
  1 

REFERENCE ARCHITECTURE RELEASE V21.09 
Intel Corporation 
 

 

Container Bare Metal for 2nd Generation Intel® Xeon® 
Scalable Processor 
 

Authors 
Octavia Carotti 

Dave Cremins 

Joel A. Gibson 

Shivapriya Hiremath 

Radoslaw Jablonski 

Konrad Janowski 

Veronika Karpenko 

Patryk Klimowicz 

Krystian Mlynek 

Dana Nehama 

Michael O’Reilly 

Michael Pedersen 

Dmitrii Puzikov 

Syed Faraz Ali Shah 

 

1 Introduction 
The Container Bare Metal Reference Architecture (BMRA) is a cloud-native, forward-looking 
Kubernetes-cluster template solution for network implementations. This guide provides 
instructions on how to set, install, provision, and run a Container Bare Metal Kubernetes cluster 
setup based on Intel® platforms and open-source software. In addition, the guide provides access 
to a set of open-source Ansible scripts that enable automatic and easy provisioning of the BMRA 
using optimized configurations, thus, decreasing the installation time from days to a few hours. 

The document provides the following information: 
• Part 1 (Section 1-2) provides an overview of the BMRA structure, taxonomy, hardware, and 

software supported technology options. 
• Part 2 (Sections 3 – 7) provides more profound technology and implementation details. 
• If you wish to start building your BMRA right away, you may go directly to Part 3 of this 

document (Appendixes A – F) and start automatically provision the BMRA configuration of 
your choice. 

• Part 4 (Appendix G) includes the BMRA 21.09 Release Notes. 
• Part 5 (Appendix H) contains an example of Key Management implementation with NGINX. 

This guide describes the set of hardware and open-source software components forming the 
BMRA Release 21.09. The hardware platforms supported are based on the 3rd Generation Intel® 
Xeon® Scalable processors, Intel accelerators, and other advanced Intel platform technologies. 
The provisioning of BMRA Kubernetes clusters is completely automated, using open-source 
Ansible scripts. 

Network deployments vary by location. Each location imposes different hardware and software 
specifications and configurations due to varying workloads, cost, density, and performance 
requirements. To address these matters, the BMRA supports the concept of Configuration Profiles, 
each of which determines how a BMRA flavor can be generated. BMRA 21.09 continues to support 
the following Reference Architecture Configuration Profiles. Three of the Reference Architecture 
Configuration Profiles are network location-specific: 
• On-Premises Edge Configuration Profile – Typical Customer Premises deployment 

supporting, for example, Content Delivery Network (CDN) and Smart City scenarios. 
• Remote Central Office-Forwarding Configuration Profile – Near Edge deployments 

supporting fast packet forwarding workloads such as Cable Modem Termination System 
(CMTS), Virtual Broadband Network Gateway (vBNG), and User Plane Function (UPF). 

• Regional Data Center Configuration Profile – Central-office location typical Configuration 
Profile. Currently tailored exclusively for Media Visual Processing workloads such as CDN 
Transcoding. 

Two additional Reference Architecture Configuration Profiles that are not location-specific enable 
flexible deployments per need: 
• Basic Configuration Profile – Minimum BMRA Kubernetes cluster setup. 
• Full Configuration Profile – Complete BMRA setup supporting all available software features. 

A set of Ansible scripts is used to automatically generate and configure BMRA per the Reference 
Architecture Configuration Profiles. The guide provides a step-by-step process and describes the 
functions implemented by each of the Ansible scripts and goes into great detail to describe the 
software capabilities and the optimized hardware and software configurations that are 
implemented by those Ansible scripts. 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  3 

BMRA Release 21.09 continues the evolution seen in previous BMRA releases and delivers a 
significant portfolio of technologies that enable a variety of on-premises to core network use cases 
addressing: security, media, cable (Virtual Cable Modem Termination System (vCMTS)), central 
office (Access Gateway Function (AGF), Virtual Broadband Network Gateway (vBNG), 5G User Plane 
Function (UPF)), and Smart City deployments. For the complete list of hardware and software 
capabilities offered by BMRA, visit Section 2 of this document. 

Following are the primary new and updated software features introduced in Release 21.09. For the 
more complete list, including bug fixes, refer to the BMRA Release Notes. 

• Support for microservices architectures with Istio service mesh, Istio operator, and Envoy 
• Support for Telegraf platform and application telemetry collection (in addition to collectd) 
• Support Intel Telemetry Insight Reports that translate raw platform metrics into up-leveled 

networking and operational insights (add-on software available under NDA) 
• Support CRI-O Kubernetes container runtime interface to enable using Open Container 

Initiative (OCI)-compatible runtimes (in addition to Docker and containerd) 
• Support Calico as the default network plugin  
• Support an enhanced set of Intel® Speed Select technologies [in addition to the existing 

support for Intel® Speed Select Technology – Base Frequency (Intel® SST-BF) and Intel® Speed 
Select Technology – Core Power (Intel® SST-CP)]: 
 Intel® Speed Select Technology - Performance Profile (Intel® SST-PP) provides a set of 

performance profiles that ease defining core throughput and determinism  
 Intel® Speed Select Technology – Turbo Frequency (Intel® SST-TF) looks to optimize 

opportunistic excursions into turbo frequencies 
• Support for rendering BMRA Configuration Profile files from template 
• Updated Intel® Ethernet 700 and 800 Network Adapter drivers  
• Updated Intel® Software Guard Extensions (Intel® SGX) Software Development Kit (SDK) 
• Updated Data Plane Development Kit (DPDK) 21.08 and Open vSwitch (OVS) DPDK 2.16, 

including optimizations for Intel® AVX-512 instructions 
• Updated Prometheus, Grafana, and Node Exporter telemetry packages 
• Updated Kubernetes to v1.21.x  
• Updated Node Feature Discovery (NFD) 
• Updated Multus container network interface (CNI) 
• Updated OpenSSL toolkit 
• Updated Intel® QuickAssist Technology Engine for OpenSSL (Intel® QAT Engine for OpenSSL)  
• Updated Intel® Multi-Buffer Crypto for IPSec (intel-ipsec-mb) 
Experience Kits, the collaterals that explain in detail the technologies enabled in BMRA release 
21.09, including benchmark information, are available in the following locations:  
Intel Network Builder: 
• https://networkbuilders.intel.com/intel-technologies/network-transformation-exp-kits 
• https://networkbuilders.intel.com/intel-technologies/container-experience-kits  
• https://networkbuilders.intel.com/intel-technologies/3rd-gen-intel-xeon-scalable-processors-

experience-kits 
 

 

 

 

https://networkbuilders.intel.com/intel-technologies/network-transformation-exp-kits
https://networkbuilders.intel.com/intel-technologies/container-experience-kits
https://networkbuilders.intel.com/intel-technologies/3rd-gen-intel-xeon-scalable-processors-experience-kits
https://networkbuilders.intel.com/intel-technologies/3rd-gen-intel-xeon-scalable-processors-experience-kits


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  2 

Table of Contents 
1 Introduction ................................................................................................................................................................................................................. 1 

1.1 About this Document ............................................................................................................................................................................................................................. 7 
1.2 Terminology .............................................................................................................................................................................................................................................. 7 
1.3 Taxonomy ................................................................................................................................................................................................................................................ 11 
1.4 Reference Documents ......................................................................................................................................................................................................................... 11 

2 Reference Architecture Overview .......................................................................................................................................................................... 12 
2.1 Architecture Delivered ........................................................................................................................................................................................................................ 12 
2.2 Reference Architecture Configuration Profiles .......................................................................................................................................................................... 14 
2.3 Use Cases by Network Location ...................................................................................................................................................................................................... 15 
2.4 Configuration Profile Installation Playbooks .............................................................................................................................................................................. 16 
2.5 Hardware Components ...................................................................................................................................................................................................................... 16 
2.6 Software Capabilities........................................................................................................................................................................................................................... 17 

2.6.1 Kubernetes Features ........................................................................................................................................................................................................................... 17 
2.6.2 Platform System Features ................................................................................................................................................................................................................. 17 
2.6.3 Observability .......................................................................................................................................................................................................................................... 18 

Part 2:   .................................................................................................................................................................................................................................... 20 
3 Reference Architecture Deployment – Ansible Playbooks ............................................................................................................................... 21 

3.1 Reference Architecture Installation Prerequisites .................................................................................................................................................................... 21 
3.1.1 Hardware BOM Selection and Setup for Control and Worker Nodes ............................................................................................................................... 21 
3.1.2 BIOS Selection for Control and Worker Nodes ......................................................................................................................................................................... 21 
3.1.3 Operating System Selection for Control and Worker Nodes ............................................................................................................................................... 21 
3.1.4 Network Interface Requirements for Control and Worker Nodes ...................................................................................................................................... 22 
3.1.5 Software Prerequisites for Ansible Host, Control Nodes, and Worker Nodes ............................................................................................................... 22 

3.2 Ansible Playbook Review ................................................................................................................................................................................................................... 22 
3.2.1 Ansible Playbooks Building Blocks ................................................................................................................................................................................................ 22 
3.2.2 Ansible Playbook Phases ................................................................................................................................................................................................................... 23 

3.3 Deployment using Ansible Playbook ............................................................................................................................................................................................ 24 
3.3.1 Prepare Target Servers ....................................................................................................................................................................................................................... 24 
3.3.2 Get Ansible Playbook and Prepare Configuration Templates ............................................................................................................................................. 24 
3.3.3 Update Ansible Inventory File .......................................................................................................................................................................................................... 25 
3.3.4 Update Ansible Host and Group Variables.................................................................................................................................................................................. 25 
3.3.5 Run Ansible Cluster Deployment Playbook ................................................................................................................................................................................ 26 
3.3.6 Run Ansible Cluster Removal Playbook ....................................................................................................................................................................................... 26 

4 Software Capabilities Review ................................................................................................................................................................................. 26 
4.1 Container Runtimes ............................................................................................................................................................................................................................. 26 

4.1.1 Docker ....................................................................................................................................................................................................................................................... 26 
4.1.2 Containerd............................................................................................................................................................................................................................................... 27 
4.1.3 CRI-O ......................................................................................................................................................................................................................................................... 27 

4.2 Kubernetes Plugins .............................................................................................................................................................................................................................. 27 
4.2.1 Multus CNI ............................................................................................................................................................................................................................................... 27 
4.2.2 SR-IOV Network Device Plugin ........................................................................................................................................................................................................ 27 
4.2.3 SR-IOV CNI .............................................................................................................................................................................................................................................. 27 
4.2.4 Userspace CNI ........................................................................................................................................................................................................................................ 28 
4.2.5 Bond CNI .................................................................................................................................................................................................................................................. 28 
4.2.6 Intel® QuickAssist Device Plugin ..................................................................................................................................................................................................... 28 
4.2.7 Intel® Software Guard Extensions (Intel® SGX) Device Plugin .............................................................................................................................................. 28 

4.3 Kubernetes Features ........................................................................................................................................................................................................................... 28 
4.3.1 Node Feature Discovery ..................................................................................................................................................................................................................... 28 
4.3.2 Topology Manager ............................................................................................................................................................................................................................... 30 
4.3.3 Kubernetes Native CPU Manager .................................................................................................................................................................................................... 30 
4.3.4 CPU Manager for Kubernetes (CMK) .............................................................................................................................................................................................. 30 
4.3.5 Telemetry Aware Scheduling ........................................................................................................................................................................................................... 30 

4.4 Istio Service Mesh ................................................................................................................................................................................................................................. 31 
4.4.1 Istio Deployment Example ................................................................................................................................................................................................................ 31 

4.5 Operators................................................................................................................................................................................................................................................. 31 
4.5.1 SR-IOV Network Operator ................................................................................................................................................................................................................. 31 
4.5.2 Intel Device Plugins Operator .......................................................................................................................................................................................................... 32 
4.5.3 Istio Operator ......................................................................................................................................................................................................................................... 32 

4.6 Dynamic Device Personalization (DDP) ........................................................................................................................................................................................ 32 
4.6.1 DDP on Intel Ethernet 700 Series Network Adapters ............................................................................................................................................................. 32 
4.6.2 DDP on Intel® Ethernet 800 Series Network Adapters............................................................................................................................................................ 33 

4.7 Intel® Speed Select Technology ...................................................................................................................................................................................................... 35 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  3 

