
 1

TECHNOLOGY GUIDE
Intel Corporation

CPU Management - CPU Pinning and Isolation in
Kubernetes* Technology Guide

Authors
Philip Brownlow

Dave Cremins

1 Introduction
This document discusses the CPU pinning and isolation capability, which enables
efficient and deterministic workload utilization of the available CPUs. Kubernetes* (K8s*)
supports CPU and memory as first-class resources. Intel has created CPU Manager for
Kubernetes* (also called CMK), an open-source project that enables additional CPU
utilization optimization capabilities for K8s* and simplifies their deployment.

This document details the setup and installation of CPU Manager for Kubernetes*, set up
of power management capabilities and processes for isolation, and associated
performance benchmark results. The document is written for developers and architects
who want to integrate the new technologies into their Kubernetes*-based networking
solutions. This feature can be utilized along with the other Kubernetes capabilities in
order to achieve improved network I/O, deterministic compute performance, and server
platform sharing benefits offered by Intel® Xeon® Processor-based platforms.

CPU pinning and isolation is part of a set of tools developed to enable platform
capabilities discovery, intelligent configuration and workload-placement decisions
resulting in improved and deterministic application performance.
Note: For more setup and installation guidelines of a complete system, refer to the

Deploying Kubernetes* and Container Bare Metal Platform for Network Functions
Virtualization (NFV) Use Cases with Intel® Xeon® Scalable Processors User Guide
listed in Table 2.

This document is part of the Container Experience Kit. Container Experience Kits are a
collection of user guides, application notes, feature briefs, and other collateral that
provide a library of best-practice documents for engineers who are developing
container-based applications and can be found at:
https://networkbuilders.intel.com/network-technologies/container-experience-kits

https://networkbuilders.intel.com/network-technologies/container-experience-kits

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 2

Table of Contents
1 Introduction ... 1

1.1 Intended Audience .. 3
1.2 Terminology .. 4
1.3 Reference Documentation ... 4

2 Overview ... 5
2.1 CPU Manager for Kubernetes* .. 5
2.2 CPU Manager (in native K8s) ... 6
2.3 Technology Comparison ... 8

3 Deployment .. 9
3.1 CPU Manager for Kubernetes* .. 9
3.2 Installation .. 10
3.3 CPU Manager for Kubernetes* Commands ... 11

3.3.1 Init .. 11
3.3.2 Install ... 11
3.3.3 Discover.. 11
3.3.4 Reconcile ... 11
3.3.5 Node-Report ... 11
3.3.6 Webhook ... 12
3.3.7 Isolate ... 12
3.3.8 Describe ... 12
3.3.9 Cluster-Init .. 12
3.3.10 Uninstall ... 12
3.3.11 Reconfigure_setup ... 12
3.3.12 Reconfigure ... 12
3.3.13 Reaffinitize .. 13

3.4 Dynamic Pool Reconfiguration .. 13
3.5 Exclusive-non-isolcpus Pool .. 14

3.5.1 Installation .. 15
3.5.2 Example Usage .. 16

4 Implementation Example .. 16
5 Power Management Capabilities using CPU Manager for Kubernetes* ... 16

5.1.1 Base Frequency ... 16
5.1.2 Core Power .. 16

6 Testing ... 18
6.1 Test Setup ... 18

6.1.1 DPDK testpmd ... 18
6.1.2 Qperf (L3 Workload) .. 18

6.2 Test Results .. 19
6.2.1 DPDK testpmd Performance with and without CPU Manager for Kubernetes* .. 19
6.2.2 Qperf Transmission Control Protocol (TCP) Performance with and without CPU Manager for Kubernetes* .. 21

7 Summary ... 22
 Performance Test Configuration .. 23

 Hardware Configuration ... 23
 Software Configuration .. 23

Figures
Figure 1. Initial CPU Manager for Kubernetes* Pool Configuration .. 6
Figure 2. CPU Manager for Kubernetes* Pools with Deployment ... 6
Figure 3. CPU Manager for Kubernetes* Pools: reserved-cpus Flag Set to 0,1,8,9 with No Created Pods .. 7
Figure 4. CPU Manager for Kubernetes* Pools with Requested Pods ... 8
Figure 5. Deployment Diagram .. 10
Figure 6. CPU Manager for Kubernetes* Pools – Dynamic Pool Reconfiguration ... 13
Figure 7. Initial CPU Manager for Kubernetes* Pool Configuration with Additional Pool .. 14
Figure 8. CPU Manager for Kubernetes* Pools with Deployment and Additional Pool .. 15
Figure 9. High-Level Overview of DPDK Testpmd Workload Setup ... 18
Figure 10. High-Level Overview of qperf Server Workload Setup .. 19
Figure 11. DPDK Testpmd Throughput (higher throughput is better) ... 20

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 3

Figure 12. DPDK Testpmd Latency (lower latency is better) ... 20
Figure 13. Qperf TCP Throughput with Noisy Neighbor Comparison (higher throughput is better) .. 21
Figure 14. Qperf TCP Latency with Noisy Neighbor comparison (lower latency is better) ... 21

Tables
Table 1. Terminology ... 4
Table 2. Reference Documents ... 4
Table 3. Technology Comparison .. 8
Table 4. Scenario 1 Example Configuration ... 17
Table 5. Scenario 2 Example Configuration, Cores and EPP Values ... 17
Table 6. Scenario 2 Example Configuration, Pool and Cores .. 17
Table 7. Hardware Components for Performance Benchmark Tests ... 23
Table 8. Software Components for Performance Benchmark Tests .. 23

Document Revision History

REVISION DATE DESCRIPTION

001 December 2018 Initial release of document.

002 April 2020 Added power management capabilities.
Added support for exclusive-non-isolcpus pool.

003 January 2021 Added dynamic reconfiguration commands to section 3.3.
Added separate dynamic reconfiguration section as 3.4.
Both describe an overview of what the functionality accomplishes and how it is utilized.

1.1 Intended Audience
CPU Manager for Kubernetes* provides basic core affinity for NFV-style workloads on top of K8s. This document is intended for
communication service providers who are planning and deploying virtualized mobile core infrastructure running on the latest Intel®
Xeon® Scalable Processors.

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 4

1.2 Terminology

Table 1. Terminology

TERM DESCRIPTION

CMK CPU Manager for Kubernetes*

CPU Central Processing Unit

CRD Custom Resource Definition

DPDK Data Plane Development Kit

EPA Enhanced Platform Awareness

EPP Energy Performance Preference. The value that associates a core with a priority level when using Intel® SST-CP.

Exclusive CPU An entire physical core dedicated exclusively to the requesting container, which means no other container will have
access to the core. Assigned by the exclusive pool within CPU Manager for Kubernetes*.

Exclusive pool A group of isolated, exclusive CPUs where a container will be exclusively allocated requested number of CPUs,
meaning only that container can run on that CPU.

Intel® HT Intel® Hyper-Threading.

