

Document Number: 782229-0.1

Containerization using WSL for

Integrated Retail Solution

White Paper

June 2023

Containerization using WSL for Integrated Retail Solution

White Paper June 2023

2 Document Number: 782229-0.1

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products

described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject

matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product

specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published

specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or visit

www.intel.com/design/literature.htm.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation.

Performance varies depending on system configuration. No product or component can be absolutely secure. Check with your system

manufacturer or retailer or learn more at intel.com.

The code names presented in this document are only for use by Intel to identify products, technologies, or services in development, that have

not been made commercially available to the public, i.e., announced, launched or shipped. They are not "commercial" names for products or

services and are not intended to function as trademarks.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands

may be claimed as the property of others.

http://www.intel.com/design/literature.htm
http://intel.com/

 Containerization using WSL for Integrated Retail Solution

June 2023 White Paper

Document Number: 782229-0.1 3

Contents

1.0 Introduction .. 5

1.1 Terminology ... 5

1.2 Introduction to Containerization .. 6

2.0 Solution Implementation ... 8

3.0 Procedure and BKM for WSL-Based Integrated Retail Solution 11

3.1 Prerequisites ... 11

3.2 Install WSL ... 11

3.3 Install and Run Linux* ... 12

3.4 Install Container Daemon ... 12

3.5 Install X Server for Windows* ... 13

3.6 Build OpenVINO™ Analytics Containerized Application .. 13

3.7 Run OpenVINO™ Analytics Containerized Application .. 14

3.8 Install Digital Signage Server Containerized Application ... 15

3.9 Run Digital Signage Server Containerized Application .. 15

4.0 Resource Allocation for Containerized Applications on WSL ... 17

4.1 Resource Allocation When Using Docker* .. 17

4.2 Resource Allocation When Using Docker* Compose ... 17

5.0 Test Setup, Results, and Summary.. 18

5.1 Test Setup .. 18

5.2 Results ... 19

5.3 Summary .. 19

Figures

Figure 1. Generic Containerization Technique for Workloads Consolidation ... 7
Figure 2. System Architecture for Integrated Retail Solution ... 8
Figure 3. Isolated Workloads Run on Docker* on Top of WSL ... 9
Figure 4. Linux* GUI and Server Containerized Applications on WSL .. 19

Tables

Table 1. Terminology ... 5
Table 2. System Blocks and Ingredients .. 18

Containerization using WSL for Integrated Retail Solution

White Paper June 2023

4 Document Number: 782229-0.1

Revision History

Date Revision Description

June 2023 0.1 Initial release.

§

Introduction

 Containerization using WSL for Integrated Retail Solution

June 2023 White Paper

Document Number: 782229-0.1 5

1.0 Introduction

In the era for multi-workloads consolidations, customers need both agile resource

allocation and ensure improved security. These requirements are to protect business

critical workloads and adequate compute resources are being allocated for various

workloads.

Historically, retail and hospitality industries deployed many different form-factors of

Points of Sale (POS) and kiosk devices, such as desktop POS, mobile POS, self-

checkout kiosk, Quick Service Restaurant (QSR) kiosk, and digital signage devices that

mainly focus on singular workload (for example: Point of Sale application) in the stores.

However, demands for other workloads like digital signage, digital surveillance, online

in-store kiosk for offline pick-up, and product recognition using computer vision are

now increasing.

Workload consolidation unites multiple computerized operations onto fewer systems

replacing separate purpose-built hardware machines such as POS, kiosks, digital

signages and others with a smaller foundation of general-purpose compute

technologies, while maximizing compute utilization.

This paper explains the concept of workload aggregation and consolidation using

containerized solution for retail use cases (POS, Surveillance, Digital Signage), including

architectural considerations as well as enabling techniques to support common

workloads required in the retail and hospitality industries.

