X710-DA2 Adapter-X710-DA2

14 Intel Ethernet Network Adapter http://ark.intel.com/products/95260/Intel-Ethernet-Network-Adapter-
XXV710-DA2 XXV710-DA2

15 Intel Server Board S2600WT2 http://ark.intel.com/products/82155/Intel-Server-Board-S2600W T2

17 Intel Xeon GOLD 6138T Processor http://ark.intel.com/products/123542/Intel-Xeon-Gold-6138T-Processor-
27 5M-Cache-2_00-GHz

18 RFC 2544 Benchmarking https://tools.ietf.org/html/rfc2544
Methodology

19 Installation and Configuration https://networkbuilders.intel.com/network-technologies/container-
Guide for Kubernetes and experience-kits

Container Bare Metal Platform

30

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/admin/kube-apiserver/
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://github.com/Intel-Corp/multus-cni
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/sr-iov-nfv-tech-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/sr-iov-nfv-tech-brief.pdf
https://github.com/Intel-Corp/sriov-cni
https://builders.intel.com/docs/networkbuilders/EPA_Enablement_Guide_V2.pdf
https://builders.intel.com/docs/networkbuilders/EPA_Enablement_Guide_V2.pdf
https://github.com/Intel-Corp/node-feature-discovery
https://github.com/Intel-Corp/CPU-Manager-for-Kubernetes
https://thenewstack.io/dls/ebooks/TheNewStack_UseCasesForKubernetes.pdf
https://kubernetes.io/docs/concepts/overview/components/
https://docs.docker.com/get-started/
http://ark.intel.com/products/83964/Intel-Ethernet-Converged-Network-Adapter-X710-DA2
http://ark.intel.com/products/83964/Intel-Ethernet-Converged-Network-Adapter-X710-DA2
http://ark.intel.com/products/95260/Intel-Ethernet-Network-Adapter-XXV710-DA2
http://ark.intel.com/products/95260/Intel-Ethernet-Network-Adapter-XXV710-DA2
http://ark.intel.com/products/82155/Intel-Server-Board-S2600WT2
http://ark.intel.com/products/123542/Intel-Xeon-Gold-6138T-Processor-27_5M-Cache-2_00-GHz
http://ark.intel.com/products/123542/Intel-Xeon-Gold-6138T-Processor-27_5M-Cache-2_00-GHz
https://tools.ietf.org/html/rfc2544
https://networkbuilders.intel.com/network-technologies/container-experience-kits
https://networkbuilders.intel.com/network-technologies/container-experience-kits

Performance Benchmark Report | Enhanced Platform Awareness in Kubernetes

intel.

Legal Information

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-
exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL

PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSO-
EVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifi cations. Current characterized
errata are available on request. Contact your local Intel sales once or your distributor to obtain the latest specifications and before placing your product order.

Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer or retailer. Tests document performance of components on
a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you
consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performan:

All products, computer systems, dates and gestures specified are preliminary based on current expectations, and are subject to change without notice. Results have been estimated or simulated
using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may
affect your actual performance.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses.

Intel does not control or audit third-party websites referenced in this document. You should visit the referenced website and confirm whether referenced data are accurate.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of
documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual
property rights.

Intel, the Intel logo, Intel vPro, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

*Other names and brands may be claimed as the property of others.

© 2018 Intel Corporation . All rights reserved. Printed in USA Please Recycle 12/17/HM/DJA/PDFO01 Jan 2018 pm SKU 336987-001US
Enhanced Platform Awareness in Kubernetes Performance Benchmark Report

http://www.intel.com/performance