I/O Input / Output

JSON* JavaScript Object Notation

Kubernetes* K8s*

NFV Network Functions Virtualization

PMD Poll Mode Driver

Pool CPU Manager for Kubernetes* uses a Kubernetes* config-map to represent the cores available on the system. The
items in this config-map are defined as pools. A pool, in this context, is a named group of CPU lists.

QoS Quality of Service

RCU Read Copy Update

Shared pool A group of isolated, shared CPUs where a requesting container can run on any CPU in this pool with no guaranteed
exclusivity.

Slot An exclusive CPU in the exclusive pool

SR-IOV Single-Root Input/Output Virtualization

SST-BF Intel® Speed Select Technology – Base Frequency

SST-CP Intel® Speed Select Technology – Core Power

SKU Stock Keeping Unit

TCP Transmission Control Protocol

UDP User Datagram Protocol

VF Virtual Function

Webhook server CMK deploys a mutating admission webhook server, which adds required details to a pod requesting its use.

1.3 Reference Documentation

Table 2. Reference Documents

REFERENCE SOURCE

Enhanced Platform Awareness in Kubernetes* Feature Brief https://builders.intel.com/docs/networkbuilders/enhanced-platform-
awareness-feature-brief.pdf

Enhanced Platform Awareness in Kubernetes* Application Note https://builders.intel.com/docs/networkbuilders/enhanced-platform-
awareness-in-kubernetes-application-note.pdf

Enabling New Features with Kubernetes* for NFV White Paper https://builders.intel.com/docs/networkbuilders/enabling_new_features_in_
kubernetes_for_NFV.pdf

Enhanced Platform Awareness in Kubernetes* Performance
Benchmark Report

https://builders.intel.com/docs/networkbuilders/enhanced-platform-
awareness-in-kubernetes-performance-benchmark-report.pdf

CPU Manager for Kubernetes* repository https://github.com/intel/CPU-Manager-for-Kubernetes

https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-feature-brief.pdf
https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-feature-brief.pdf
https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-in-kubernetes-application-note.pdf
https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-in-kubernetes-application-note.pdf
https://builders.intel.com/docs/networkbuilders/enabling_new_features_in_kubernetes_for_NFV.pdf
https://builders.intel.com/docs/networkbuilders/enabling_new_features_in_kubernetes_for_NFV.pdf
https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-in-kubernetes-performance-benchmark-report.pdf
https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-in-kubernetes-performance-benchmark-report.pdf
https://github.com/intel/CPU-Manager-for-Kubernetes

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 5

REFERENCE SOURCE

Intel® Speed Select Technology - Base Frequency (Intel® SST-BF)
with Kubernetes* Application Note

https://builders.intel.com/docs/networkbuilders/intel-speed-select-
technology-base-frequency-with-kubernetes-application-note.pdf

2 Overview
Under normal circumstances, the kernel task scheduler treats all CPUs as available for scheduling process threads and preempts
executing process threads from giving CPU time to other applications. The positive side-effect of this behavior is multitasking
enablement and more efficient CPU resource utilization. The negative side effect is non-deterministic performance, which makes it
unsuitable for latency-sensitive workloads. A solution for optimizing these workloads performance is to “isolate” a CPU, or a set of
CPUs, from the kernel scheduler, such that it will never schedule a process thread there. Then, latency-sensitive workload process
threads can be pinned to execute on that isolated CPU set only, providing them exclusive access to that CPU set. This results in
more deterministic behavior due to reduced or eliminated thread preemption and maximizing CPU cache utilization. While
beginning to guarantee the deterministic behavior of priority workloads, isolating CPUs also permits multiple VNFs to coexist on the
same physical server.

In Kubernetes* (as of v1.18), CPU and Memory are the only first-class resources managed by the orchestration layer with the native
CPU manager. CPU is requested in terms of “MilliCPU”, which translates to a guaranteed time slice on a CPU, effectively allowing the
kernel task scheduler to act as normal. However, as mentioned above, this behavior results in non-deterministic performance. The
Kubernetes* community, Intel included, is continuing to enhance support for CPU allocation in the native CPU manager to provide
deterministic behavior to priority workloads. While Kubernetes* continues to evolve its support for these capabilities, Intel has
created the open-source solution called CPU Manager for Kubernetes*.

2.1 CPU Manager for Kubernetes*
CPU Manager for Kubernetes* is the interim solution for CPU pinning and isolation for Kubernetes* while the native CPU Manager is
being enhanced. CPU Manager for Kubernetes* contains features that the native CPU Manager does not support, specifically
isolcpus. It ships with a single multi-use command-line program to perform various functions for host configuration, managing
groups of CPUs, and constraining workloads to specific CPUs.

By default, CPU Manager for Kubernetes* divides up the CPUs on a system into three pools by nature/degree of isolation, with one
additional optional pool. Pool types are described more detail in Section 3. The optional pool is used in cases where a user wants a
process isolated from other processes on the system that cannot be placed on cores that are a subset of isolcpus. Refer to Section
3.5 for more details about this additional pool.

To isolate a process, CPU Manager for Kubernetes* uses a wrapper program, taking arguments to run the given process and sets its
core affinity based on which pool it is requesting a CPU from. CPU Manager for Kubernetes* keeps track of the CPUs on a system,
using a Kubernetes* config-map structure, which acts as a checkpoint for each pool. The checkpoint describes all configured pools,
their options, the CPUs associated with that pool, and any tasks that are currently running on a CPU in that pool. Once a process
finishes running, its process ID (PID) is removed from the corresponding task entry in the appropriate pool of the checkpoint config-
map. A program constantly running in the background monitors the process IDs in each CPU task entry to make sure that there are
no “zombie” processes that have died but have not been deleted from the checkpoint config-map.

An example of using CPU Manager for Kubernetes* would be if you had two high-priority processes A and B, and a third low-priority
Process C. A and B need to be isolated from other processes, so they get placed in the exclusive pool on cores that are isolated
using isolcpus. C is a low-priority process and is placed in the shared pool.

Reasons for a process being high priority might include:
• It may be sensitive to CPU throttling, context switches, or processor cache misses
• It benefits from sharing a processor's resources
• It requires hyper-threads from the same CPU
• It is a workload for accelerating packet processing and requires a dedicated core

https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-with-kubernetes-application-note.pdf
https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-with-kubernetes-application-note.pdf

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 6

Figure 1 illustrates the initial setup with no processes added. Isolcpus is equal to 0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,19.

Figure 1. Initial CPU Manager for Kubernetes* Pool Configuration

Figure 2 illustrates a snapshot of pools after processes A, B, and C are added from the above scenario.

Figure 2. CPU Manager for Kubernetes* Pools with Deployment

The Infrastructure pool has not been included in the diagrams for ease of viewing. It would behave same as the shared pool and
would hold the cores 8,20,9,21,10,22,11,23 that are not part of isolcpus.