4.7.1 Intel Speed Select Technology – Base Frequency .................................................................................................................................................................... 35 
4.7.2 Intel Speed Select Technology – Core Power ............................................................................................................................................................................ 36 
4.7.3 Intel Speed Select Technology – Turbo Frequency (Intel SST-TF) .................................................................................................................................... 36 
4.7.4 Intel Speed Select Technology – Performance Profile (Intel SST-PP) .............................................................................................................................. 36 

4.8 Security..................................................................................................................................................................................................................................................... 37 
4.8.1 Cluster Security ..................................................................................................................................................................................................................................... 37 
4.8.2 Intel® Security Libraries for Data Center (Intel® SecL – DC) ................................................................................................................................................... 37 
4.8.3 Intel® Software Guard Extensions ................................................................................................................................................................................................... 37 
4.8.4 OpenSSL and QAT Engine ................................................................................................................................................................................................................. 38 

4.9 Security - Key Management Reference Application with Intel® SGX ................................................................................................................................. 38 
4.10 Intel® Server GPU .................................................................................................................................................................................................................................. 39 
4.11 Observability .......................................................................................................................................................................................................................................... 39 

4.11.1 Observability Components Overview ........................................................................................................................................................................................... 39 
4.11.2 Platform Telemetry Security ............................................................................................................................................................................................................ 41 

5 Reference Architecture Hardware Components and BIOS ............................................................................................................................... 41 
5.1 Hardware Component List for Control Node ............................................................................................................................................................................. 41 
5.2 Hardware Component List for Worker Node Base ................................................................................................................................................................... 42 
5.3 Hardware Component List for Worker Node Plus .................................................................................................................................................................... 43 
5.4 Hardware BOMs for all Configuration Profiles ........................................................................................................................................................................... 44 
5.5 Platform BIOS ........................................................................................................................................................................................................................................ 47 

6 Reference Architecture Software Components ................................................................................................................................................... 51 
7 Post Deployment Verification Guidelines ............................................................................................................................................................ 53 

7.1 Check the Kubernetes Cluster ......................................................................................................................................................................................................... 53 
7.2 Check Intel Speed Select Technology – Base Frequency (Intel SST-BF) Configuration on 2nd Generation Intel Xeon Scalable 

Processor ................................................................................................................................................................................................................................................. 55 
7.3 Check Intel Speed Select Technology on 3rd Generation Intel Xeon Scalable Processor ........................................................................................ 55 

7.3.1 Check Intel Speed Select Technology - Base Frequency (Intel SST-BF) Configuration.............................................................................................. 55 
7.3.2 Check Intel Speed Select Technology – Core Power (Intel SST-CP) .................................................................................................................................. 56 

7.4 Check Intel Speed Select Technology – Performance Profile (Intel SST-PP) with Intel Speed Select Technology – Turbo Frequency 
(Intel SST-TF) on 3rd Generation Intel Xeon Scalable Processors ..................................................................................................................................... 56 

7.5 Check DDP Profiles .............................................................................................................................................................................................................................. 58 
7.5.1 Check DDP Profiles in Intel® Ethernet 700 Series Network Adapters ............................................................................................................................... 58 
7.5.2 Check DDP Profiles in Intel® Ethernet 800 Series Network Adapters ............................................................................................................................... 59 
7.5.3 Check SR-IOV Resources ................................................................................................................................................................................................................... 59 

7.6 Check Node Feature Discovery ........................................................................................................................................................................................................ 59 
7.7 Check CPU Manager for Kubernetes ............................................................................................................................................................................................. 61 
7.8 Check Topology Manager .................................................................................................................................................................................................................. 63 

7.8.1 Change Topology Manager Policy: Redeploy Kubernetes Playbook................................................................................................................................. 64 
7.8.2 Change Topology Manager Policy: Manually Update Kubelet Flags ................................................................................................................................. 64 

7.9 Check Intel Device Plugins for Kubernetes ................................................................................................................................................................................. 64 
7.9.1 Check SR-IOV Network Device Plugin ........................................................................................................................................................................................... 64 
7.9.2 Check QAT Device Plugin .................................................................................................................................................................................................................. 66 
7.9.3 Check SGX Device Plugin ................................................................................................................................................................................................................... 66 

7.10 Check Networking Features (After Installation) ......................................................................................................................................................................... 67 
7.10.1 Check Multus CNI Plugin .................................................................................................................................................................................................................... 67 
7.10.2 Check SR-IOV CNI Plugin ................................................................................................................................................................................................................... 68 
7.10.3 Check Userspace CNI Plugin ............................................................................................................................................................................................................. 68 
7.10.4 Check Bond CNI Plugin ....................................................................................................................................................................................................................... 69 

7.11 Check Grafana Telemetry Visualization........................................................................................................................................................................................ 71 
7.12 Check Telemetry Aware Scheduler ................................................................................................................................................................................................ 71 

7.12.1 Check Dontschedule Policy .............................................................................................................................................................................................................. 72 
7.12.2 Check Deschedule Policy ................................................................................................................................................................................................................... 72 

7.13 Check Key Management Infrastructure with Intel SGX ........................................................................................................................................................... 72 
7.14 Check Intel® Server GPU Device and Driver ................................................................................................................................................................................ 72 
7.15 Check Intel QAT Engine with OpenSSL ........................................................................................................................................................................................ 73 

8 Conclusion – Automation Eases Reference Application Deployment ............................................................................................................ 74 
Part 3:   .................................................................................................................................................................................................................................... 75 

 BMRA Setup for All Configuration Profile Options ............................................................................................................................................ 77 
 Set Up an Ansible Host ....................................................................................................................................................................................................................... 77 
A.1.1 CentOS Linux or RHEL Version 8 or Version 7 as Ansible Host ........................................................................................................................................... 77 
A.1.2 Ubuntu 20.04 LTS as Ansible Host ................................................................................................................................................................................................ 77 
 Set Up the Control and Worker Nodes - BIOS Prerequisites................................................................................................................................................ 78 
 Configuration Dictionary - Group Variables ................................................................................................................................................................................ 79 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  4 

 Configuration Dictionary - Host Variables ................................................................................................................................................................................... 82 
 BMRA Basic Configuration Profile Setup .............................................................................................................................................................. 86 

 Step 1 - Set Up Basic Configuration Profile Hardware ............................................................................................................................................................ 86 
 Step 2 - Download Basic Configuration Profile Ansible Playbook ..................................................................................................................................... 86 
B.2.1 Basic Configuration Profile Ansible Playbook Overview ........................................................................................................................................................ 87 
 Step 3 - Set Up Basic Configuration Profile ................................................................................................................................................................................ 87 
B.3.1 Basic Configuration Profile Group Variables .............................................................................................................................................................................. 88 
B.3.2 Basic Configuration Profile Host Variables ................................................................................................................................................................................. 88 
 Step 4 - Deploy Basic Configuration Profile Platform ............................................................................................................................................................. 88 
 Step 5 - Validate Basic Configuration Profile ............................................................................................................................................................................. 88 

 BMRA Full Configuration Profile Setup ................................................................................................................................................................ 90 
 Step 1 - Set Up Full Configuration Profile Hardware............................................................................................................................................................... 90 
 Step 2 - Download Full Configuration Profile Ansible Playbook ........................................................................................................................................ 90 
C.2.1 Full Configuration Profile Ansible Playbook Overview ........................................................................................................................................................... 91 
 Step 3 - Set Up Full Configuration Profile ................................................................................................................................................................................... 91 
C.3.1 Full Configuration Profile Group Variables ................................................................................................................................................................................. 92 
C.3.2 Full Configuration Profile Host Variables .................................................................................................................................................................................... 92 
 Step 4 - Deploy Full Configuration Profile Platform ................................................................................................................................................................ 93 
 Step 5 - Validate Full Configuration Profile ................................................................................................................................................................................ 93 

 BMRA On-Premises Edge Configuration Profile Setup...................................................................................................................................... 95 
 Step 1 - Set Up On-Premises Edge Configuration Profile Hardware ................................................................................................................................. 95 
 Step 2 - Download On-Premises Edge Configuration Profile Ansible Playbook .......................................................................................................... 95 
D.2.1 On-Premises Edge Configuration Profile Ansible Playbook Overview ............................................................................................................................. 96 
 Step 3 - Set Up On-Premises Edge Configuration Profile ..................................................................................................................................................... 96 
D.3.1 On-Premises Edge Configuration Profile Group Variables ................................................................................................................................................... 97 
D.3.2 On-Premises Edge Configuration Profile Host Variables....................................................................................................................................................... 97 
 Step 4 - Deploy On-Premises Edge Configuration Profile Platform .................................................................................................................................. 97 
 Step 5 - Validate On-Premises Edge Configuration Profile .................................................................................................................................................. 98 

 BMRA Remote CO-Forwarding Configuration Profile Setup ......................................................................................................................... 100 
 Step 1 - Set Up Remote CO-Forwarding Configuration Profile Hardware.................................................................................................................... 100 
 Step 2 - Download Remote CO-Forwarding Configuration Profile Ansible Playbook ............................................................................................. 100 
E.2.1 Remote CO-Forwarding Configuration Profile Ansible Playbook Overview ................................................................................................................ 101 
 Step 3 - Set Up Remote CO-Forwarding Configuration Profile ........................................................................................................................................ 101 
E.3.1 Remote CO-Forwarding Configuration Profile Group Variables ...................................................................................................................................... 102 
E.3.2 Remote CO-Forwarding Configuration Profile Host Variables ......................................................................................................................................... 102 
 Step 4 - Deploy Remote CO-Forwarding Configuration Profile Platform ..................................................................................................................... 103 
 Step 5 - Validate Remote-CO Forwarding Configuration Profile ..................................................................................................................................... 103 

 BMRA Regional Data Center Configuration Profile Setup .............................................................................................................................. 105 
 Step 1 - Set Up Regional Data Center Configuration Profile Hardware ......................................................................................................................... 105 
 Step 2 - Download Regional Data Center Configuration Profile Ansible Playbook .................................................................................................. 105 
F.2.1 Regional Data Center Configuration Profile Ansible Playbook Overview ..................................................................................................................... 106 

 Step 3 - Set Up Regional Data Center Configuration Profile ............................................................................................................................................. 106 
F.3.1 Regional Data Center Configuration Profile Group Variables ........................................................................................................................................... 107 
F.3.2 Regional Data Center Configuration Profile Host Variables ............................................................................................................................................... 107 

 Step 4 - Deploy Regional Data Center Configuration Profile Platform .......................................................................................................................... 107 
 Step 5 - Validate Regional Data Center Configuration Profile .......................................................................................................................................... 107 

Part 4:   ................................................................................................................................................................................................................................. 108 
 BMRA Release Notes.............................................................................................................................................................................................. 109 

 BMRA 21.09 New Features ............................................................................................................................................................................................................. 109 
 BMRA 21.09 Bug Fixes ..................................................................................................................................................................................................................... 109 
 BMRA 21.08 New Features ............................................................................................................................................................................................................. 109 
 BMRA 21.08 Bug Fixes ..................................................................................................................................................................................................................... 109 
 BMRA 21.03 New Features ............................................................................................................................................................................................................. 110 
 BMRA 21.03 Bug Fixes ..................................................................................................................................................................................................................... 110 
 BMRA 2.1 New Features .................................................................................................................................................................................................................. 110 
 BMRA 2.1 Bug Fixes .......................................................................................................................................................................................................................... 110 
 BMRA 2.0 New Features .................................................................................................................................................................................................................. 111 
 BMRA 2.0 Bug Fixes .......................................................................................................................................................................................................................... 111 
 Known Issues ...................................................................................................................................................................................................................................... 111 

Part 5:   ................................................................................................................................................................................................................................. 113 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  5 

 Workloads and Application Examples ............................................................................................................................................................... 114 
 Enabling Key Management NGINX Applications .................................................................................................................................................................... 114 

 