1.1 Terminology

Table 1. Terminology

Term Description

AI Artificial Intelligence

BKM Best Known Method

Cmd Command

CRM Customer Relationship Management

DP DisplayPort

EFLOW Edge for Linux on Windows

ERP Enterprise Resource Planning

GPU Graphics Processing Unit

Introduction

Containerization using WSL for Integrated Retail Solution

White Paper June 2023

6 Document Number: 782229-0.1

Term Description

GUI Graphical User Interface

HDMI High-Definition Multimedia Interface

iGPU Integrated Graphics Processing Unit

IT Information Technology

LXC Linux Containers

NUC Next Unit of Computing

OpenVINO Open Visual Inference and Neural network Optimization

OS Operating System

POS Points of Sale

QSR Quick Service Restaurant

USB Universal Serial Bus

VM Virtual Machine

WSL Windows* Subsystem for Linux*

1.2 Introduction to Containerization

Containerization is a modern software approach to deploy various workloads in the

current Information Technology (IT) world. Containers share the kernel of their host

with other containers running on the system and include just enough of the operating

system, the application itself, and its dependencies. Due to the way containers are

structured and share a kernel, containers are very light weight and relatively smaller in

size compared to other consolidation techniques such as Virtual Machines (VMs).

A high-level example of containerized solution is shown in Figure 1. Typical system

includes physical hardware running desired operating system, which is described as

host OS. The container daemon runs at same level as host OS to facilitate execution of

various containers with desired applications. Some examples of container daemon or

software available today are Docker*, Linux Containers (LXC), and Apache Mesos*.

For the scope of this document, we will discuss the concept of integrated retail solution

and how containerized solution can support additional workloads like AI analytics and

digital signage in the same POS hardware.

Introduction

 Containerization using WSL for Integrated Retail Solution

June 2023 White Paper

Document Number: 782229-0.1 7

Figure 1. Generic Containerization Technique for Workloads Consolidation

§

Solution Implementation

Containerization using WSL for Integrated Retail Solution

White Paper June 2023

8 Document Number: 782229-0.1

2.0 Solution Implementation

In this section of the document, the hardware and software architecture of integrated

retails solution with Point of Sale as primary device is described. Figure 2 depicts the

typical system architecture of POS, Digital Signage and Analytics included in Integrated

Retails solution based on Intel® NUC based 12th Gen Core™ processor. The system is

connected with various interfaces such as USB, Serial Port, Ethernet, and HDMI

targeting for POS usage model.

Leveraging the latest 12th Gen Intel® Core™ processor architecture which is capable of

supporting four displays simultaneously to expand new workload applications, for

example, digital signage, analytic dashboard, and digital surveillance.

Figure 2. System Architecture for Integrated Retail Solution

Point of Sale device is essential for all grocery stores, especially for small Mom and Pop

stores. For an integrated retail solution in a single box, it is important to prioritize the

workload of traditional POS and ERP/CRM related workloads than other types of

workloads. The primary OS required for Point of sale is Windows*. However, the

Analytics various AI solutions still available as container for Linux operating system.

Thus, we need container-based approach to run additional workloads.

Furthermore, the containerization approach allows the allocation of dedicated

resources for POS and assign resources separately for other applications such as AI

Solution Implementation

 Containerization using WSL for Integrated Retail Solution

June 2023 White Paper

Document Number: 782229-0.1 9

analytics and digital signage. Figure 3 shows the software architecture of such

containerized applications.

As shown in Figure 3, the Point-of-Sale application runs directly on the host operating

system which is Windows* in this case. Besides, there are two other key containers as

follows.

1. Digital signage server application is a containerized application that controls the

signage content and its management. Once the server application is started, digital

signage content can be played back on the device using web browser.

2. Similarly, OpenVINO™ based analytics for person detection is also a container-

based application. This OpenVINO™ container receives images from a camera and

performs AI inference, for example, person detection in which can be utilized for

various insights to retail business.

Both containers are Linux* containers.

Figure 3. Isolated Workloads Run on Docker* on Top of WSL

Thus, to execute this container it requires Linux* as the host operating system.