2.2 CPU Manager (in native K8s)
The Native CPU offering can be enabled using the static policy for the kubelet running on your worker node. When Kubernetes*
creates a pod, it assigns it to one of the following Quality of Service (QoS) classes:
• Guaranteed
• Burstable
• BestEffort

For a container to be utilized with an exclusive core, where no other container will be scheduled on the assigned core, the container
must be placed in the Guaranteed QoS class, which is achieved by requesting whole numbers of CPU cores (for example, 1000m) in
the pod spec. One CPU core in K8s* is equivalent to 1 hyper-thread on an Intel® Hyper-Threading (HT) Technology system. If two
CPU cores are requested by a container, the CPU manager will assign both hyper-threads from a single physical core.

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 7

The kubelet allows the user to specify certain cores on which Kubernetes* processes will be placed (nicknamed “housekeeping
cores”) using the –reserved-cpus flag. User pods that are not placed in the Guaranteed QoS class (pods that are not requesting an
exclusive core) will still have access to these cores as they will be available as shared cores. The Kubernetes* processes, however,
will not be placed on cores other than the ones specified. This action creates a subgroup of cores on the system that can only be
utilized by user-made pods. This subgroup acts as the shared pool in a cluster as all user-made pods that are not requesting a
Guaranteed QoS class have access to them. When an exclusive core is requested by a pod, the assigned core is taken out of this
subgroup, so it will not be assigned to any other pods. The core is added back into this shared group when it is released.

More information about the Native CPU Manager can be found at:
https://kubernetes.io/blog/2018/07/24/feature-highlight-cpu-manager/

Using the same example as in Section 2.1, the –reserved-cpus flag is set to 0,1,8,9 in a 15-core system, isolcpus is not set, and no
pods have been created.

Figure 3. CPU Manager for Kubernetes* Pools: reserved-cpus Flag Set to 0,1,8,9 with No Created Pods

Now, Process A has requested 1 full core (1 hyper-thread), Process B has requested 4 full cores (4 hyper-threads), and Process C
has not requested any cores.

https://kubernetes.io/blog/2018/07/24/feature-highlight-cpu-manager/

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 8

Figure 4. CPU Manager for Kubernetes* Pools with Requested Pods

Process A has been assigned core 2 and Process B has been assigned cores 3, 4, 11, and 12. All assigned cores have been taken out
of the shared group, which means no other user pods can be scheduled on them. Cores 11 and 12 have been used as they are the
respective hyper-thread siblings of cores 3 and 4. Cores 0, 1, 8, and 9 were not chosen as exclusive cores as they are part of the
housekeeping cores and are only to be used by Kubernetes* processes or by pods not requesting exclusive cores.

2.3 Technology Comparison
Table 3 provides a comparison between Native CPU Manager and CPU Manager for Kubernetes.

Table 3. Technology Comparison

NATIVE CPU MANAGER CPU MANAGER FOR KUBERNETES

K8s* code base. Beta since 1.10 Kubernetes* integration using K8s* external APIs

Updates container cgroups to provide pinning Wrapper program that runs before workload and performs taskset command for
pinning

Unaware of isolcpus Uses isolcpus

Pod level isolation guaranteed Gentleman's agreement for isolation

Resource account done via K8s* first class resource CPU Resource accounting done via host file system and extended resources

Pod spec contains CPU requests Resource accounting done via host file system and extended resources

3 CPU Pools – Shared, Reserved & Exclusive Allocations 4 CPU Pools – Exclusive, Shared, Infra & Exclusive-non-isolcpus (optional)

Shared & Exclusive pools grow and shrink dynamically as
requests come in

All pools are static after deployment

NUMA Alignment with Topology Manager NUMA alignment manual

Deployment done via K8s* release Deployment done via a set of K8s* Pods

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 9

3 Deployment
The CPU is a compute resource in Kubernetes*, which means it is a measurable quantity that can be requested, allocated and
consumed. This allows users to add requests and limits for their application in the container specification of the pod. K8s, through
the scheduler, will use this information to place the pod on the most suitable node for the requests. The CPU is measured in CPU
units, where 1 CPU is equivalent to 1 hyper-thread on an Intel® HT Technology system. The CPU can be requested in fractional
amounts, which means that a container requesting 0.5 CPU will get half as much CPU time as a container requesting 1 CPU.

In earlier versions of K8s, there was no mechanism in Kubernetes* to pin containers to CPUs or to provide any isolation guarantees.
The model that was in place allowed the kernel task scheduler to move processes around as desired. The only requirement was that
the workload got the requested amount of time on the CPU. Intel proposed to enhance the current model and introduce a CPU
Manager component to K8s to allow different policies of CPU pinning and isolation which would offer more granular assignments to
the users who required it.

The CPU Manager component was introduced as an alpha feature in v1.8 of Kubernetes* with the following policies:
• None: This policy keeps the existing model for CPU resource allocation.
• Static: This policy introduced CPU pinning and Isolation at a container level to Kubernetes. With this policy enabled, a request

for an integral CPU amount in a Guaranteed Pod will result in that container being allocated a whole CPU or CPU(s) with a
guarantee that no other container will run on that CPU(s).

The remainder of this document will focus on the CPU Manager for Kubernetes* developed by Intel.

3.1 CPU Manager for Kubernetes*
CPU Manager for Kubernetes* performs a variety of operations to enable core pinning and isolation on a container or a thread level.
These include:
• Discovering the CPU topology of the machine.
• Advertising the resources available through Kubernetes* constructs.
• Placing workloads according to their requests.
• Keeping track of the current CPU allocations of the pods, ensuring that an application will receive the requested resources

provided they are available.

Figure 3 and Figure 4 illustrate examples of core allocation. CPU Manager for Kubernetes* uses a Kubernetes* config-map to
represent the cores available on the system. The entries in this config-map are defined as pools. A pool, in this instance, is a named
(e.g. exclusive) group of CPU lists. CPU Manager for Kubernetes* has four distinct pools: the exclusive, shared, infra, and as of v1.4.1,
exclusive-non-isolcpus. A pool may be exclusive, where only a single task may be allocated to a CPU at a time, or shared, where
multiple processes may be allocated to a CPU.

The exclusive and exclusive-non-isolcpus pools within CPU Manager for Kubernetes* assign entire physical cores solely to the
requesting container, which means no other container will have access to the core. To enforce this action, CPU Manager for
Kubernetes* advertises the number of cores available as an extended resource in K8s. A user can then request a slot through the
extended resources. A slot is a CPU that has been placed in either the exclusive or the exclusive-non-isolcpus pool. The use of
extended resources ensures that the K8s* scheduler can accurately account for the exclusive slots on a node and schedule pods to
appropriate nodes. The shared and infra pools are shared and are not tracked by extended resources. These pools may be
requested with the command line, which includes several command-line arguments that provide different functionality. See Section
3.3 for command line details.

When a process makes a request for a CPU, CPU Manager for Kubernetes* associates the requesting process to a core on the
desired pool. Along with this, CPU Manager for Kubernetes* writes the PID to a task file on the allocated CPU. Every CPU list has an
associated task file. In case of an exclusive pool, a PID in the tasks file indicates that a core is already allocated to a workload. CPU
Manager for Kubernetes* uses garbage collection to ensure that the task files are free from dead processes.