Figures 
Figure 1. Example of Container Bare Metal Reference Architecture Kubernetes Cluster Setup ................................................................................................ 13 
Figure 2. Key Components forming the Container Bare Metal Reference Architecture Kubernetes Cluster ........................................................................ 14 
Figure 3. Identified Key Network Locations ................................................................................................................................................................................................... 15 
Figure 4. Example of Container Bare Metal Configuration Profiles Per Location ............................................................................................................................ 15 
Figure 5. Ansible Playbooks Overview ............................................................................................................................................................................................................ 16 
Figure 6. Platform Telemetry Available with Collectd ............................................................................................................................................................................... 18 
Figure 7. Telemetry Insight Reports High-Level Architecture ................................................................................................................................................................ 19 
Figure 8. High Level BMRA Ansible Playbooks Architecture ................................................................................................................................................................... 23 
Figure 9. CPU Core Frequency Deployment Methods ............................................................................................................................................................................... 35 
Figure 10. Key Management Reference Application Infrastructure with Intel® SGX ......................................................................................................................... 38 
Figure 11. Platform Telemetry Available with Collectd ............................................................................................................................................................................... 39 
Figure 12. Grafana Dashboard Example ............................................................................................................................................................................................................ 71 
Figure 13. Basic Configuration Profile Ansible Playbook ............................................................................................................................................................................ 87 
Figure 14. Full Configuration Profile Ansible Playbook ............................................................................................................................................................................... 91 
Figure 15. On-Premises Edge Configuration Profile Ansible Playbook ................................................................................................................................................. 96 
Figure 16. Remote CO-Forwarding Configuration Profile Ansible Playbook .................................................................................................................................... 101 
Figure 17. Regional Data Center Configuration Profile Ansible Playbook ......................................................................................................................................... 106 

Tables 
Table 1. Abbreviations ........................................................................................................................................................................................................................................... 7 
Table 2. Hardware and Software Taxonomy ............................................................................................................................................................................................... 11 
Table 3. Reference Documents ......................................................................................................................................................................................................................... 11 
Table 4. Features Detected by NFD ................................................................................................................................................................................................................ 29 
Table 5. Collectd Plugins .................................................................................................................................................................................................................................... 40 
Table 6. Hardware Options for Control Node – 2nd Generation Intel Xeon Scalable Processor ............................................................................................. 41 
Table 7. Hardware Options for Control Node – 3rd Generation Intel Xeon Scalable Processor .............................................................................................. 41 
Table 8. Hardware Components for Worker Node Base – 2nd Generation Intel Xeon Scalable Processor ......................................................................... 42 
Table 9. Hardware Components for Worker Node Base – 3rd Generation Intel Xeon Scalable Processor .......................................................................... 42 
Table 10. Hardware Components for Worker Node Plus – 2nd Generation Intel Xeon Scalable Processor .......................................................................... 43 
Table 11. Hardware Components for Worker Node Plus – 3rd Generation Intel Xeon Scalable Processor........................................................................... 43 
Table 12. Control Node Hardware Setup for all Configuration Profiles – 2nd Generation Intel Xeon Scalable Processor .............................................. 44 
Table 13. Control Node Hardware Setup for all Configuration Profiles – 3rd Generation Intel Xeon Scalable Processor ............................................... 44 
Table 14. Worker Node Base Hardware Setup for all Configuration Profiles – 2nd Generation Intel Xeon Scalable Processor .................................... 45 
Table 15. Worker Node Plus Hardware Setup for all Configuration Profiles – 2nd Generation Intel Xeon Scalable Processor ..................................... 45 
Table 16. Worker Node Base Hardware Setup for all Configuration Profiles – 3rd Generation Intel Xeon Scalable Processor ..................................... 46 
Table 17. Worker Node Plus Hardware Setup for all Configuration Profiles – 3rd Generation Intel Xeon Scalable Processor ...................................... 46 
Table 18. Platform BIOS Settings for 2nd Generation Intel® Xeon® Scalable Processor ............................................................................................................... 48 
Table 19. Platform BIOS Settings for 3rd Generation Intel® Xeon® Scalable Processor ................................................................................................................ 49 
Table 20. BIOS Settings to Enable Intel SST-BF, Intel SST-TF, and Intel SST-PP ............................................................................................................................ 50 
Table 21. BIOS Settings to Enable Intel SGX on 2nd Generation and 3rd Generation Intel Xeon Scalable Processors .................................................... 50 
Table 22. Software Components ........................................................................................................................................................................................................................ 51 
Table 23. BIOS Prerequisites for Control and Worker Nodes for Basic and Full Configuration Profiles ................................................................................. 78 
Table 24. BIOS Prerequisites for Control and Worker Nodes for On-Premises Edge, Remote Co-Forwarding, and Regional Data Center 

Configuration Profiles ......................................................................................................................................................................................................................... 78 
Table 25. Configuration Dictionary – Group Variables ............................................................................................................................................................................... 79 
Table 26. Configuration Dictionary – Host Variables .................................................................................................................................................................................. 82 
Table 27. Hardware Setup for Basic Configuration Profile – 2nd Generation and 3rd Generation Intel Xeon Scalable Processors ............................. 86 
Table 28. Basic Configuration Profile – Group Variables ........................................................................................................................................................................... 88 
Table 29. Basic Configuration Profile – Host Variables .............................................................................................................................................................................. 88 
Table 30. Hardware Setup for Full Configuration Profile – 2nd Generation and 3rd Generation Intel Xeon Scalable Processors ................................ 90 
Table 31. Full Configuration Profile – Group Variables .............................................................................................................................................................................. 92 
Table 32. Full Configuration Profile – Host Variables ................................................................................................................................................................................. 92 
Table 33. Hardware Setup for On-Premises Edge Configuration Profile – 2nd Generation and 3rd Generation Intel Xeon Scalable Processors .. 95 
Table 34. On-Premises Edge Configuration Profile – Group Variables ................................................................................................................................................ 97 
Table 35. On-Premises Edge Configuration Profile – Host Variables ................................................................................................................................................... 97 
Table 36. Hardware Setup for Remote CO-Forwarding Configuration Profile – 2nd Generation and 3rd Generation Intel Xeon Scalable 

Processors ............................................................................................................................................................................................................................................ 100 
Table 37. Remote CO-Forwarding Configuration Profile – Group Variables ................................................................................................................................... 102 
Table 38. Remote CO-Forwarding Configuration Profile – Host Variables ...................................................................................................................................... 102 
Table 39. Hardware Setup for Regional Data Center Configuration Profile – 2nd Generation and 3rd Generation Intel Xeon Scalable Processors

 .................................................................................................................................................................................................................................................................. 105 
Table 40. Regional Data Center Configuration Profile – Group Variables ........................................................................................................................................ 107 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  6 

Table 41. Regional Data Center Configuration Profile – Host Variables ........................................................................................................................................... 107 
 

Document Revision History 
There are two previous editions of the BMRA document. The editions were released starting April 2019. 

• Covered 2nd Generation Intel® Xeon® Scalable processors 
• Covered 2nd Generation and 3rd Generation Intel® Xeon® Scalable processors 

REVISION DATE DESCRIPTION 

001 November 2020 Initial release of the BMRA document for 2nd Generation and 3rd Generation Intel® Xeon® Scalable 
processors. 

002 February 2021 Added Appendix for Ansible Host setup. Updated software versions. Updated the release notes to include 
details about bug fixes for Release 2.1 of the Container Bare Metal Reference Architecture (BMRA). 

003 April 2021 Added Appendix for BMRA Regional Data Center Configuration Profile Setup. Added Appendix for 
Workloads and Application Examples. Introduced new hardware and software technologies and upgrades, 
including Intel® Server Graphics 1 support. Updated the release notes to include details about bug fixes for 
BMRA Release 21.03. Revised the document for public release to Intel® Network Builders. 

004 April 2021 Added “Check Intel® Server GPU Device and Driver” section. 

005 August 2021 Added support for containerized Intel® SGX Key Management Service (KMS), OpenSSL, QAT Engine, and 
the addition of containerd runtime. Includes support for two operators, SR-IOV and Intel® Device Plugin. 

006 October 2021 Updated with information for the 21.09 release, which includes support for Istio service mesh and 
improved telemetry. 

007 October 2021 Added information about Data Plane Development Kit (DPDK) and Open vSwitch (OVS) DPDK to the 
Introduction. 

   

 

 



  7 

1.1 About this Document 
The BMRA document is composed of five parts, which are described below. 
Note: This document goes into great detail to describe the hardware and software ingredients and the configuration options for 

each BMRA Configuration Profile. Be aware that most of these data points are informational because the setup of each 
resulting BMRA Flavor is executed automatically by an Ansible playbook. 

Part 1 (Sections 1 and 2 in this guide): The guide begins with an overview of the container Bare Metal Reference Architecture 
(BMRA), including an introduction to the new concept of Reference Architecture Configuration Profiles, use cases supported, a 
description of software capabilities, and an overview of the Ansible scripts that enable automatic deployment. 

Part 2 (Sections 3 – 7 in this guide): This is the main part of the guide. It provides a complete and detailed description of the BMRA 
components and configuration values, and the processes used for deployment and verification. 
• The Ansible playbooks that generate the BMRA Flavors by implementing the BMRA Configuration Profiles are explained. The 

basic building blocks of Ansible playbooks are described, along with details about how to use them for deployment.  
• The next chapter explains all the common software capabilities, including Kubernetes features, packet-processing, telemetry, 

and others, so that you can evaluate which ones are appropriate for your scenario. 
• The following chapters provide a complete description of the BIOS setting options, hardware and software components 

consumed by the BMRA, and the hardware and software configuration values set by the Ansible playbooks. 
• The Post Deployment Verification Guidelines chapter describes a set of processes that you can use to verify the components 

deployed by the scripts. 

Part 3 (Appendixes A – F): Build your BMRA Flavor using customized instructions for each BMRA Configuration Profile. 

Those wanting to start right away building a BMRA Flavor can start with Part 3 of the document. The appendixes provide step-by-
step instructions on how to generate and deploy a BMRA Flavor according to a specific Configuration Profile. Each appendix 
contains the hardware and software BOMs and complete details for configuring and executing the appropriate playbook. 

Part 4 (Appendix G): Release Notes for BMRA V21.09. 

The release notes provide an overview of the new capabilities, bug fixes, and known issues for this BMRA release. 

Part 5 (Appendix H): Workloads and Application Examples. 

This part provides examples on how to provision and deploy example applications or workloads. For BMRA 21.09, instructions are 
provided for a Key Management reference application. 

 

1.2 Terminology 
Here are some key concepts and terminology used throughout this document: 
• A Reference Architecture provides a template solution for a specific implementation, typically using industry best practices 

and the latest technology developments. 
• Container Bare Metal Reference Architecture (BMRA) – A Reference Architecture that implements a containers bare metal 

deployment model of a Kubernetes cluster. This guide provides an Intel implementation of a Kubernetes cluster that supports 
containers on a bare metal platform using open-source software. 

• Reference Architecture Configuration Profile – A Configuration Profile defines (1) a specific set of hardware ingredients used 
to build a Kubernetes cluster (the hardware BOM), (2) software modules and capabilities that enable the system design (the 
software BOM), and (3) specific configuration of those hardware and software elements. In this document we discuss BMRA 
Configuration Profiles that have been defined and optimized per network location. 

• A Reference Architecture Flavor is an instance of a Reference Architecture generated by implementing a Configuration Profile 
specification. In this document we discuss a defined set of BMRA Flavors defined per network location. 

• Reference Architecture Ansible Playbook – A set of scripts that prepare, configure, and deploy your Kubernetes cluster. This 
document discusses Reference Architecture Ansible scripts designed for BMRA. The Ansible scripts implement the BMRA 
Configuration Profiles and generate BMRA Flavors per network location. 

• A Kubernetes cluster contains at least one worker node that runs containerized applications. Pods are the components of the 
application workload that are hosted on worker nodes. Control nodes manage the pods and worker nodes. 