However, as described before POS is primarily a Windows*-based solution thus to use

these containerized applications, first Windows Subsystem for Linux (WSL) is used with

Windows* Hyper-V. Then, an Ubuntu* OS is installed on top of WSL. Next ingredient

required to execute is container daemon. Docker* is a widely used container daemon,

which is also used in this example to run the container described earlier for digital

signage content management application and OpenVINO™ AI analytics container. This

implementation allows the use of integrated Graphics Processing Unit (iGPU) for

Solution Implementation

Containerization using WSL for Integrated Retail Solution

White Paper June 2023

10 Document Number: 782229-0.1

Docker* container hardware acceleration in both digital signage playback as well as AI

inference.

Further in later chapter, we will describe the procedure and the best known method

(BKM) to install WSL and Ubuntu* along with the example of containerized applications

for digital signage server as well as OpenVINO™ based analytics dashboard.

Note that this document is intended for developer communities, thus it is to be

expected that consumers of this document are familiar with basic knowledge of

Docker*, virtualization, standard Windows* and Linux* commands, as well as installing

various dependencies and packages.

§

Procedure and BKM for WSL-Based Integrated Retail Solution

 Containerization using WSL for Integrated Retail Solution

June 2023 White Paper

Document Number: 782229-0.1 11

3.0 Procedure and BKM for WSL-Based Integrated

Retail Solution

As described previously, Point of Sale application is installed directly on Windows* host

operating system. Thus, this chapter focuses primarily on installing and running two

containerized applications of digital signage content management as well as

OpenVINO™ AI analytics.

For ease of understanding following are the high-level steps for the system:

1. Install WSL to set up Linux* operating system with access to iGPU of Intel®

processors.

2. Install Ubuntu* as guest operating system on top of WSL. Ubuntu* will be the host

OS for containerized applications using container daemon.

3. Install Container Daemon using Docker* to run containerized applications.

4. Build and Run OpenVINO™ AI Analytics GUI Application to receive camera feed and

run AI inference. On top of that, to visualize the output, we need to install X server

application on Windows* side to capture that.

5. Install and Run Digital Signage Server Application to run digital signage

management server. For the demo purpose, we have used an open-source

application known as Xibo Signage*.

3.1 Prerequisites

The setup needs WSL version 2, and the installation requires Windows* administrator

privileges. Check WSL 2 installation page for more detailed requirements.

3.2 Install WSL

Run Cmd 1 as an administrator to install WSL on Windows* PowerShell or Command

Prompt.

Note: Linux* will have difficulty navigate through directories and file names with spaces.

Create username as well as directories/filenames that are friendly for both

Windows* and Linux*.

Cmd 1. Command to Install WSL

> wsl --install

> wsl --version

WSL version: 1.2.5.0

Kernel version: 5.15.90.1

WSLg version: 1.0.51

https://xibosignage.com/
https://learn.microsoft.com/en-us/windows/wsl/install

Procedure and BKM for WSL-Based Integrated Retail Solution

Containerization using WSL for Integrated Retail Solution

White Paper June 2023

12 Document Number: 782229-0.1

MSRDC version: 1.2.3770

Direct3D version: 1.608.2-61064218

DXCore version: 10.0.25131.1002-220531-1700.rs-onecore-base2-hyp

Windows version: 10.0.22000.1817

3.3 Install and Run Linux*

Install Ubuntu* 22.04 LTS from Microsoft* Store. Run the installed Linux* from the Start

menu and update the packages using Cmd 2.

Cmd 2. Command to Update Ubuntu*

$ sudo apt update

$ sudo apt upgrade

3.4 Install Container Daemon

Use Cmd 3 to activate Linux* systemd on WSL.

Cmd 3. Command to Activate Linux* systemd on WSL

$ sudo vim /etc/wsl.conf

[boot]

systemd=true

Then use Cmd 4 to install Docker*.

Cmd 4. Command to Install Docker*

$ sudo apt update

$ sudo apt install docker.io -y

$ sudo usermod -aG docker $USER

$ docker --version

Docker version 20.10.21, build 20.10.21-0ubuntu1~22.04.3

$ exit

Restart WSL and install Docker* Compose using Cmd 5.