For ease of use, CPU Manager for Kubernetes* deploys a mutating admission webhook server. The purpose of this webhook is to
add required details to a pod requesting to use CPU Manager for Kubernetes*. Thus, the user need not be aware of what is needed
exactly to run CPU Manager for Kubernetes* with their application.

CPU Manager for Kubernetes* provides “node-reports” and “reconcile-reports” that provide a view of the config-map in its current
state and the dead PIDs that the garbage collection has removed.

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 10

Figure 5. Deployment Diagram

3.2 Installation

1. Installing CPU Manager for Kubernetes* starts with cloning the following Intel GitHub link:

#git clone https://github.com/intel/CPU-Manager-for-Kubernetes*
2. From inside the cloned repository, the CPU Manager for Kubernetes* Docker images is built:

#cd <pathtorepo>
#make
Note: The CPU Manager for Kubernetes* image needs to be available on each node in the Kubernetes* cluster where CPU

Manager for Kubernetes* will be deployed.
CMK uses RBAC and service accounts for authorization.

3. Deploy the following yaml files:
#kubectl create –f cmk-rbac-rules.yaml
#kubectl create –f cmk-serviceaccount.yaml

4. Use the isolcpus boot parameter to ensure exclusive cores in CPU Manager for Kubernetes* are not affected by other system
tasks:
#isolcpus=0,1,2,3
a. On an Intel® HT Technology system, fully “isolate” a core by isolating the hyper-thread siblings.

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 11

b. At a minimum, the number of fully isolated cores should be equal to the desired number of cores in the exclusive pool.
c. CPU Manager for Kubernetes* will work without the isolcpus set but does not guarantee isolation from system processes

being scheduled on the exclusive data plane cores.
5. The recommended way to install CPU Manager for Kubernetes* is through the cluster-init command deployed as part of a

Kubernetes* pod. Cluster-init creates three additional pods on each node where CPU Manager for Kubernetes* is to be
deployed. The first pod executes the init, installing and discovering the CPU Manager for Kubernetes* commands. The second
deploys a daemonset to execute and to keep alive the “nodereport” and “reconcile” the CPU Manager for Kubernetes*
commands and the third creates a deployment for the mutating admission webhook. The function of each of these commands
is explained in Section 3.1.
#kubectl create –f resources/pods/cmk-cluster-init.yaml
a. Cluster-init accepts a variety of command line configurations. An example ‘cluster-init’ command:
#/cmk/cmk cluster-init –all-hosts
b. An example cluster-init pod specification can be found at:

https://github.com/Intel-Corp/CPU-Manager-for-Kubernetes/blob/master/resources/pods/cmk-cluster-init-pod.yaml
c. CPU Manager for Kubernetes* can be deployed through calling the cmk commands individually if cluster-init fails.

Information on this can be found at: https://github.com/Intel-Corp/CPU-Manager-for-Kubernetes/blob/master/docs/cli.md
d. See Section 3.5 for information on configuring CPU Manager for Kubernetes* with the additional exclusive-non-isolcpus

pool.

3.3 CPU Manager for Kubernetes* Commands
The full list of commands can be found on the GitHub repository listed in Table 2. The following subsections provide an overview of
each command.

3.3.1 Init
init is the first command run when installing CPU Manager for Kubernetes* on a K8s* cluster. The init command creates the
config-map hierarchy for pools and slots. At a minimum, three pools are created: the exclusive, shared and infra pools. The
exclusive pool is exclusive whereas the shared and infra pools are shared. If the CPU Manager for Kubernetes* is being configured to
use the exclusive-non-isolcpus pool, then that pool will also be created by init, and like the exclusive pool, is exclusive.

3.3.2 Install
The install sub-command builds an executable binary for CPU Manager for Kubernetes* that will be in the installation directory.

3.3.3 Discover
The discover command uses Extended Resources to advertise the number of slots on the relative K8s* node. The number of slots
advertised is equal to the number of CPU lists available under the exclusive pool. After the discover command is run, the node will
be patched with cmk.intel.com/exclusive-cores:. The discover command also taints each node that it has been installed
on. This means that no pods will be scheduled on this node unless they have the appropriate toleration to the taint. Any pod that
wishes to use CPU Manager for Kubernetes* must include the correct toleration in the pod specification. The discover command
will also add a label to the nodes to easily identify them as CPU Manager for Kubernetes* nodes.

As of CPU Manager for Kubernetes* v1.4.1, the discover command will also advertise the number of slots available in relation to
the CPU lists available under the exclusive-non-isolcpus pool using Extended Resources. If CPU Manager for Kubernetes* has been
configured to use the exclusive-non-isolcpus pool, the discover command will patch the node with
cmk.intel.com/exclusive-non-isolcpus-cores. More information on the exclusive-non-isolcpus pool can be found in
Section 3.5.

3.3.4 Reconcile
The reconcile command creates a long-living daemon that acts as a garbage collector if CPU Manager for Kubernetes* fails to
clean up after itself. The reconcile command process runs periodically at a requested interval (10-second intervals, for example).
At each interval, reconcile verifies the liveness of the process IDs attached to the tasks file. The reconcile command process
creates a report of any processes it has killed.

The reconcile command creates a Kubernetes* Custom Resource Definition (CRD) Reconcile Report and publishes these reports
to the API server. The representation will show the tasks that the reconcile command process cleaned up because the CMK did
not correctly remove the programs.

3.3.5 Node-Report
The node-report command prints a JavaScript Object Notation (JSON*) representation of the CPU Manager for Kubernetes*
configuration config-map and its current state for all the nodes in the cluster that have CPU Manager for Kubernetes* installed. The
representation will show the pools in the config-map, the CPU lists of the pools, the exclusivity of the pools, and any process IDs

https://github.com/Intel-Corp/CPU-Manager-for-Kubernetes/blob/master/resources/pods/cmk-cluster-init-pod.yaml
https://github.com/Intel-Corp/CPU-Manager-for-Kubernetes/blob/master/docs/cli.md

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 12

that are currently running on the CPUs. There is an option to publish node-report to the API server as a CRD. Node reports are
generated at a timed interval that is user defined— the default time is every 60 seconds.

3.3.6 Webhook
The webhook command runs webhook server application that can be called by Mutating Admission Controller in the API server.
When the user tries to create a pod which definition contains any container requesting the advertised Extended Resources, the
webhook modifies it by injecting environmental variable and additional modifications to the pod that are defined in the mutation’s
configuration file in yaml format. Mutations can be applied per pod or per container.

The default configuration deployed during cmk cluster-init adds the installation and configuration directories and host /proc
filesystem volumes, service account, tolerations required for the pod to be scheduled on the CPU Manager for Kubernetes* enabled
node and appropriately annotates the pod. Containers specifications are updated with volume mounts (referencing volumes added
to the pod) and environmental variable CMK_PROC_FS.