Table 1. Abbreviations 

ABBREVIATION DESCRIPTION 

ADI Ad Insertion 

AGF Access Gateway Function 

  

https://kubernetes.io/docs/concepts/overview/components/


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  8 

ABBREVIATION DESCRIPTION 

AIA Accelerator Interfacing Architecture 

AMX Advance Matrix Multiply 

AV1 AOMedia Video 1 video coding format 

AVC Advanced Video Coding video compression standard 

BIOS Basic Input/Output System 

BKC Best Known Configuration 

BMRA Bare Metal Reference Architecture 

CA Certificate Authority 

CDN Content Delivery Network 

CLOS Class of Service 

CMK CPU Manager for Kubernetes 

CMTS Cable Modem Termination System 

CNCF Cloud Native Computing Foundation 

CNF Cloud Native Network Function 

CNI Container Network Interface 

CO Central Office 

CPI Cycles Per Instruction 

CRD Custom Resource Definition 

CRI Container Runtime Interface 

CSR Certificate Signing Request 

CXL Compute Express Link 

DDP Dynamic Device Personalization 

DHCP Dynamic Host Configuration Protocol 

DLB Intel® Dynamic Load Balancer (Intel® DLB) 

DNS Domain Name Service 

DoS Denial of Service 

DP Device Plugin 

DPDK Data Plane Development Kit 

DRAM Dynamic Random Access Memory 

FP Floating Point 

FPGA Field-Programmable Gate Array 

FW Firmware 

GPU Graphics Processor Unit 

GRUB GRand Unified Bootloader 

HA High Availability 

HCC High Core Count 

HEVC High Efficiency Video Coding video compression  

HSM Hardware Security Model 

HT Hyper Threading 

IA Intel® architecture 

IAX In-Memory Analytics 

IMC Integrated Memory Controller 

Intel® AVX Intel® Advanced Vector Extensions (Intel® AVX) 

Intel® AVX-512 Intel® Advanced Vector Extension 512 (Intel® AVX-512) 

Intel® DLB Intel® Dynamic Load Balancer (Intel® DLB) 

Intel® HT Technology Intel® Hyper-Threading Technology (Intel® HT Technology) 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  9 

ABBREVIATION DESCRIPTION 

Intel® QAT Intel® QuickAssist Technology (Intel® QAT) 

Intel® RDT Intel® Resource Director Technology (Intel® RDT) 

Intel® Scalable IOV Intel® Scalable I/O Virtualization (Intel® Scalable IOV) 

Intel® SecL – DC Intel® Security Libraries for Data Center (Intel® SecL – DC) 

Intel® SGX Intel® Software Guard Extensions (Intel® SGX) 

Intel® SST-BF Intel® Speed Select Technology – Base Frequency (Intel® SST-BF) 

Intel® SST-CP Intel® Speed Select Technology – Core Power (Intel® SST-CP) 

Intel® SST-PP Intel® Speed Select Technology – Performance Profile (Intel® SST-PP) 

Intel® SST-TF Intel® Speed Select Technology – Turbo Frequency (Intel® SST-TF) 

Intel® VT-d Intel® Virtualization Technology (Intel® VT) for Directed I/O  (Intel® VT-d) 

Intel® VT-x Intel® Virtualization Technology (Intel® VT) for IA-32, Intel® 64 and Intel® Architecture (Intel® VT-x) 

IOMMU Input/Output Memory Management Unit 

IPC Instructions per Cycle 

ISA Instruction Set Architecture 

I/O Input/Output 

K8s Kubernetes 

KMRA Key Management Reference Application (KMRA) 

KMS Key Management Service (KMS) 

LCC Low Core Count 

LLC Last Level Cache 

LOM LAN on Motherboard 

MMIO Memory-Mapped Input/Output 

MPEG-2 Moving Picture Experts Group standard for digital television and DVD video 

MSR Model-Specific Register 

NF Network Function 

NFD Node Feature Discovery 

NFV Network Function Virtualization 

NFVI Network Function Virtualization Infrastructure 

NIC Network Interface Card 

NTB Non-Transparent Bridge 

NTP Network Time Protocol 

NVM Non-Volatile Memory 

NVMe Non-Volatile Memory 

OAM Operation, Administration, and Management 

OCI Open Container Initiative 

OS Operating System 

OVS Open vSwitch 

OVS DPDK Open vSwitch with DPDK 

PBF Priority Based Frequency 

PCCS Provisioning Certification Caching Service 

PCI Physical Network Interface 

PCIe Peripheral Component Interconnect express 

PF0 First physical function of the device 

PKCS Public-Key Cryptography Standard 

PMD Poll Mode Driver 

PMU Power Management Unit 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  10 

ABBREVIATION DESCRIPTION 

PSP Pod Security Policy 

PXE Preboot Execution Environment 

QAT Intel® QuickAssist Technology 

QoS Quality of Service 

RA Reference Architecture 

RAN Resource Allocation Network 

RAS Reliability, Availability, and Serviceability 

RBAC Role-Based Access Control 

RDT Intel® Resource Director Technology 

S-IOV Intel® Scalable I/O Virtualization (Intel® Scalable IOV) 

SA Service Assurance 

SDN Software-Defined Networking 

SGX Intel® Software Guard Extensions (Intel® SGX) 

SHVS Standard High-Volume Servers 

SIMD Single Instruction, Multiple Data 

SMTC Smart City 

SoC System on Chip 

SOCKS Socket Secure 

SR-IOV Single Root Input/Output Virtualization 

SSD Solid State Drive 

SSH Secure Shell Protocol 

SVM Shared Virtual Memory 

TAS Telemetry Aware Scheduling 

TDP Thermal Design Power 

TLS Transport Layer Security 

TME Total Memory Encryption 

TMUL Tile Multiply 

TPM Trusted Platform Module 

UEFI Unified Extensible Firmware Interface 

UPF User Plane Function 

vBNG Virtual Broadband Network Gateway 

vCDN Virtualized Content Delivery Network 

vCMTS Virtual Cable Modem Termination System 

VF Virtual Function 

VLAN Virtual LAN 

VMM Virtual Machine Manager 

VNF Virtual Network Function 

VP9 Video coding format for streaming over the internet 

VPP Vector Packet Processing 

VXLAN Virtual Extensible LAN 

  

 

 

 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  11 

1.3 Taxonomy 
The following table describes the terminology used in the other tables in this document. 

Table 2. Hardware and Software Taxonomy 

TERM DESCRIPTION 

Hardware Taxonomy 
ENABLED Setting must be enabled in the BIOS (configured as Enabled, Yes, True, or similar value) 
DISABLED Setting must be disabled in the BIOS (configured as Disabled, No, False, or any other 

value with this meaning.) 
OPTIONAL Setting can be either disabled or enabled, depending on user's workload. Setting does 

not affect the Configuration Profile or platform deployment. 
Software Taxonomy 
TRUE Feature is included and enabled by default. 
FALSE Feature is included but disabled by default - can be enabled and configured by user. 
N/A Feature is not included and cannot be enabled or configured. 
  

 

1.4 Reference Documents 
Collaterals, including technical guides and solution briefs that explain in detail the technologies enabled in BMRA release 21.09, are 
available in the following locations: https://networkbuilders.intel.com/intel-technologies/network-transformation-exp-kits and 
https://networkbuilders.intel.com/intel-technologies/container-experience-kits. 

Table 3. Reference Documents 

REFERENCE SOURCE 

Advanced Networking Features in Kubernetes and Container 
Bare Metal Application Note 

https://builders.intel.com/docs/networkbuilders/adv-network-features-in-
kubernetes-app-note.pdf  

CPU Management - CPU Pinning and Isolation in Kubernetes 
Technology Guide  

https://builders.intel.com/docs/networkbuilders/cpu-pin-and-isolation-in-
kubernetes-app-note.pdf  

Enhanced Utilization Telemetry for Polling Workloads with 
collectd and the Data Plane Development Kit (DPDK) User Guide 

https://networkbuilders.intel.com/solutionslibrary/enhanced-utilization-
telemetry-for-polling-workloads-with-collectd-and-the-data-plane-
development-kit-dpdk-user-guide  

Intel Device Plugins for Kubernetes Application Note https://builders.intel.com/docs/networkbuilders/intel-device-plugins-for-
kubernetes-appnote.pdf  

Intel® Ethernet Controller 700 Series - Dynamic Device 
Personalization Support for CNF with Kubernetes Technology 
Guide  

https://builders.intel.com/docs/networkbuilders/intel-ethernet-controller-
700-series-dynamic-device-personalization-support-for-cnf-with-
kubernetes-technology-guide.pdf  

Intel® Ethernet Controller 700 Series GTPv1 - Dynamic Device 
Personalization Application Note 

https://networkbuilders.intel.com/solutionslibrary/intel-ethernet-controller-
700-series-gtpv1-dynamic-device-personalization  

Intel® Ethernet Controller E810 Dynamic Device Personalization 
Package (DDP) for Telecommunications Technology Guide 

https://www.intel.com/content/www/us/en/products/details/ethernet/800-
controllers/e810-controllers/docs.html 

Intel® Speed Select Technology – Base Frequency - Enhancing 
Performance Application Note 

https://builders.intel.com/docs/networkbuilders/intel-speed-select-
technology-base-frequency-enhancing-performance.pdf    

Node Feature Discovery Application Note https://builders.intel.com/docs/networkbuilders/node-feature-discovery-
application-note.pdf  

QCT Validated Kubernetes Platform with Enhanced Platform 
Awareness Technical Brief 

https://networkbuilders.intel.com/solutionslibrary/qct-validated-kubernetes-
platform-with-enhanced-platform-awareness  

Telemetry Aware Scheduling (TAS) - Automated Workload 
Optimization with Kubernetes (K8s) Technology Guide 

https://builders.intel.com/docs/networkbuilders/telemetry-aware-
scheduling-automated-workload-optimization-with-kubernetes-k8s-
technology-guide.pdf  

Topology Management - Implementation in Kubernetes 
Technology Guide 

https://builders.intel.com/docs/networkbuilders/topology-management-
implementation-in-kubernetes-technology-guide.pdf  

Intel® Speed Select Technology – Base Frequency (Intel® SST-BF) 
with Kubernetes Application Note 

https://networkbuilders.intel.com/solutionslibrary/intel-speed-select-
technology-base-frequency-with-kubernetes-application-note   

Secure the Network Infrastructure - Secure Cloud Native 
Network Platforms User Guide 

https://networkbuilders.intel.com/solutionslibrary/secure-the-network-
infrastructure-secure-cloud-native-network-platforms-user-guide  

https://networkbuilders.intel.com/intel-technologies/network-transformation-exp-kits
https://networkbuilders.intel.com/intel-technologies/container-experience-kits
https://builders.intel.com/docs/networkbuilders/adv-network-features-in-kubernetes-app-note.pdf
https://builders.intel.com/docs/networkbuilders/adv-network-features-in-kubernetes-app-note.pdf
https://builders.intel.com/docs/networkbuilders/cpu-pin-and-isolation-in-kubernetes-app-note.pdf
https://builders.intel.com/docs/networkbuilders/cpu-pin-and-isolation-in-kubernetes-app-note.pdf
https://networkbuilders.intel.com/solutionslibrary/enhanced-utilization-telemetry-for-polling-workloads-with-collectd-and-the-data-plane-development-kit-dpdk-user-guide
https://networkbuilders.intel.com/solutionslibrary/enhanced-utilization-telemetry-for-polling-workloads-with-collectd-and-the-data-plane-development-kit-dpdk-user-guide
https://networkbuilders.intel.com/solutionslibrary/enhanced-utilization-telemetry-for-polling-workloads-with-collectd-and-the-data-plane-development-kit-dpdk-user-guide
https://builders.intel.com/docs/networkbuilders/intel-device-plugins-for-kubernetes-appnote.pdf
https://builders.intel.com/docs/networkbuilders/intel-device-plugins-for-kubernetes-appnote.pdf
https://builders.intel.com/docs/networkbuilders/intel-ethernet-controller-700-series-dynamic-device-personalization-support-for-cnf-with-kubernetes-technology-guide.pdf
https://builders.intel.com/docs/networkbuilders/intel-ethernet-controller-700-series-dynamic-device-personalization-support-for-cnf-with-kubernetes-technology-guide.pdf
https://builders.intel.com/docs/networkbuilders/intel-ethernet-controller-700-series-dynamic-device-personalization-support-for-cnf-with-kubernetes-technology-guide.pdf
https://networkbuilders.intel.com/solutionslibrary/intel-ethernet-controller-700-series-gtpv1-dynamic-device-personalization
https://networkbuilders.intel.com/solutionslibrary/intel-ethernet-controller-700-series-gtpv1-dynamic-device-personalization
https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-enhancing-performance.pdf
https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-enhancing-performance.pdf
https://builders.intel.com/docs/networkbuilders/node-feature-discovery-application-note.pdf
https://builders.intel.com/docs/networkbuilders/node-feature-discovery-application-note.pdf
https://builders.intel.com/docs/networkbuilders/node-feature-discovery-application-note.pdf
https://networkbuilders.intel.com/solutionslibrary/qct-validated-kubernetes-platform-with-enhanced-platform-awareness
https://networkbuilders.intel.com/solutionslibrary/qct-validated-kubernetes-platform-with-enhanced-platform-awareness
https://builders.intel.com/docs/networkbuilders/telemetry-aware-scheduling-automated-workload-optimization-with-kubernetes-k8s-technology-guide.pdf
https://builders.intel.com/docs/networkbuilders/telemetry-aware-scheduling-automated-workload-optimization-with-kubernetes-k8s-technology-guide.pdf
https://builders.intel.com/docs/networkbuilders/telemetry-aware-scheduling-automated-workload-optimization-with-kubernetes-k8s-technology-guide.pdf
https://builders.intel.com/docs/networkbuilders/topology-management-implementation-in-kubernetes-technology-guide.pdf
https://builders.intel.com/docs/networkbuilders/topology-management-implementation-in-kubernetes-technology-guide.pdf
https://networkbuilders.intel.com/solutionslibrary/intel-speed-select-technology-base-frequency-with-kubernetes-application-note
https://networkbuilders.intel.com/solutionslibrary/intel-speed-select-technology-base-frequency-with-kubernetes-application-note
https://networkbuilders.intel.com/solutionslibrary/secure-the-network-infrastructure-secure-cloud-native-network-platforms-user-guide
https://networkbuilders.intel.com/solutionslibrary/secure-the-network-infrastructure-secure-cloud-native-network-platforms-user-guide