Cmd 5. Command to Install Docker* Compose

> wsl --shutdown

$ sudo apt install docker-compose

Procedure and BKM for WSL-Based Integrated Retail Solution

 Containerization using WSL for Integrated Retail Solution

June 2023 White Paper

Document Number: 782229-0.1 13

3.5 Install X Server for Windows*

Install X Server (VcXsrv) on Windows* using the following link. Make sure to disable

access control option. This application is required to play back output of OpenVINO™ AI

analytics as GUI.

• Install X Server for Windows*: https://medium.com/@potatowagon/how-to-

usegui-apps-in-linux-docker-container-from-windows-host-485d3e1c64a3

3.6 Build OpenVINO™ Analytics Containerized Application

Use person detection demo from OpenVINO™ Model Zoo. Build the image using

Dockerfile in Cmd 6.

Cmd 6. Person Detection Demo Dockerfile

$ cat Dockerfile

FROM openvino/ubuntu20_dev:2022.3.0

Install basics

USER root

RUN apt-get update -y \

&& apt-get install -y libgtk2.0-dev libcanberra-gtk-module

libcanberra-gtk3-module \

&& apt-get install -y ffmpeg

Create new user

RUN groupadd -g 1001 tami

RUN useradd -rm -d /home/tami -s /bin/bash -g 1001 -u 1001 tami

USER tami

Get video files

RUN mkdir -p /home/tami/videos

WORKDIR /home/tami/videos

RUN curl -O

https://storage.openvinotoolkit.org/data/test_data/videos/store-

aisle-detection.mp4

Install Open Model Zoo

WORKDIR /home/tami

RUN git clone --recurse-submodules

https://github.com/openvinotoolkit/open_model_zoo.git

WORKDIR /home/tami/open_model_zoo

RUN git checkout 2022.3.0

WORKDIR /home/tami/open_model_zoo/demos/

RUN ./build_demos.sh

Setup Object Detection Demo

WORKDIR

/home/tami/open_model_zoo/demos/object_detection_demo/python

RUN omz_downloader --name person-detection-retail-0013

https://medium.com/@potatowagon/how-to-usegui-apps-in-linux-docker-container-from-windows-host-485d3e1c64a3
https://medium.com/@potatowagon/how-to-usegui-apps-in-linux-docker-container-from-windows-host-485d3e1c64a3

Procedure and BKM for WSL-Based Integrated Retail Solution

Containerization using WSL for Integrated Retail Solution

White Paper June 2023

14 Document Number: 782229-0.1

Finalizing

WORKDIR /home/tami

Build the image using Cmd 7.

Cmd 7. Command to Build Person Detection Demo

$ sudo docker build \

 -f Dockerfile \

 -t open-model-zoo:2022.3.0 .

$ sudo docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

open-model-zoo 2022.3.0 xxx xxx 5.24GB

openvino/ubuntu20_dev 2022.3.0 xxx xxx 4.35GB

3.7 Run OpenVINO™ Analytics Containerized Application

Run X Server (VcXsrv) on Windows* with access control option disabled. Then, get

Windows* host IP using Cmd 8.

Cmd 8. Command to Get Windows* Host IP

> ipconfig

...

IPv4 Address. : 192.168.x.x

...

Open Ubuntu* and execute Cmd 9 to run the person detection demo. Details for the

argument’s selection are as follows:

• -itu root:root : To run as a super user. To access the GPU, the user needs

to be a super user. For CPU run, this is optional.

• --net host : Set network to follow the host for the container to access host’s

display server application.

• -e DISPLAY=192.168.x.x:0.0 : This is for display setting as well as the

access to display server. Use the host IP address from Cmd 8.

• --device /dev/dxg : To access GPU driver. This is optional for CPU run.

• --volume /usr/lib/wsl:/usr/lib/wsl : Grant the container access to

the WSL 2 libraries.

• /bin/bash -c : Command to execute the demo application.