3.3.7 Isolate
The isolate command consumes an available CPU from a specified pool. The isolate sub-command allows a pool to be
specified, in the case that the exclusive pool or the exclusive-non-isolcpus pool is specified, the Extended Resource created in the
discover command for the given pool will be consumed. Up to the number of available cores in the pool will be consumed per
container as an Extended Resource, which ensures the correct number of containers can run on a node. In the case of a shared pool,
any CPU may be selected regardless of the current process allocations.

isolate writes its own process ID into the tasks file of the chosen core on the specified pool. This process is performed before
executing any other commands in the container. When the process is complete, the CPU Manager for Kubernetes* program
removes the process ID from the tasks file. In the case that this fails, the reconcile command program will clean up any dead
process IDs in the task files.

isolate will fail in the case where an exclusive or exclusive-non-isolcpus pool is requested and there are no available CPUs left in
that pool.

3.3.8 Describe
The describe command prints a JSON representation of the configuration config-map on a specific node and its current state. The
describe will show the pools in the config-map, the CPU lists of the pools, the exclusivity of the pools and any process IDs that are
currently running on the CPUs.

3.3.9 Cluster-Init
The cluster-init command runs a set or subset of sub-commands –init, install, discover, reconcile, node-report
and webhook. It also prepares specified nodes in a K8s* cluster for CPU Manager for Kubernetes*.

3.3.10 Uninstall
The uninstall command removes the CPU Manager for Kubernetes* from a node. The uninstall process reverts the cluster-
init command:
• deletes reconcile-nodereport-pod-{node} if present
• removes ‘NodeReport’ from Kubernetes* Custom Resource Definitions if present
• removes ReconcileReport from Kubernetes* Custom Resource Definitions if present
• removes node label if present
• removes node taint if present
• removes node Extended Resource if present
• removes --conf-dir=<dir> if present and no processes are running that use cmk isolate
• removes the binary from --install-dir=<dir>, if binary is not present then throws an error
• removes the webhook-pod along with other webhook dependencies (mutating admission configuration, secret, config map and

service), if CMK was installed on a cluster with mutating admission controller API.

3.3.11 Reconfigure_setup
The reconfigure_setup command kicks off the execution of reconfiguring the CPU Manager for Kubernetes* cluster to the new
desired configuration. It determines the nodes in your cluster that have been designated for the use of CPU Manager for
Kubernetes* and it runs the reconfigure command on each of them.

3.3.12 Reconfigure
The reconfigure command runs on each CPU Manager for Kubernetes* node in your cluster. It determines if the new desired
configuration of your cluster is possible by comparing the number of cores that have processes pinned to them (in both the
exclusive pool and the shared pool) and the new number of assigned cores to the exclusive and shared pools. It also reconfigures

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 13

the config-map that CPU Manager for Kubernetes* uses to keep track of the cores on the given node to portray the new layout.
Finally, it executes the reaffinitize command to update what cores the processes have been reassigned to.

3.3.13 Reaffinitize
The reaffinitize command is the final step in the reconfiguration process and is the command that actually manipulates the cores
that a process is allowed to run on.

3.4 Dynamic Pool Reconfiguration
Dynamic reconfiguration allows you to reconfigure the pool setup of your nodes in your cluster without having to tear down CPU
Manager for Kubernetes* and clean up any configuration associated with CPU Manager for Kubernetes*. The reconfigure command
will look at every pod in every namespace on all the nodes in a cluster but will only reassign those pods that have been assigned
cores using CPU Manager for Kubernetes*. This reduces a considerable amount of time off the operation and makes it easier to
reconfigure the cores on your node. It also means that you do not have to stop any processes that are currently running in order to
reconfigure, as this method will automatically reassign any processes to the new cores in the new configuration.

For example, the following setup with the arbitrary processes 2000 and 2001 assigned to the shared pool, which contains the cores
7,15:

Figure 6. CPU Manager for Kubernetes* Pools – Dynamic Pool Reconfiguration

In the first screenshot, you see the initial configuration, before the reconfigure command has been executed. Here, there have been
four cores assigned to the exclusive pool, and one to the shared pool. The second screenshot shows the configuration after the
reconfigure command has been executed and the cores reassigned. You can see that the newly desired state is two cores assigned
to the exclusive pool and three cores assigned to the shared pool. The processes 2000 and 2001 were both re-affinitized to
accommodate the reconfiguration. Both processes are now able to use the additional cores 5,13 and 6,14.

In the case where a process has been pinned to a core in the exclusive pool and after reconfiguration that core is no longer in the
exclusive pool, the process will be reassigned to another core that is either still in the exclusive pool after reconfiguration or has
been added. If after reconfiguration the core stays in the exclusive pool, then the process is not reassigned, staying pinned to its
original core, so that it does not interrupt the latency-sensitive process.

If there are not enough available cores to satisfy the newly desired configuration, for example when your configuration has three
exclusive cores – all of which have a process assigned to them – and you wish to reconfigure the setup to only have two cores in the
exclusive pool, the reconfigure command will recognize that one of the processes will be left unassigned and fail out before any
reconfiguration has gone under way.

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 14

The reconfigure command will automatically detect which nodes in your cluster are CPU Manager for Kubernetes* nodes and it will
reconfigure all of them without you having to specify. It detects the nodes by looking for the following label in the annotations of
the node:

 `”cmk.intel.com/cmk-node” = “true”`

This label is added by the discover operation, which occurs as part of cluster_init process, so you do not have to label the node
yourself.

To use the reconfiguration command, you simply run a pod using the reconfigure_setup flag for cmk.py and pass in the
configuration parameters as you would if you were setting up the cluster from scratch. For example:

 `"/cmk/cmk.py reconfigure_setup --saname=cmk-serviceaccount --namespace=cmk-namespace –num-exclusive-cores=3
–num-shared-cores=2"`

3.5 Exclusive-non-isolcpus Pool
CPU Manager for Kubernetes* allows for an extra pool called the exclusive-non-isolcpus pool to be created using a flag passed to
the init process. This pool has the exact functionality as the exclusive pool in that any cores in the exclusive-non-isolcpus pool will
only run the container that the CPU Manager for Kubernetes* assigns to it. However, the difference between the two pools is that
the subset of cores of isolcpus cannot be placed into the exclusive-non-isolcpus pool. The exclusive-non-isolcpus pool is also only
available if there are isolated cores present on the node.

To efficiently utilize isolcpus, a process should not relinquish the core. Using the same scenario as Section 2.1, let's say that as a
part of Process B, its forwarding threads use sched_yields (which causes the calling thread to relinquish the CPU in multithreaded
programming) and RCU calls (Read Copy Update, a mechanism in Linux) to update the data structure to avoid a lock contention,
which also requires a relinquish of the CPU. These calls cause a performance decrease when compared to a non-isolated setup. For
this reason, it would be preferable to have it isolated from other processes on a regular core (from exclusive-non-isolcpus pool) and
keep Process A isolated on an isolcpus core (from exclusive pool).