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  12 

REFERENCE SOURCE 

Closed Loop Automation - Telemetry Aware Scheduler for 
Service Healing and Platform Resilience Demo 

https://networkbuilders.intel.com/closed-loop-automation-telemetry-aware-
scheduler-for-service-healing-and-platform-resilience-demo 

Closed Loop Automation - Telemetry Aware Scheduler for 
Service Healing and Platform Resilience White Paper 

https://builders.intel.com/docs/networkbuilders/closed-loop-platform-
automation-service-healing-and-platform-resilience.pdf 

Intel Telemetry Insights Reports 
(For access, contact your Intel Platform Application Engineer) 

https://www.intel.com/content/www/us/en/secure/design/internal/content-
details.html?DocID=645751 

Intel® RDT https://wiki.opnfv.org/display/fastpath/Intel_RDT 

Intel® Server GPU Features https://www.intel.com/content/www/us/en/products/discrete-gpus/server-
graphics-card.html 

Intel® Server GPU for High-Density Cloud Gaming and Media 
Streaming Performance Summary 

https://www.intel.com/content/www/us/en/benchmarks/server/graphics/inte
lservergpu.html 

Intel® Server GPU Data Center Graphics for High-Density Cloud 
Gaming and Media Streaming 

https://www.intel.com/content/www/us/en/products/docs/discrete-
gpus/server-graphics-card-product-brief.html 

Intel® Server GPUs for Cloud Gaming and Media Delivery https://www.intel.com/content/www/us/en/products/docs/discrete-
gpus/server-graphics-solution-brief.html 

Intel® Server GPU Specifications https://ark.intel.com/content/www/us/en/ark/products/210576/intel-server-
gpu.html 

Intel® AVX-512 - Packet Processing with Intel® AVX-512 
Instruction Set Solution Brief 

https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-packet-
processing-with-intel-avx-512-instruction-set-solution-brief 

Intel® AVX-512 - Instruction Set for Packet Processing 
Technology Guide 

https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-instruction-
set-for-packet-processing-technology-guide 

Intel® AVX-512 - Writing Packet Processing Software with Intel® 
AVX-512 Instruction Set Technology Guide 

https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-writing-
packet-processing-software-with-intel-avx-512-instruction-set-technology-
guide 

Crypto - Ubiquitous Availability of Crypto Technologies Solution 
Brief 

https://networkbuilders.intel.com/solutionslibrary/ubiquitous-availability-of-
crypto-technologies-solution-brief 

Intel® Architecture Instruction Set Extensions and Future 
Features Programming Reference 

https://wiki.ith.intel.com/download/attachments/1508654814/architecture-
instruction-set-extensions-programming-
reference.pdf?version=1&modificationDate=1581680607737&api=v2 

Intel® Software Guard Extensions (Intel® SGX) – Key Management 
on the 3rd Generation Intel® Xeon® Scalable Processor 
Technology Guide 

https://networkbuilders.intel.com/solutionslibrary/intel-software-guard-
extensions-intel-sgx-key-management-on-the-3rd-generation-intel-xeon-
scalable-processor-technology-guide 

Intel® Software Guard Extensions (Intel® SGX) – NGINX Private 
Key on 3rd Generation Intel® Xeon® Scalable Processor User 
Guide 

https://networkbuilders.intel.com/solutionslibrary/intel-software-guard-
extensions-intel-sgx-nginx-private-key-on-3rd-generation-intel-xeon-
scalable-processor-user-guide 

  

 

2 Reference Architecture Overview 
This chapter provides an overview of the Reference Architecture itself, including high-level descriptions of the Configuration 
Profiles, use cases, hardware components, software capabilities, and Ansible playbooks.  

Review Section 1.1, which introduces key concepts and terminology used in this guide. 

 

2.1 Architecture Delivered 
The Container Bare Metal Reference Architecture (BMRA) is an open Kubernetes cluster architecture designed for the convergence 
of key applications and services, control plane, and high-performance packet processing functions. It enables adoption of Intel 
platforms (starting with Early Access hardware platforms) and open-source platform software capabilities. 

This complete, flexible, and scalable solution template allows deployment of Kubernetes clusters that can be based on multiple 
worker nodes managed by one or more Kubernetes control nodes. All servers are connected with one or two switches that provide 
connectivity within the cluster and to the cloud. The Ansible playbook allows auto-provisioning and auto-configuration of the BMRA 
and can be installed on any connected host server. In addition, this Reference Architecture uses testpmd and pktgen pods and 
sample CNF workloads (vCMTS and vBNG) for integration validation. 

https://networkbuilders.intel.com/closed-loop-automation-telemetry-aware-scheduler-for-service-healing-and-platform-resilience-demo
https://networkbuilders.intel.com/closed-loop-automation-telemetry-aware-scheduler-for-service-healing-and-platform-resilience-demo
https://builders.intel.com/docs/networkbuilders/closed-loop-platform-automation-service-healing-and-platform-resilience.pdf
https://builders.intel.com/docs/networkbuilders/closed-loop-platform-automation-service-healing-and-platform-resilience.pdf
https://www.intel.com/content/www/us/en/secure/design/internal/content-details.html?DocID=645751
https://www.intel.com/content/www/us/en/secure/design/internal/content-details.html?DocID=645751
https://wiki.opnfv.org/display/fastpath/Intel_RDT
https://www.intel.com/content/www/us/en/products/discrete-gpus/server-graphics-card.html
https://www.intel.com/content/www/us/en/products/discrete-gpus/server-graphics-card.html
https://www.intel.com/content/www/us/en/benchmarks/server/graphics/intelservergpu.html
https://www.intel.com/content/www/us/en/benchmarks/server/graphics/intelservergpu.html
https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/server-graphics-card-product-brief.html
https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/server-graphics-card-product-brief.html
https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/server-graphics-solution-brief.html
https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/server-graphics-solution-brief.html
https://ark.intel.com/content/www/us/en/ark/products/210576/intel-server-gpu.html
https://ark.intel.com/content/www/us/en/ark/products/210576/intel-server-gpu.html
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-packet-processing-with-intel-avx-512-instruction-set-solution-brief
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-packet-processing-with-intel-avx-512-instruction-set-solution-brief
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-instruction-set-for-packet-processing-technology-guide
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-instruction-set-for-packet-processing-technology-guide
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-writing-packet-processing-software-with-intel-avx-512-instruction-set-technology-guide
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-writing-packet-processing-software-with-intel-avx-512-instruction-set-technology-guide
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-writing-packet-processing-software-with-intel-avx-512-instruction-set-technology-guide
https://networkbuilders.intel.com/solutionslibrary/ubiquitous-availability-of-crypto-technologies-solution-brief
https://networkbuilders.intel.com/solutionslibrary/ubiquitous-availability-of-crypto-technologies-solution-brief
https://wiki.ith.intel.com/download/attachments/1508654814/architecture-instruction-set-extensions-programming-reference.pdf?version=1&modificationDate=1581680607737&api=v2
https://wiki.ith.intel.com/download/attachments/1508654814/architecture-instruction-set-extensions-programming-reference.pdf?version=1&modificationDate=1581680607737&api=v2
https://wiki.ith.intel.com/download/attachments/1508654814/architecture-instruction-set-extensions-programming-reference.pdf?version=1&modificationDate=1581680607737&api=v2
https://networkbuilders.intel.com/solutionslibrary/intel-software-guard-extensions-intel-sgx-key-management-on-the-3rd-generation-intel-xeon-scalable-processor-technology-guide
https://networkbuilders.intel.com/solutionslibrary/intel-software-guard-extensions-intel-sgx-key-management-on-the-3rd-generation-intel-xeon-scalable-processor-technology-guide
https://networkbuilders.intel.com/solutionslibrary/intel-software-guard-extensions-intel-sgx-key-management-on-the-3rd-generation-intel-xeon-scalable-processor-technology-guide
https://networkbuilders.intel.com/solutionslibrary/intel-software-guard-extensions-intel-sgx-nginx-private-key-on-3rd-generation-intel-xeon-scalable-processor-user-guide
https://networkbuilders.intel.com/solutionslibrary/intel-software-guard-extensions-intel-sgx-nginx-private-key-on-3rd-generation-intel-xeon-scalable-processor-user-guide
https://networkbuilders.intel.com/solutionslibrary/intel-software-guard-extensions-intel-sgx-nginx-private-key-on-3rd-generation-intel-xeon-scalable-processor-user-guide


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  13 

Figure 1 below provides an example of a typical Kubernetes cluster composed of three control nodes and two worker nodes. 

 

 

Figure 1. Example of Container Bare Metal Reference Architecture Kubernetes Cluster Setup1  

The main elements forming the reference architecture are: 
• Hardware Components: Multiple platform hardware options are available, including a variety of 2nd Generation Intel® Xeon® 

Scalable processor SKUs, 3rd Generation Intel® Xeon® Scalable processor SKUs, and Intel® Ethernet Network Adapters. For 
details see Section 5, Reference Architecture Hardware Components and BIOS. 
BIOS options are provided, and you are expected to select and deploy the most optimal BIOS values before the cluster 
provisioning. For details, see Section 5.5, Platform BIOS. 

• Software Capabilities: This container environment uses Docker containers runtime as well as containerd and cri-o. The 
software capabilities are based on open-source software enabled in communities such as DPDK, FD.io. OVS, OVS-DPDK 
Kubernetes, and through Intel GitHub. Three Linux-based operating system options are available: CentOS, RHEL, and Ubuntu. 
For details, see Section 6, Reference Architecture Software Components. 

• Configuration: Specific hardware and software configurations are provided based on Intel assessment and verification. The 
hardware configuration addresses two modes of operation: “base” and “plus” (for high performance). 

• Installation Playbook:  Ansible playbooks implement the best practice configuration setup per each BMRA Flavor. This guide 
provides great details about the hardware and software configuration options available; however, the Ansible playbooks are 
ready to use, automate, and shorten the setup of your BMRA Flavor of choice. 

 
1 Refer to http://software.intel.com/en-us/articles/optimization-notice for more information regarding performance and optimization choices in Intel 
software products. See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

http://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  14 

 

Figure 2. Key Components forming the Container Bare Metal Reference Architecture Kubernetes Cluster  

 

2.2 Reference Architecture Configuration Profiles 
Deployment requirements across the network are different depending on the location in the network and on the typical 
applications supported at each location. Each location can be characterized by the sites’ density, distance from the user, and 
performance (latency and throughput). We identified the following main “network locations” as shown in Figure 3: On-Premises 
Edge (also called Customer Premise), Central Office (also called Near Edge), Regional Data Center (also called Regional POP), and 
Telco Data Center Core Network. 

The BMRA introduces the concept of Reference Architecture Configuration Profiles. Multiple Configuration Profiles are assigned to 
the Reference Architecture to address the specific configuration, performance, and functionality required per workload type and 
network location. The following Configuration Profiles are supported and are shown in Figure 4. 
• On-Premises Edge Configuration Profile: This Configuration Profile recommends a K8s cluster hardware configuration, 

software capabilities, and specific hardware and software configurations that typically support enterprise edge workloads used 
in SMTC deployments, CDN, and Ad-insertion. Refer to Appendix D, BMRA On-Premises Edge Configuration Profile Setup for 
details.  

• Remote CO-Forwarding Configuration Profile: This Configuration Profile addresses a K8s cluster hardware, software 
capabilities, and configurations that enable high performance for packet forwarding packets. In this category, you can find 
workloads such as UPF, vBNG, vCMTS, vCDN, FW, and more. The corresponding Configuration Profile is described in 
Appendix E, BMRA Remote CO-Forwarding Configuration Profile Setup.  

• Regional Data Center Configuration Profile – This Configuration Profile is tailored exclusively and defined for Media Visual 
Processing workloads such as CDN Transcoding. The corresponding Configuration Profile is described in Appendix F BMRA 
Regional Data Center Configuration Profile Setup.  