Procedure and BKM for WSL-Based Integrated Retail Solution

 Containerization using WSL for Integrated Retail Solution

June 2023 White Paper

Document Number: 782229-0.1 15

Cmd 9. Command to Run Person Detection Demo

$ docker run \

 -itu root:root \

 --net host \

 -e DISPLAY=192.168.x.x:0.0 \

 --device /dev/dxg \

 --volume /usr/lib/wsl:/usr/lib/wsl \

 --rm open-model-zoo:2022.3.0 \

 /bin/bash -c "cd /home/tami && sudo python3

./open_model_zoo/demos/object_detection_demo/python/object_detect

ion_demo.py -at ssd -t 0.95 -d GPU --loop \

 -i ./videos/store-aisle-detection.mp4 \

 -m

./open_model_zoo/demos/object_detection_demo/python/intel/person-

detection-retail-0013/FP16-INT8/person-detection-retail-0013.xml"

The GUI application will be shown in the opened X Server application.

3.8 Install Digital Signage Server Containerized Application

This example is explained using open source Xibo Signage* application. Open Ubuntu*,

download Xibo Signage* for Linux*, and extract it using Cmd 10. Rename the directory

to avoid path issue.

Cmd 10. Command to Extract Xibo Signage*

$ tar -xzvf xibo-docker.tar.gz

$ mv xibo-docker-x.x.x xibo

$ cd xibo

Copy config.env.template file to config.env and edit it as needed.

3.9 Run Digital Signage Server Containerized Application

Go to xibo directory and run Xibo Signage* using Cmd 11.

Cmd 11. Command to Run Xibo Signage*

$ docker-compose up -d

When running it for the first time, Docker* Compose will download all the required

images as shown in Cmd 12.

https://xibosignage.com/docs/setup/xibo-for-docker

Procedure and BKM for WSL-Based Integrated Retail Solution

Containerization using WSL for Integrated Retail Solution

White Paper June 2023

16 Document Number: 782229-0.1

Cmd 12. Command to List Xibo Signage* Images

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

mysql 5.7 xxx xxx 455MB

memcached alpine xxx xxx 9.42MB

xibosignage/xibo-cms release-x xxx xxx 575MB

ianw/quickchart latest xxx xxx 964MB

xibosignage/xibo-xmr 0.9 xxx xxx 29.5MB

Open a web browser to access the server containerized application from

http://127.0.0.1:80 IP and port as well as the default xibo_admin username and

password password.

The commands in Cmd 13 may be useful to stop, start, and uninstall the application.

Cmd 13. Optional Commands to Stop, Start, and Uninstall Xibo Signage*

$ docker-compose stop

$ docker-compose start

$ docker-compose down

§

http://127.0.0.1/

Resource Allocation for Containerized Applications on WSL

 Containerization using WSL for Integrated Retail Solution

June 2023 White Paper

Document Number: 782229-0.1 17

4.0 Resource Allocation for Containerized

Applications on WSL

As mentioned earlier, it is important to control the resources allocated to POS and any

other containerized applications in the system. The following subsections show the way

to allocate resources for the containerized applications that use either Docker* or

Docker* Compose.

4.1 Resource Allocation When Using Docker*

For applications that use Docker* command to run, --cpus and --memory options can

be used to limit the number of CPU and memory utilized by the application. For

example, Cmd 14 will be run with only two CPUs.

Cmd 14. Command to Run Docker* Application with Limited Number of CPUs

$ docker run \

 --cpus="2.0" \

 -itu root:root \

 --net host \

 -e DISPLAY=192.168.100.7:0.0 \

 --device /dev/dxg \

 --volume /usr/lib/wsl:/usr/lib/wsl \

 --rm open-model-zoo:2022.3.0 \

 /bin/bash -c "..."

4.2 Resource Allocation When Using Docker* Compose

For applications that uses Docker* Compose, add cpus as well as mem_limit keys in

the docker-compose.yml file. Cmd 15 shows the way to limit the number of CPUs

utilized by cms-web services to 1. Note that the limit for the other services will need to

be set individually when needed.

Cmd 15. docker-compose.yml Example to Limit Number of CPUs for Each Service

$ cat docker-compose.yml

version: "2.1"

services:

 cms-db:

 cms-xmr:

 cms-web:

 cpus: 1.0

§

Test Setup, Results, and Summary

Containerization using WSL for Integrated Retail Solution

White Paper June 2023

18 Document Number: 782229-0.1

5.0 Test Setup, Results, and Summary

5.1 Test Setup

This chapter is intended to provide the real setup implemented with the BKM

mentioned in the previous sections. Figure 4 is the picture of realistic setup for such

Integrated retail solution. Table 2 shows the major system blocks and ingredients for

the setup.