Figure 7 illustrates the initial setup of the pools when the exclusive-non-isolcpus pool is used, when isolcpus is equal to
0,1,4,5,6,7,12,13,16,17,18,19.

Figure 7. Initial CPU Manager for Kubernetes* Pool Configuration with Additional Pool

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 15

Figure 8 illustrates a snapshot of the pools when the processes A, B, and C are added.

Figure 8. CPU Manager for Kubernetes* Pools with Deployment and Additional Pool

The Infrastructure pool has not been included in the diagrams for ease of viewing. It would act just as the shared pool is acting.

3.5.1 Installation
The recommended way to install CPU Manager for Kubernetes* with the exclusive-non-isolcpus pool is through the cluster-init
command deployed as part of a K8s* pod and pass it the –excl-non-isolcpus flag.

For example:
#/cmk/cmk cluster-init --all-hosts --num-exclusive-cores=<num> --num-shared-cores=<num>
--excl-non-isolcpus=<list>

The –excl-non-isolcpus flag takes as its parameter a list of the cores the user wants to place in the pool. The list should consist
of the number of the physical cores, not the logical cores as you would use for isolcpus. Given a physical core, CMK will place both
of its logical CPUs (hyper-threads) into the exclusive-non-isolcpus pool. The list can be comprised of comma-separated values, a
range of values, or a mix of the two.

On a system with 32 physical cores with two logical CPUs per core:

CORE LIST CORES PARSED

1,3,5 1,33 3,35 5,37

1-4 1,33 2,34 3,35 4,36

0,2-4,6 0,32 2,34 3,35 4,36 6,38

CPU Manager for Kubernetes* will fail if the user tries to pass as part of the parameter cores that are isolated (if they have been
assigned to a pool or not), or invalid core values such as a core number that is not on the node.

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 16

3.5.2 Example Usage
The exclusive-non-isolcpus pool is used just like any other pool CPU Manager for Kubernetes* offers-– by using the isolate
command. Specifying the exclusive-non-isolcpus pool follows the same steps as specifying the exclusive pool. The Extended
Resource created for exclusive-non-isolcpus cores in discover will be consumed, allowing the user to consume multiple of these
extended resources.

For example:
/opt/bin/cmk isolate --conf-dir=/et/cmk
 --pool=exclusive-non-isolcpus sleep inf

Request the exclusive-non-isolcpus cores using the resources section of the yaml specification for the isolate container:
resources:
 requests:
 cmk.intel.com/exclusive-non-isolcpus-cores: '1'
 limits:
 cmk.intel.com/exclusive-non-isolcpus-cores: '1'

4 Implementation Example

The isolate command is used to pin a workload to a core in the requested pool. CPU Manager for Kubernetes* uses the binary
installed as part of the deployment process to act as a wrapper to the workload and runs before it. This allows CPU Manager for
Kubernetes* to pin the parent process to the allocated core and to clean up on termination.

An example isolate command requesting a core on the exclusive pool:
#/opt/bin/cmk isolate --conf-dir=/et/cmk --pool=exclusive sleep inf

An example isolate command for a pod requesting an exclusive core on the data plane core can be found at:

https://github.com/Intel-Corp/CPU-Manager-forKubernetes/blob/master/resources/pods/cmk-isolate-pod.yaml

5 Power Management Capabilities using CPU Manager for Kubernetes*
Select Stock Keeping Units (SKUs) of 2nd generation Intel® Xeon® Scalable processors include capabilities called Intel® Speed Select
Technology. CPU Manager for Kubernetes* supports two of these capabilities:
• Intel® Speed Select Technology – Base Frequency (Intel® SST-BF)
• Intel® Speed Select Technology – Core Power (Intel® SST-CP.

5.1.1 Base Frequency
Intel® SST-BF is a capability that allows for certain cores to be guaranteed a base frequency, which they will never drop below. The
placement of key workloads on higher frequency Intel® SST-BF cores can result in an overall system workload performance increase
and overall energy savings when compared to deploying the CPU with symmetric core frequencies.

CPU Manager for Kubernetes* can be configured to place these Intel® SST-BF cores in the exclusive pool, guaranteeing that a key
workload that has been pinned to an Intel® SST-BF core is isolated from other processes, and no other process can be scheduled
alongside it. discovers that Intel® SST-BF is configured on a node through a label. This label is placed on the node using Node
Feature Discovery, which labels the node with the features.node.kubernetes.io/cpu-power.sst_bf.enabled label.

Upon discovery of this label, will determine which cores on the node have Intel® SST-BF enabled and place them in the exclusive
pool.
Note: For Intel® SST-BF to be configured on a node, the Intel® SST-BF cores must be isolated using the isolcpus Linux* struct.

Since Intel® SST-BF cores will only be placed in the exclusive pool during setup, to utilize an Intel® SST-BF core using,
request a core from the exclusive pool in the isolate yaml file.

For more information, refer to the Intel® SST-BF with Kubernetes Application Note.

5.1.2 Core Power
Intel® SST-CP is a capability that allows certain cores to be set to a higher priority level for power consumption. Cores that have a
higher priority are more likely (however not guaranteed) to be supplied extra power and be pushed to turbo frequency speeds when
the CPU has extra power to yield.

https://github.com/Intel-Corp/CPU-Manager-forKubernetes/blob/master/resources/pods/cmk-isolate-pod.yaml
https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-with-kubernetes-application-note.pdf

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 17

CPU Manager for Kubernetes* can be configured to group the cores of each priority level and place them together in the pools. The
CPU Manager for Kubernetes* pools align to the priority level of the cores, so a request for a core from the exclusive pool would
return affinity to a core with the highest level of priority. discovers that Intel® SST-CP is configured on the node again via a label
placed on the node using Node Feature Discovery, which uses the features.node.kubernetes.io/cpu-power.sst_cp.enabled label.

Upon discovery of this label, CPU Manager for Kubernetes* will determine the priority level of each of the cores using their Energy
Performance Preference (EPP) value, and group them together. will then determine the order of priority based on the present EPP
values. In total, there are four values for priority. From highest priority to lowest priority they are:
• performance
• balance_performance
• balance_power
• power
Note: The SST technologies are disabled by default. The cores on the system have to be set up according to the technology the

user wants to use, and the node has to be correctly labeled (using NFD).

will then place the cores with the highest priority EPP value in the exclusive pool, the next level of priority into the shared pool, and
finally the lowest level of priority into the infra pool. If the exclusive-non-isolcpus pool is being utilized, the cores that are placed in
this pool will always be from the lowest level of priority. This is because the cores with the two highest levels of priority will always
be part of isolcpus, so they cannot be placed in the exclusive-non-isolcpus pool. The two scenarios in which Intel® SST-CP can be
configured with CPU Manager for Kubernetes* are described below.

Scenario 1 – Three EPP Values on the Node:

In this scenario, the levels of priority line up with the three pools, and their placement has been highlighted above.