In addition, we have identified the following Configuration Profiles that are not specific to network location or workload:  
• Basic Configuration Profile: Minimum hardware and software capabilities required for supporting a BMRA Kubernetes cluster 

setup, described in Appendix B, BMRA Basic Configuration Profile Setup. 
• Full Configuration Profile: Complete hardware and software capabilities set offered in BMRA, described in Appendix C, BMRA 

Full Configuration Profile Setup. 

Key elements of each Reference Architecture Configuration Profile include:  

1. Example Use Cases: Scenarios that support the specific workloads enabled by the Configuration Profile. 
2. Installation Playbook: An Ansible script enabling the deployment of all hardware and software components with optimized 

configurations.  
3. Hardware Components (Section 5, Reference Architecture Hardware Components and BIOS): a set of optimized hardware 

elements for the location. For example, to support UPF workload at the Remote CO, the BMRA is populated with the 
maximum available network interface cards (NICs). 

4. Software Capabilities (Section 6, Reference Architecture Software Components): The software components and the 
configuration per feature.  

 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  15 

 

Figure 3. Identified Key Network Locations 

 

 

Figure 4. Example of Container Bare Metal Configuration Profiles Per Location 

 

2.3 Use Cases by Network Location 
This section explains the corresponding use cases per network location (see Figure 3). BMRA release 21.09 supports three of the 
Network Locations shown in Figure 3 (see Section 2.2). 

On-Premises Edge (Enterprise Edge)  

Small cluster of stationary or mobile server platforms, ranging between one and four servers. Usage scenarios include data 
collection from sensors, local (edge) processing, and upstream data transmission. Sample locations are hospitals, factory floors, law 
enforcement, media, cargo transportation, power utilities. 
• Optimized data processing (to gain insights and reduce upstream transmission volumes) is priority. 
• Power efficiency is important in most use cases. 
• Automated infrastructure orchestration capabilities are mandatory. 

Remote Central Office (Near Edge) 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  16 

The near edge consists of clusters ranging from a half rack to a few racks of servers, typically in a pre-existing, repurposed, 
unmanned structure. The usage scenarios include running latency-sensitive applications near the user (for example, real-time 
gaming, stock trading, video conferencing). 
• Power efficiency is a requirement. 
• Resource usage efficiency and sharing are a priority. 
• Scaling and redundancy/reliability through scale-out; performance is defined at the cluster level. 
• Multitenancy support may be required. 
• Operational automation is important (site is unmanned). 

Regional Data Center (Regional POP) 

The Regional Data Center consists of a management domain with many racks of servers, typically managed and orchestrated by a 
single instance of resource orchestration. Usage scenarios include services such as content delivery, media, mobile connectivity, and 
cloud services. 
• Automation is mandatory due to scale. 
• High connectivity (in the aggregate - not individual data plane performance) is important. 
• Scaling and redundancy/reliability through scale-out. 
• Multitenancy support may be required. 

Telco Data Center Core Network 

The Telco Data Center Core Network shares many of the characteristics and usage scenarios of the CO Regional Cloud, although at 
an even larger scale. The core network runs many of the same workloads as the CO Regional Cloud, with the addition of centralized 
corporate services (for example, finance, OSS/BSS, multi-cloud service orchestration). 

 

2.4 Configuration Profile Installation Playbooks 
Intel provides a set of Ansible scripts and Helm charts that enable easy and fast automatic installation2 on a container bare metal 
NFV platform. Ansible is an agentless configuration management tool that uses playbooks to perform actions on many machines 
and Helm is a package manager tool that runs on top of Kubernetes to automate the installation process of plugins and K8s 
capabilities. BMRA Ansible playbooks enable users to customize multiple parameters to fit their installation requirements. 

The BMRA Ansible playbooks take into consideration the Intel BKC (Best Known Configuration) for optimized performance.  

Installation is done using one of the top-level BMRA Ansible playbooks and includes three phases:  
1. Infrastructure setup, which addresses the initial system configuration, including telemetry setup.  
2. Kubernetes setup, which deploys Kubernetes capabilities and its add-ons via Kubespray. 
3. Installation and configuration of the system capabilities.  

The following figure shows an overview of the BMRA Ansible playbooks. For more details, refer to Section 3. In addition, each 
Configuration Profile has its own playbook and set of scripts, which are described in the Configuration Profile-specific Appendixes. 

 

 

Figure 5. Ansible Playbooks Overview 

 

2.5 Hardware Components 
The BMRA supports a range of hardware that enables the different deployment models as explained earlier. Multiple platform 
hardware options are available, including a variety of 2nd Generation Intel® Xeon® Scalable processor SKUs, 3rd Generation Intel® 
Xeon® Scalable processor SKUs, Intel® Ethernet Network Adapters, Intel® QAT, and Intel® Server GPU. For details, see Section 5, 
Reference Architecture Hardware Components and BIOS. 

 

 
2 See backup for workloads and configurations or visit  www.Intel.com/PerformanceIndex. Results may vary. 

http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  17 

2.6 Software Capabilities 
The technology described in this document consists of capabilities implemented across the software stack, which enables a 
Kubernetes environment that uses Intel technologies. It targets intelligent platform capability, configuration, and capacity data 
consumption. Intel and partners have worked together to advance the discovery, scheduling, and isolation of server hardware 
features using the following technologies. 

2.6.1 Kubernetes Features 
Containers are increasingly important in cloud computing and fundamental to cloud native adoption. A container is lightweight, 
agile, and portable, and it can be quickly created, updated, and removed. Kubernetes (K8s) is a leading open-source system for 
automating deployment, scaling, and management of containerized applications. To enhance Kubernetes for network functions 
virtualization (NFV) and networking usage, Intel and its partners are developing a suite of capabilities and methodologies that 
exposes Intel® architecture platform features for increased and deterministic application and network performance.  
• Multus enables support of multiple network interfaces per pod to expand the networking capability of Kubernetes. Supporting 

multiple network interfaces is a key requirement for many virtual network functions (VNFs), as they require separation of 
control, management, and data planes. Multiple network interfaces are also used to support different protocols or software 
stacks and different tuning and configuration requirements.  

• Node Feature Discovery (NFD) enables generic hardware capability discovery in Kubernetes, including Intel® Xeon® processor-
based hardware, for example. 

• Bond CNI allows for aggregating multiple network interfaces into one logical interface. 
• Telemetry Aware Scheduling (TAS) is a Kubernetes add-on that consumes cluster metrics and makes intelligent policy-based 

decisions. TAS enables automated actions driven by informed decisions based on up-to-date platform telemetry. 
• Native CPU Manager and Intel CPU Manager for Kubernetes provide mechanisms for CPU core pinning and isolation of 

containerized workloads. 
• Topology Manager, a native component of Kubernetes (starting v1.16), enables other Kubelet components to make resource 

allocation decisions using topology-based information.  
• Hugepages support, added to Kubernetes v1.8, enables the discovery, scheduling, and allocation of hugepages as a native first-

class resource. This support addresses low latency and deterministic memory access requirements.  
• Device plugins, including Intel® QuickAssist Technology, and SR-IOV device plugins, boost performance and platform 

efficiency.  
• Kubernetes Operators are software extensions to Kubernetes that use custom resources to manage applications and their 

components. Operators follow Kubernetes principles for resource automation, enabling automated installation. 

2.6.2 Platform System Features 
In conjunction with the Kubernetes capabilities mentioned above, Intel is constantly developing new Intel® architecture platform-
level system capabilities for enhanced and deterministic application and network performance. 
• Dynamic Device Personalization (DDP) is one of the key technologies of the Intel® Ethernet 700 and 800 Series. It enables 

workload-specific optimizations using the programmable packet processing pipeline to support a broader range of traffic 
types. 

• Single Root Input/Output Virtualization (SR-IOV) provides I/O virtualization that makes a single PCIe device (typically a NIC) 
appear as many network devices in the Linux kernel. In Kubernetes, this results in network connections that can be separately 
managed and assigned to different pods. 

• Intel® Advanced Vector Extensions 512 (Intel® AVX-512) promotes 512-bit SIMD instruction extensions. They include 
extensions of the Intel AVX family of SIMD instructions but are encoded using a new encoding scheme. This scheme supports 
512-bit vector registers (up to 32 vector registers in 64-bit mode) and conditional processing using opmask registers. 

• Intel® Speed Select Technology – Base Frequency (Intel® SST-BF) offers a deterministic higher-frequency pool of processing 
cores to execute high priority workloads and a pool of cores running at lower frequency for non-critical workloads. 

• Intel® Speed Select Technology – Core Power (Intel® SST-CP) allows OS/VMM to control which cores can take advantage of 
any power headroom that is available in the system to enable greater system performance. 

• Intel® Speed Select Technology – Performance Profile (Intel® SST-PP) unlocks greater flexibility for defining core throughput 
and determinism by allowing greater granularity of core performance and a more effective balance between core count, 
thermals, and frequency. 

• Intel® Speed Select Technology – Turbo Frequency (Intel® SST-TF) provides an ability to select a pool of cores to 
opportunistically access additional Turbo Mode frequencies (P0) for high throughput workloads. 

• Secure Cloud Native Network Platforms – Using Intel® Security Libraries for Data Center (Intel® SecL – DC), BMRA can help you 
to build end-to-end platform security. Intel® SecL - DC integrates platform attestation into the cloud native architecture and 
uses Kubernetes to orchestrate and run workloads only on trusted pods.  

• Key Management Reference Application (KMRA) with Intel® Software Guard Extensions (Intel® SGX) demonstrates the 
integration of the asymmetric key capability of Intel® SGX with a third-party hardware security model (HSM) on a centralized 
key server.  



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  18 

• Intel® QAT Engine for OpenSSL is a new option to the libcrypto general purpose cryptographic library. This implementation 
supports secure applications by directing the requested cryptographic operations to the hardware or software capability 
present on the underlying platform. 

• Media processing on the Intel® Server GPU card. The Intel® Server GPU is the first discrete graphics processing unit for data 
centers based on the new Intel Xe architecture, with support for MPEG-2, AVC, HEVC, and VP9 transcoding plus AV1 decode. 

2.6.3 Observability 
This solution deploys a broad range of telemetry collectors. Platform collectors capture metrics from CPU performance monitoring, 
which includes Intel hardware features such as RAS, power, PMU, RDT, NVME storage, network interfaces, disks, platform power, 
memory, and thermal. In addition to hardware telemetry, BMRA captures DPDK and OVS metrics. 
 

 

Figure 6. Platform Telemetry Available with Collectd3 

Metrics can be published to Prometheus and other interfaces such as SNMP, Kafka, and VES. 

The telemetry software stack consists of the following components: 
• Collectd – UNIX daemon that collects a wide range of platform telemetry, including RDT and PMU metrics 
• Telegraf – Cloud native server telemetry collection agent that collects a wide array of platform and application telemetry, 

including RDT, PMU, and DPDK metrics 
• Node Exporter – Platform telemetry monitoring agent 
• Prometheus – Telemetry monitoring system with time series database 
• Grafana – Telemetry visualization application 
• Prometheus Adapter - Implementation of the Kubernetes resource metrics API and custom metrics API. Enables Telemetry 

Aware Scheduler 
• Telemetry Aware Scheduler - Makes telemetry data available to scheduling and descheduling decisions in Kubernetes 
• Intel Telemetry Insight Reports -  software available under NDA 

Telemetry Insight Report software available from Intel® translates raw platform metrics into up-leveled networking and operational 
insights, providing insights on platform reliability, utilization, congestion, and configuration issues. These insights can be used to 
notify NetOps and provide key inputs for remediation actions by automated control systems as part of an observability solution in 
closed loop systems. To offer meaningful insights from this information, Intel has created a portfolio of telemetry reports that 
provides actionable data about the current operational status of the server, whether it is overloaded/congested, misconfigured, or 
in an unhealthy state. Telemetry reports are available under NDA on the Intel Resource & Design Center at the following link: 
https://www.intel.com/content/www/us/en/secure/design/internal/content-details.html?DocID=645751. Contact your Intel 
representative for information. 