Table 2. System Blocks and Ingredients

Component Details

Processor Intel® Core™ i7 12800HL, 45 W (ADL PS) with Intel vPro®

6P+8E Cores, 20 Threads

24 MB Intel® Smart Cache

2.4 GHz Base Frequency with up to 4.8 GHz Turbo Frequency

Memory 64 GB SODIMM DDR5-4800, Dual Channel x 64-bit (Total 128-bit
Memory Interface)

Storage 128 GB M.2 PCIe NVMe

External Cameras POE Camera: HIKVISION* DS-S2CD1653G0-IZ

Wi-Fi Camera: Sricam* SH034

External POE Switch 5-Port Gigabit Desktop Switch with 4-Port POE+

TL-SG1005LP

Host Operating System Microsoft* Windows* 10 version 10.0.22000.1817

Graphics Driver Intel® Iris® Xe Graphics 31.0.101.3959

WSL WSL 2 version 1.2.5.0

Linux* OS Ubuntu* version 22.04.1 LTS

Kernel version 5.15.90.1-microsoft-standard-WSL2

Docker* Version 20.10.21

Docker* Compose Version 2.15.1

OpenVINO™ Toolkit Version 2022.3.0

Xibo Signage* Version 3.3.3

Test Setup, Results, and Summary

 Containerization using WSL for Integrated Retail Solution

June 2023 White Paper

Document Number: 782229-0.1 19

5.2 Results

After installing various dependencies, software system was successfully booted, and

the following applications was executed:

1. Point of Sale application runs directly on Windows* OS.

2. OpenVINO™ AI analytics application runs in a container on Linux* with GUI

displaying analytics result of person detection.

3. A playback of 1080p HDR digital signage on web browser based on Xibo Signage*

server application running in the other Linux* container.

Figure 4 shows all applications running concurrently.

Figure 4. Linux* GUI and Server Containerized Applications on WSL

NOTE: Top row shows the GUI application whereas the bottom row shows the server application.

5.3 Summary

Running containerized applications is useful to realize workload consolidation at the

edge. Using containers with Docker* or similar container daemon can help in assigning

resources based on priority and isolating workloads for better security. Additional layer

or security can be enabled using privileged access management of the containers.

WSL is one of the mechanisms to run Linux* on Windows* environment, but it is

recommended to run containers on additional OS such as Ubuntu*. WSL is targeted for

development environment, but for productization, it is recommended to use other

solutions such Azure* IoT Edge for Linux on Windows* (EFLOW). There could be

different dependencies, prerequisites, and procedures to realize the similar system as

Test Setup, Results, and Summary

Containerization using WSL for Integrated Retail Solution

White Paper June 2023

20 Document Number: 782229-0.1

described in this paper using EFLOW. EFLOW uses CBL-Mariner Linux* instead of

Ubuntu*, however the fundamental architecture and concept will remain same.

§

	White Paper
	Notices and Disclaimers
	Contents
	Revision History
	1.0 Introduction
	1.1 Terminology
	1.2 Introduction to Containerization

	2.0 Solution Implementation
	3.0 Procedure and BKM for WSL-Based Integrated Retail Solution
	3.1 Prerequisites
	3.2 Install WSL
	3.3 Install and Run Linux*
	3.4 Install Container Daemon
	3.5 Install X Server for Windows*
	3.6 Build OpenVINO™ Analytics Containerized Application
	3.7 Run OpenVINO™ Analytics Containerized Application
	3.8 Install Digital Signage Server Containerized Application
	3.9 Run Digital Signage Server Containerized Application

	4.0 Resource Allocation for Containerized Applications on WSL
	4.1 Resource Allocation When Using Docker*
	4.2 Resource Allocation When Using Docker* Compose

	5.0 Test Setup, Results, and Summary
	5.1 Test Setup
	5.2 Results
	5.3 Summary