Table 4. Scenario 1 Example Configuration

CORES EPP VALUE POOL
0,2 Performance Exclusive
1,3 Balance Performance Shared
4-31 Balance Power Infra

Scenario 2 – Two EPP Values on the Node:

In this scenario, because there are only two levels of priority, CPU Manager for Kubernetes* will divide the cores with the highest-
level priority EPP value among the exclusive and shared pools based on the number of cores requested for both, and the lowest
level priority cores will be placed in the infra pool.

Table 5. Scenario 2 Example Configuration, Cores and EPP Values

CORES EPP VALUE
0-3 Performance
4-31 Balance Power

Table 6. Scenario 2 Example Configuration, Pool and Cores

POOL CORES
Exclusive 0,1
Shared 2,3
Infra 4-31

Note: The number of isolated CPUs on the node must match the number of cores requested for the exclusive and shared pools
combined.

The number of cores requested for the exclusive pool must be equal to the number of cores with the highest-level priority EPP
value and similarly for the requested number of cores in the shared pool and the next level priority EPP value. When only two EPP
values are present on the node, the number of requested cores for the exclusive and shared pools combined must match the
number of cores with the highest-level priority EPP value.

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 18

6 Testing
This section describes the test setup that was used and the test results.1

6.1 Test Setup
To create data flows, the tests used packet generation and testing applications that operate in user space and in the kernel network
stack. To test network throughput leveraging EPA functions, DPDK testpmd was used. Testpmd is an application that tests packet
forwarding rates in virtual networks that leverage DPDK. In addition to these throughput tests, bandwidth and latency test using
Qperf were also implemented. Qperf is a command line program that measures bandwidth and latency between two nodes.

6.1.1 DPDK testpmd
The test setup for running DPDK testpmd as workload is shown in Figure 9. The traffic is generated by an IXIA traffic generator
running RFC 2544. Up to 16 containers, each running the testpmd application, are instantiated using Kubernetes, with each
container assigned one VF instance from each physical port on a 25G Ethernet NIC for a total of two VFs per container supporting
bidirectional traffic across them. All results are tuned for zero percent packet loss. A separate container running the stress-ng
application is used to simulate a noisy neighbor container.

Figure 9. High-Level Overview of DPDK Testpmd Workload Setup2

6.1.2 Qperf (L3 Workload)
The test setup for running qperf server workload is shown in Figure 10. The qperf clients run on a separate physical server
connected to the SUT using a single 25GbE NIC. Up to 16 containers, each running a qperf server, are instantiated and each are
connected to one qperf client. Each container is assigned one VF instance from the same 25GbE NIC port.

1 Refer to http://software.intel.com/en-us/articles/optimization-notice for more information regarding performance and optimization choices in Intel
software products.
2 Refer to http://software.intel.com/en-us/articles/optimization-notice for more information regarding performance and optimization choices in Intel
software products.

http://software.intel.com/en-us/articles/optimization-notice
http://software.intel.com/en-us/articles/optimization-notice

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 19

Figure 10. High-Level Overview of qperf Server Workload Setup

6.2 Test Results
This section describes the test results for DPDK testpmd and Qperf.

6.2.1 DPDK testpmd Performance with and without CPU Manager for Kubernetes*
The test results3 with both SR-IOV Virtual Function (VF) kernel network stack and the DPDK VF stack showed consistent
performance benefits with CPU Manager for Kubernetes*, which eliminates the impact of noisy neighbor applications. The test
results shown in Figure 11 and Figure 12 illustrate system performance, throughput and latency, for 16 containers running the
DPDK testpmd forwarding application, with and without the noisy neighbor container running in parallel, and with CPU Manager for
Kubernetes* functions turned on and off.

3 Refer to Appendix A for configuration and date tested. See backup for workloads and configurations. Results may vary.

Refer to https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-in-kubernetes-performance-benchmark-report.pdf for
more information.

https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-in-kubernetes-performance-benchmark-report.pdf

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 20

Figure 11. DPDK Testpmd Throughput (higher throughput is better)

Figure 12. DPDK Testpmd Latency (lower latency is better)

Testpmd containers are deployed using K8s* and each container is assigned a pair of dedicated cores when using CPU Manager for
Kubernetes*. CPU Manager for Kubernetes* assigns two logical cores of the same physical core from exclusive pool to each
container. The DPDK Poll Mode Driver (PMD) threads in each of the testpmd containers utilize Huge Pages.

The results shown in Figure 11 and Figure 12 demonstrate the following:
• Without CPU Manager for Kubernetes*:

− Performance degrades significantly in the presence of noisy neighbor.
− Throughput decreases over 70% and latency increases by 10 times.

• With CPU Manager for Kubernetes*:
− Performance is not impacted by having a noisy neighbor container running in the system.
− Deterministic performance is demonstrated since the cores are now being isolated and dedicated to the testpmd container

and not shared with other containers.

The results show applications that use the DPDK network stack and utilize the CPU Manager for Kubernetes* get improved and
consistent throughput and latency performance.

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 21

6.2.2 Qperf Transmission Control Protocol (TCP) Performance with and without CPU Manager for
Kubernetes*

Test results4 in Figure 13 and Figure 14 show the system performance for TCP traffic tests for 16 containers running qperf server
with and without noisy neighbor container present. The qperf containers are deployed using Kubernetes* and qperf application is
run with and without CPU Manager for Kubernetes. When qperf is run using the CPU Manager for Kubernetes, two hyper-threaded
sibling cores are isolated and assigned to a qperf server instance inside a container from its exclusive core pool. When qperf is run
without CPU Manager for Kubernetes*, it is not pinned to any specific cores and thus is free to use any available cores in the system.

Tests are run for both TCP and User Datagram Protocol (UDP) traffic types. Each test iteration is run for a duration of five minutes.
There is one TCP connection per container for a total of 16 TCP connections for 16 containers.

Figure 13. Qperf TCP Throughput with Noisy Neighbor Comparison (higher throughput is better)

Figure 14. Qperf TCP Latency with Noisy Neighbor comparison (lower latency is better)

4 Refer to Appendix A for configuration and date tested. See backup for workloads and configurations. Results may vary.

Refer to https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-in-kubernetes-performance-benchmark-report.pdf for
more information.

https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-in-kubernetes-performance-benchmark-report.pdf

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 22

The Qperf test results5 are shown in Figure 13 and Figure 14 and summarized here:
• Without CPU Manager for Kubernetes*:

− Performance degrades significantly with noisy neighbor without CPU Manager for Kubernetes*.
− Throughput is reduced by more than 70% for small packets and ~25% for packet sizes larger than 512 bytes. Furthermore,

latency increases more than 70 times for most packet sizes.
• With CPU Manager for Kubernetes*:

− When running the qperf server using CPU Manager for Kubernetes*, the performance is not impacted by having a noisy
neighbor container running in the system.

− The cores are now isolated and dedicated to the qperf server container and not shared with other containers, leading to a
deterministic performance.