 
3 Refer to https://software.intel.com/articles/optimization-notice for more information regarding performance and optimization choices in Intel 
software products. See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

https://www.intel.com/content/www/us/en/secure/design/internal/content-details.html?DocID=645751
https://www.intel.com/content/www/us/en/secure/design/internal/content-details.html?DocID=645751
https://software.intel.com/articles/optimization-notice
http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  19 

 

Figure 7. Telemetry Insight Reports High-Level Architecture 
 

 
  



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part 2: 

Reference Architecture Deployment: 
Ansible Playbooks 

Common Hardware Components 
Software Ingredients 

Recommended Configurations 
 
  



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  21 

3 Reference Architecture Deployment – Ansible Playbooks 
This chapter explains how a BMRA Flavor is generated and deployed. The process includes installation of the hardware setup 
followed by system provisioning using Ansible playbook. The chapter contains the following sections: 
• Reference Architecture Installation Prerequisites 
• Ansible Playbook Review, including description of building blocks and phases 
• Deployment using Ansible Playbook 
Note: Ansible playbooks for 2nd Generation Intel Xeon Scalable processors and 3rd Generation Intel Xeon Scalable processors 

are open source and available here. 

 

3.1 Reference Architecture Installation Prerequisites 
Before the Ansible playbook can begin, you must identify the required hardware components, hardware connectivity, and complete 
the initial configuration, for example BIOS setup. This section helps you get ready for your Ansible installation.  

This section describes the minimal system prerequisites needed for the Ansible Host and Kubernetes control nodes and worker 
nodes. It also provides a list of steps required to prepare hosts for successful deployment. These instructions include: 
• Hardware BOM selection and setup 
• Required BIOS/UEFI configuration, including virtualization and hyper-threading settings 
• Network topology requirements - list of necessary network connections between the nodes 
• Installation of software dependencies needed to execute Ansible playbooks 
• Generation and distribution of SSH keys that will be used for authentication between Ansible host and Kubernetes cluster 

target servers 

After satisfying these prerequisites, Ansible playbooks for 2nd Generation Intel Xeon Scalable processors and 3rd Generation Intel 
Xeon Scalable processors can be downloaded directly from the dedicated GitHub page (https://github.com/intel/container-
experience-kits/releases) or cloned using the Git. 

3.1.1 Hardware BOM Selection and Setup for Control and Worker Nodes 
Before software deployment and configuration of BMRA, administrators must deploy the physical hardware infrastructure for their 
site. To obtain ideal performance and latency characteristics for a given network location, Intel recommends the following hardware 
configurations: 

• Control Nodes - Review Section 5.1 for recommended Control node assembly. 
• Worker Nodes – Refer to the following sections for recommended Worker node assembly: 

− Base Worker Node – Review Section 5.2 to satisfy base performance characteristics. 
− Plus Worker Node – Review Section 5.3 to satisfy plus performance characteristics. 

Appendix B.1, Appendix C.1, Appendix D.1, Appendix E.1, and Appendix F.1 contain details about the hardware BOM selection and 
setup.  

3.1.2 BIOS Selection for Control and Worker Nodes 
Enter the UEFI or BIOS menu and update the configuration as listed in Appendix A.1 and Table 18, which describe the BIOS 
selection in detail.  

3.1.3 Operating System Selection for Control and Worker Nodes 
The following Linux operating systems are supported for Control and Worker Nodes: 

• CentOS Linux Version 8 (8.3) 
• RHEL for x86_64 Version 8 (8.3, 8.4) 
• Ubuntu 20.04 LTS (20.04.2) 
• Ubuntu 21.04 (21.04.1) 

For all supported distributions, the base images are sufficient to be built using the "Minimal" option during installation. In addition, 
the following must be met: 

• The Control and Worker Nodes must have network connectivity to the Ansible Host. 
• SSH connections are supported. If needed, on Ubuntu, install SSH Server with the following commands (internet access is 

required): 

# sudo apt update 
# sudo apt install openssh-server 

https://github.com/intel/container-experience-kits/tree/master/playbooks
https://github.com/intel/container-experience-kits/releases
https://github.com/intel/container-experience-kits/releases


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  22 

3.1.4 Network Interface Requirements for Control and Worker Nodes 
The following list provides a brief description of different networks and network interfaces needed for deployment. (see Figure 1) 
• Internet network 

− Ansible Host accessible 
− Capable of downloading packages from the internet 
− Can be configured for Dynamic Host Configuration Protocol (DHCP) or with static IP address 

• Management network and Calico pod network interface (This can be a shared interface with the internet network) 
− Kubernetes control and worker node inter-node communications 
− Calico pod network runs over this network 
− Configured to use a private static address 

• Tenant data networks 
− Dedicated networks for traffic 
− SR-IOV enabled 
− VF can be DPDK bound in pod 

3.1.5 Software Prerequisites for Ansible Host, Control Nodes, and Worker Nodes 
Before deployment of the BMRA Ansible playbooks, the Ansible Host must be prepared. To successfully run the deployment, 
perform the following tasks before you download the BMRA Ansible code. 

Perform the following steps: 
1. Log in to the Ansible host machine using SSH or your preferred method to access the shell on that machine. 
2. Install packages on Ansible Host. The following example assumes that the host is running CentOS 8.2. Other operating systems 

may have slightly different installation steps: 
$ yum install python3 
$ pip3 install ansible==2.9.20 
$ pip3 install jinja2 –upgrade 
$ yum install libselinux-python3 

3. Enable passwordless login between all nodes in the cluster.  
Create authentication SSH-Keygen keys on Ansible Host: 
$ ssh-keygen 
Upload generated public keys to all the nodes from Ansible Host: 
$ ssh-copy-id root@<target_server_address> 

 

3.2 Ansible Playbook Review 
The reference architecture is configured and provisioned automatically using Ansible scripts4. Each Configuration Profile has a 
dedicated Ansible playbook. This section describes how the Ansible playbooks allow for an automated deployment of a fully 
functional BMRA cluster, including initial system configuration, Kubernetes deployment, and setup of capabilities as described in 
Section 3.3.  

3.2.1 Ansible Playbooks Building Blocks 
The following components make up the BMRA Ansible playbooks. 

Configuration Files provide examples of cluster-wide and host-specific configuration options for each of the Configuration Profiles. 
With minimal changes they can be used directly with their corresponding playbooks. For default values refer to the Configuration 
Profile-specific sections for configuration options for your desired Configuration Profile: : Appendix B BMRA Basic Configuration 
Profile Setup, Appendix C BMRA Full Configuration Profile Setup, Appendix D BMRA On-Premises Edge Configuration Profile Setup, 
Appendix E BMRA Remote CO-Forwarding Configuration Profile Setup, Appendix F BMRA Regional Data Center Configuration 
Profile Setup. 
• inventory.ini 
• group_vars 
• host_vars 

Ansible Playbooks act as a user entry point and include all relevant Ansible roles and Helm charts. Top-level Ansible playbooks 
exist for each Configuration Profile, which allows lean use case-oriented cluster deployments. Each playbook includes only the 
Ansible roles and configuration files that are relevant for a given use case. See High Level Ansible Playbooks in Figure 8. 
• basic.yml 
• full_nfv.yml 
• on_prem.yml 

 
4 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  23 

• remote_fp.yml 
• regional_dc.yml 
Additionally, a Cluster Removal Playbook exists to optionally remove an existing cluster in case user wants to try different 
deployment models. 
• redeploy_cleanup.yml 

Each of these playbooks encompasses Ansible Roles grouped into three main execution phases, which are depicted in Figure 8 and 
further explained in the next section: 
• Infrastructure Setup 
• Kubernetes Deployment 
• Capabilities Setup 

Note that several Capabilities Setup roles include nested Helm charts for easier deployment and lifecycle management of deployed 
applications as well as a group of Common Utility Roles that provide reusable functionality across the playbooks. 

 

 

Figure 8. High Level BMRA Ansible Playbooks Architecture5 

3.2.2 Ansible Playbook Phases 
Regardless of the selected Configuration Profile, the installation process always consists of three main phases: 
1. Infrastructure Setup (sub-playbooks located in playbooks/infra/ directory) 

These playbooks modify kernel boot parameters and apply the initial system configuration for the cluster nodes. Depending on 
the selected Configuration Profile this includes: 
− Generic host OS preparation, e.g., installation of required packages, Linux kernel configuration, proxy and DNS 

configuration, and modification of SELinux policies and firewall rules. 
− Configuration of the kernel boot parameters according to the user-provided configuration in order to configure CPU 

isolation, SR-IOV related settings such as IOMMU, hugepages, or explicitly enable/disable Intel P-state technology. 
− Configuration of SR-IOV capable network cards and QAT devices. This includes the creation of Virtual Functions and 

binding to appropriate Linux kernel modules. 
− Network Adapter drivers and firmware updates, which help ensure that all latest capabilities such as DDP profiles are 

enabled. 
− Intel® Speed Select Technology (Intel® SST) configuration, which provides control over base frequency. 
− Installation of Dynamic Device Personalization profiles, which can increase packet throughput, help reduce latency, and 

lower CPU usage by offloading packet classification and load balancing to the network adapter. 

 
5 Refer to https://software.intel.com/articles/optimization-notice for more information regarding performance and optimization choices in Intel 
software products. 

https://software.intel.com/articles/optimization-notice


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  24 

2. Kubernetes Setup (located in playbooks/k8s/ directory) 
This playbook deploys a High Availability (HA) K8s cluster using Kubespray, which is a project under the Kubernetes community 
that deploys production-ready Kubernetes clusters. The Multus CNI plugin, which is specifically designed to provide support for 
multiple networking interfaces in a K8s environment, is deployed by Kubespray along with Calico and Helm. Preferred security 
practices are used in the default configuration. On top of Kubespray, there’s also a container registry instance deployed to store 
images of various control-plane Kubernetes applications such as TAS, CMK, or device plugins. 

3. BMRA System Capabilities Setup (sub-playbooks located in playbooks/intel directory):  
Advanced networking technologies, Enhanced Platform Awareness, and device plugin features are deployed by this playbook 
using Operators or Helm Charts as part of the BM RA. The following capabilities are deployed: 
− Device plugins that allow using as an example SR-IOV, QAT, and GPU devices in workloads running on top of Kubernetes. 
− SR-IOV CNI plugin, Bond CNI plugin, and Userspace CNI plugin, which allow Kubernetes pods to be attached directly to 

accelerated and highly available hardware and software network interfaces. 
− CPU Manager for Kubernetes, which performs a variety of operations to enable core pinning and isolation on a container or 

a thread level. 
− Node Feature Discovery (NFD), which is a K8s add-on to detect and advertise hardware and software capabilities of a 

platform that can, in turn, be used to facilitate intelligent scheduling of a workload. 
− Telemetry Aware Scheduling, which allows scheduling workloads based on telemetry data. 
− Full Telemetry Stack consisting of Collectd, Kube-Prometheus, and Grafana, which gives cluster and workload monitoring 

capabilities and acts as a source of metrics that can be used in TAS to orchestrate scheduling decisions. 

 

3.3 Deployment using Ansible Playbook 
This section describes common steps that need to be executed in order to obtain the BMRA Ansible Playbooks source code, 
prepare target servers, configure inventory and variable files, and deploy the BMRA Kubernetes cluster. 

3.3.1 Prepare Target Servers 
For each target server that will act as a control or worker node, you must make sure that it meets the following requirements: 
• Python 3 is installed. The version depends on the target distribution. 
• SSH keys are exchanged between the Ansible host and each target node. The same SSH keys need to be configured on each of 

the machines. You can achieve that by executing below command on the Ansible host to copy to each target server in the 
cluster: 
ssh-copy-id root@<target_server_address> 

• Internet access on all target servers is mandatory. Proxies are supported and can be configured in the Ansible vars. 
• BIOS configuration matching the desired state is applied. For details, refer to the specific Configuration Profile Appendix for 

your profile: Appendix B BMRA Basic Configuration Profile Setup, Appendix C BMRA Full Configuration Profile Setup, 
Appendix D BMRA On-Premises Edge Configuration Profile Setup, Appendix E BMRA Remote CO-Forwarding Configuration 
Profile Setup, Appendix F BMRA Regional Data Center Configuration Profile Setup. 

For detailed steps on how to build the Ansible host, refer to Appendix A.1. 