Results show the application using kernel network stack and running with CPU Manager for Kubernetes* gets consistent
performance (throughput and latency).

7 Summary
In summary, CPU pinning and isolation are key requirements for applications that require deterministic performance. Intel created
CPU Manager for Kubernetes* in order to enable these features with containerized deployments using Kubernetes. Intel is working
with the community to bring the CPU Manager for Kubernetes* features into Kubernetes, and the Static CPU Manager policy is the
first step towards that.

This document also showed the benefit of CPU pinning and isolation in a noisy neighbor scenario. With CPU Manager for
Kubernetes* enabled, the workloads performance was seen to be predictable, whereas without CPU Manager for Kubernetes*, the
workload was liable to be affected by a noisy neighbor.

For in-depth details on performance benchmarks, refer to the Enhanced Platform Awareness in Kubernetes* Performance
Benchmark Report. These performance benefits were showcased utilizing Intel® Xeon® Scalable servers using a sample DPDK-based
user space workload and qperf workload that uses the kernel network stack, demonstrating the importance of CPU pinning and
isolation in Kubernetes.

For more information on what Intel is doing with containers, go to https://networkbuilders.intel.com/network-
technologies/container-experience-kits.

5 Refer to Appendix A for configuration and dates tested. For more complete information about performance and benchmark results, visit
www.intel.com/benchmarks.

https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-in-kubernetes-performance-benchmark-report.pdf
https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-in-kubernetes-performance-benchmark-report.pdf
https://networkbuilders.intel.com/network-technologies/container-experience-kits
https://networkbuilders.intel.com/network-technologies/container-experience-kits
http://www.intel.com/benchmarks

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 23

 Performance Test Configuration
The tests described in this document were performed in January 2018 to demonstrate the performance of CPU Manager for
Kubernetes* and Huge Pages utilization in a K8s* environment. 6

 Hardware Configuration

Table 7. Hardware Components for Performance Benchmark Tests

ITEM DESCRIPTION NOTES
Platform Intel Server Board S2600WFQ Intel Xeon processor-based dual processor server

board with 2 x 10 GbE integrated LAN ports
Processor 2x Intel Xeon Gold Processor 6138T (formerly Skylake) 2.0 GHz; 125 W; 27.5 MB cache per processor

20 cores, 40 hyper-threaded cores per Processor
Memory 192GB Total; Micron* MTA36ASF2G72PZ 12x16GB DDR4 2133MHz

16GB per channel, 6 Channels per socket
NIC Intel Ethernet Network Adapter XXV710-DA2 (2x25G)

(formerly Fortville)
2 x 1/10/25 GbE ports
Firmware version 5.50

Storage Intel DC P3700 SSDPE2MD800G4 SSDPE2MD800G4 800 GB SSD 2.5in
NVMe/PCIe

BIOS Intel Corporation
SE5C620.86B.0X.01.0007.060920171037
Release Date: 06/09/2017

Hyper-Threading - Enable
Boot performance Mode – Max
Performance
Energy Efficient Turbo – Disabled
Turbo Mode - Disabled
C State - Disabled
P State - Disabled
Intel VT-x Enabled
Intel VT-d Enabled

 Software Configuration

Table 8. Software Components for Performance Benchmark Tests

SOFTWARE COMPONENT DESCRIPTION REFERENCES
Host Operating System Ubuntu 16.04.2 x86_64 (Server)

Kernel: 4.4.0-62-generic
https://ubuntu.com/download/server

NIC Kernel Drivers i40e v2.0.30
i40evf v2.0.30

https://sourceforge.net/projects/e1000/files/i
40e%20stable/

DPDK DPDK 17.05 http://fast.dpdk.org/rel/dpdk-17.05.tar.xz
CPU Manager for Kubernetes* V1.0.1 https://github.com/intel/CPU-Manager-for-

Kubernetes
Ansible* Ansible 2.3.1.0 https://github.com/ansible/ansible/releases
Bare Metal Container RA scripts Includes Ansible* scripts to deploy Kubernetes* v1.6.4

h
https://github.com/intel-onp/onp

Docker* v1.13.1 https://docs.docker.com/engine/install/
SR-IOV-CNI v0.2-alpha. commit ID:

a2b6a7e03d8da456f3848a96c6832e6aefc968a6
https://ubuntu.com/download/server

6 For more complete information about performance and benchmark results, visit www.intel.com/benchmarks. Refer to
https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-in-kubernetes-performance-benchmark-report.pdf

https://ubuntu.com/download/server
https://sourceforge.net/projects/e1000/files/i40e%20stable/
https://sourceforge.net/projects/e1000/files/i40e%20stable/
http://fast.dpdk.org/rel/dpdk-17.05.tar.xz
https://github.com/intel/CPU-Manager-for-Kubernetes
https://github.com/intel/CPU-Manager-for-Kubernetes
https://github.com/ansible/ansible/releases
https://github.com/intel-onp/onp
https://docs.docker.com/engine/install/
https://ubuntu.com/download/server
http://www.intel.com/benchmarks
https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-in-kubernetes-performance-benchmark-report.pdf

Technology Guide | CPU Management - CPU Pinning and Isolation in Kubernetes*

 24

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration
disclosure for details. No product or component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy. Intel technologies may require enabled
hardware, software or service activation.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. *Other names and brands may
be claimed as the property of others.

 0121/DN/WIPRO/PDF 606834-003US

	1 Introduction
	1.1 Intended Audience
	1.2 Terminology
	1.3 Reference Documentation

	2 Overview
	2.1 CPU Manager for Kubernetes*
	2.2 CPU Manager (in native K8s)
	2.3 Technology Comparison

	3 Deployment
	3.1 CPU Manager for Kubernetes*
	3.2 Installation
	3.3 CPU Manager for Kubernetes* Commands
	3.3.1 Init
	3.3.2 Install
	3.3.3 Discover
	3.3.4 Reconcile
	3.3.5 Node-Report
	3.3.6 Webhook
	3.3.7 Isolate
	3.3.8 Describe
	3.3.9 Cluster-Init
	3.3.10 Uninstall
	3.3.11 Reconfigure_setup
	3.3.12 Reconfigure
	3.3.13 Reaffinitize

	3.4 Dynamic Pool Reconfiguration
	3.5 Exclusive-non-isolcpus Pool
	3.5.1 Installation
	3.5.2 Example Usage

	4 Implementation Example
	5 Power Management Capabilities using CPU Manager for Kubernetes*
	5.1.1 Base Frequency
	5.1.2 Core Power

	6 Testing
	6.1 Test Setup
	6.1.1 DPDK testpmd
	6.1.2 Qperf (L3 Workload)

	6.2 Test Results
	6.2.1 DPDK testpmd Performance with and without CPU Manager for Kubernetes*
	6.2.2 Qperf Transmission Control Protocol (TCP) Performance with and without CPU Manager for Kubernetes*

	7 Summary
	Appendix A Performance Test Configuration
	A.1 Hardware Configuration
	A.2 Software Configuration