3.3.2 Get Ansible Playbook and Prepare Configuration Templates 
Perform the following steps: 
1. Log in to your Ansible host (the one that you will run these Ansible playbooks from). 
2. Clone the source code and change working directory: 

git clone https://github.com/intel/container-experience-kits/ 
cd container-experience-kits 
Check out the latest version of the playbooks – using the tag from Table 22, for example: 
git checkout v21.09 
Note: Alternatively go to https://github.com/intel/container-experience-kits/releases, download the latest release tarball, 

and unarchive it: 
wget https://github.com/intel/container-experience-kits/archive/v21.09.tar.gz 
tar xf v21.09.tar.gz 
cd container-experience-kits-21.09 

4. Initialize Git submodules to download Kubespray code: 
git submodule update --init 

3. Decide which Configuration Profile you want to use and export the environmental variable. 
For Kubernetes Basic Configuration Profile deployment: 
export PROFILE=basic 

For Kubernetes Full Configuration Profile deployment: 
export PROFILE=full_nfv 

For Kubernetes On-Premises Edge Configuration Profile deployment: 

https://github.com/intel/container-experience-kits/
https://github.com/intel/container-experience-kits/releases
https://github.com/intel/container-experience-kits/archive/v21.08.tar.gz


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  25 

export PROFILE=on_prem 

For Kubernetes Remote Central Office-Packet Forwarding Configuration Profile deployment: 
export PROFILE=remote_fp 

For Kubernetes Regional Data Center Configuration Profile deployment: 
export PROFILE=regional_dc 

4. Install requirements needed by render.py script: 
pip3 install -r profiles/requirements.txt 

5. Generate example profiles: 
make bmra-profiles  

6. Copy example inventory file to the project root dir: 
cp examples/${PROFILE}/inventory.ini . 

5. Copy example configuration files to the project root dir: 
cp -r examples/${PROFILE}/group_vars examples/${PROFILE}/host_vars . 

3.3.3 Update Ansible Inventory File 
Perform the following steps: 
1. Edit the inventory.ini file copied in the previous steps. 
2. In the section [all], specify all your target servers. Use their actual hostnames and Management IP addresses. Also list your 

Ansible host as “localhost” with the Python version packaged with your OS distribution. 

Example: There is an Ansible host and three servers - one controller and two worker nodes. Their hostnames are 
controller1, node1, and node2 respectively. They are all located in the 10.100.200.0/24 subnet and are assigned static IP 
addresses (10.100.200.10x). All three cluster servers have CentOS 8 installed with Python 3, and the Ansible host has Ubuntu 
20.04 with Python 3. In this case the [all] section should be configured like this: 
[all] 
localhost ansible_python_interpreter=/usr/bin/python3 
controller1 ansible_host=10.100.200.101 ip=10.100.200.101 
node1       ansible_host=10.100.200.102 ip=10.100.200.102 
node2       ansible_host=10.100.200.103 ip=10.100.200.103 
 
... 
 
[all:vars] 
ansible_python_interpreter=/usr/bin/python3 

3. Assign servers to Ansible groups. 

Example: As mentioned above, we want to have one controller and two worker nodes. It’s recommended to place “etcd” 
(cluster database) on the same node as the remaining control-plane components. So, in that case, the final inventory.ini 
file would look like this: 
[all] 
localhost ansible_python_interpreter=/usr/bin/python3 
controller1 ansible_host=10.100.200.101 ip=10.100.200.101 
node1       ansible_host=10.100.200.102 ip=10.100.200.102 
node2       ansible_host=10.100.200.103 ip=10.100.200.103 
 
 
[kube_control_plane] 
controller1 
 
[etcd] 
controller1 
 
[kube_node] 
node1 
node2 
 
[k8s_cluster:children] 
kube_control_plane 
kube_node 
 
[all:vars] 
ansible_python_interpreter=/usr/bin/python3 

3.3.4 Update Ansible Host and Group Variables 
Perform the following steps: 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  26 

1. Create host_vars files for all nodes, matching their hostnames from the inventory file. 

Example: Following the setup from previous steps, we need a file for each of the nodes. We do not need a host vars file for the 
controller: 
cp host_vars/node1.yml host_vars/node2.yml 

2. Edit host_vars/<node_name>.yml and group_vars/all.yml files to match your desired configuration. Each 
Configuration Profile uses its own set of variables. Refer to the specific Configuration Profile Appendix for your profile to get a 
full list of variables and their documentation: Appendix B BMRA Basic Configuration Profile Setup, Appendix C BMRA Full 
Configuration Profile Setup, Appendix D BMRA On-Premises Edge Configuration Profile Setup, Appendix E BMRA Remote CO-
Forwarding Configuration Profile Setup, Appendix F BMRA Regional Data Center Configuration Profile Setup. 

3.3.5 Run Ansible Cluster Deployment Playbook 
After the inventory and vars are configured, you can run the provided playbooks from the root directory of the project. 

It is recommended that you check dependencies of components enabled in group_vars and host_vars with the packaged 
dependency checker: 

ansible-playbook -i inventory.ini playbooks/preflight.yml 

If you are deploying an RHEL 8 cluster you need to patch kubespray: 
ansible-playbook -i inventory.ini playbooks/k8s/patch_kubespray.yml 

Otherwise, you can skip directly to your chosen Configuration Profile playbook: 
ansible-playbook -i inventory.ini playbooks/${PROFILE}.yml 

Pay attention to logs and messages displayed on the screen. Depending on the selected Configuration Profile, network bandwidth, 
storage speed, and other similar factors, the execution may take up to 30-40 minutes. 

After the playbook finishes without any “Failed” tasks, you can proceed with the deployment validation described in Section 7, Post 
Deployment Verification Guidelines.  

Note: Additional information can be found in the Ansible Playbook readme. 

3.3.6 Run Ansible Cluster Removal Playbook 
If the playbook fails or if you want to clean up the environment to run a new deployment, you can optionally use the provided 
Cluster Removal Playbook (redeploy_cleanup.yml) to remove any previously installed Kubernetes and related plugins. 

ansible-playbook -i inventory.ini playbooks/redeploy_cleanup.yml 

After successful removal of Kubernetes components, you can repeat Section 3.3.5. 
Note: Any OS and/or hardware configurations (for example, proxies, drivers, kernel parameters) are not reset by the cleanup 

playbook. 

 

4 Software Capabilities Review 
Intel, in collaboration with industry partners, continues to work to bring Intel® architecture advancements to the cloud native 
ecosystem through support of Kubernetes features, extension of Kubernetes plugins, and development of system hardware 
resources as described below6. 

 

4.1 Container Runtimes 
A container runtime is software that executes containers and manages container images on a node. The following container 
runtimes are available in BMRA. 

4.1.1 Docker 
Docker is container platform comprised of the following elements. 
• The Docker daemon, named dockerd, that manages Docker containers and handles container objects; the daemon listens for 

request via the Docker Engine API 
•  The Docker client, which is the primary way of interacting with Docker 
•  Docker registries 
•  Docker objects 
 
For more details, see: https://www.docker.com/ 

 
6 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

https://www.docker.com/
http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  27 

4.1.2 Containerd 
Containerd is an Open Container Initiative (OCI)-compliant core container runtime that implements the Kubernetes Container 
Runtime Interface (CRI) via CRI plugin. Most interactions are handled via runc and/or OS-specific libraries. 

For more details, see: https://containerd.io/ 

4.1.3 CRI-O 
CRI-O is an implementation of the Kubernetes CRI that enables using OCI-compatible runtimes. It allows Kubernetes to use any 
OCI-compliant runtime as the container runtime for running pods. It supports runc and Kata Containers as the container runtimes, 
but any OCI-conformant runtime can be used. 

For more details, see: https://cri-o.io/ 

 

4.2 Kubernetes Plugins 
The following device plugins are used to advertise Intel® architecture system hardware resources to Kubernetes. Several of the 
plugins are Container Network Interface (CNI), which is explained here: https://github.com/containernetworking/cni 

4.2.1 Multus CNI 
Kubernetes natively supports only a single network interface. Multus is a CNI plugin specifically designed to provide support for 
multiple networking interfaces in a Kubernetes environment. Operationally, Multus behaves as a broker and arbiter of other CNI 
plugins, meaning it invokes other CNI plugins (such as Flannel, Calico, SR-IOV, or Userspace CNI) to do the actual work of creating 
the network interfaces. Multus v3.3 has recently been integrated with KubeVirt, officially recognized as a CNCF project, and officially 
released with Kubespray v2.12.  

Supporting multiple network interfaces is a key requirement for many network functions (NFs), as they require separation of control, 
management, and data planes. Multiple network interfaces are also used to support different protocols or software stacks and 
different tuning and configuration requirements. A set of basic plugins is provided through CNI Plugins from the container 
networking team, and the below plugins, SR-IOV, Userspace and Bond CNIs, can be installed as part of the deployment using 
Ansible playbook.  

For more details see: https://github.com/intel/multus-cni 

4.2.2 SR-IOV Network Device Plugin 
Single Root Input/Output Virtualization (SR-IOV) provides I/O virtualization that makes a single PCIe device (typically a network 
adapter) appear as many network devices, also known as virtual functions (VFs) in the Linux kernel. In Kubernetes, this results in 
network connections that can be separately managed and assigned to different pods.  

The Intel SR-IOV network device plugin discovers and exposes SR-IOV network resources as consumable extended resources in 
Kubernetes. It works with SR-IOV VFs with both kernel drivers and DPDK drivers. When a VF is attached with a kernel driver, then 
the SR-IOV CNI plugin can be used to configure this VF in the pod. When using the DPDK driver, a VNF application configures this 
VF as required. 

The SR-IOV network device plugin provides a way to filter the available VFs and make them available as endpoints in Kubernetes. 
Using a list of selectors, a subset of VFs can be associated with a resource name that can be used when assigning resources to pods. 
An example of a resource is shown below: 

"resourceName": "intel_sriov_netdevice", 
"selectors": { 
    "vendors": ["8086"], 
    "devices": ["154c", "10ed", "1889"], 
    "drivers": ["iavf", "i40evf", "ixgbevf"] 
} 

For more details, see:  https://github.com/intel/sriov-network-device-plugin  

4.2.3 SR-IOV CNI 
The Single Root I/O Virtualization SR-IOV device plugin enables partition of a single physical network adapter (PCI) resource into 
virtual PCI functions (VFs) that can be attached to Kubernetes pods. To attach an SR-IOV device resource to the Kubernetes pod 
network, we use the SR-IOV CNI. The SR-IOV CNI plugin enables the Kubernetes pod to be attached directly to an SR-IOV virtual 
function (VF) using the standard SR-IOV VF driver in the container host’s kernel. 

For more details, see: https://github.com/intel/sriov-cni   

https://containerd.io/
https://cri-o.io/
https://github.com/containernetworking/cni
https://github.com/containernetworking/plugins
https://github.com/intel/multus-cni
https://github.com/intel/sriov-network-device-plugin
https://github.com/intel/sriov-cni


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  28 

4.2.4 Userspace CNI 
The Userspace CNI is a Container Network Interface (CNI) designed to implement userspace networking (as opposed to kernel space 
networking), such as DPDK-based applications. It is designed to run with either OVS-DPDK or VPP along with the Multus CNI plugin 
in Kubernetes deployments. Userspace CNI provides a high-performance container networking solution and data plane acceleration 
for containers. 

4.2.5 Bond CNI 
Bond CNI allows for aggregation of multiple network interfaces into one logical interface. Interface bonding is used to provide 
additional network capacity and/or redundancy. When used as standalone plugin, interfaces are obtained from the host’s network 
namespace. Bonded interface is created in the container network namespace. When used with Multus you can bond interfaces that 
were previously passed to the container. 

4.2.6 Intel® QuickAssist Device Plugin 
Intel® QuickAssist Adapters integrate hardware acceleration of compute-intensive workloads, such as bulk cryptography, public key 
exchange, and compression, on Intel® architecture platforms. The Intel® QAT device plugin for Kubernetes supports Intel® 
QuickAssist Adapters and includes an example scenario that uses the Data Plane Development Kit (DPDK) drivers. 

For more details, see:  https://github.com/intel/intel-device-plugins-for-kubernetes 

4.2.7 Intel® Software Guard Extensions (Intel® SGX) Device Plugin 
Intel® SGX device plugin allows Kubernetes workloads to use Intel® SGX on 3rd Generation Intel® Xeon® Scalable processors. The 
plugin is used in conjunction with an SGX Admission webhook and EPC memory registration to isolate specific application code and 
data in memory via enclaves that are designed to be protected from processes running at higher privilege levels.  An additional 
remote attestation server is required to verify software is running inside an SGX enclave on a trusted computing node. 

For more details, see: https://github.com/intel/intel-device-plugins-for-kubernetes 

 

4.3 Kubernetes Features 
Kubernetes (K8s) is a leading open-source orchestration platform for automating deployment, scaling, and management of 
containerized applications. To enhance Kubernetes for network functions virtualization (NFV) and networking usage, Intel and its 
partners are developing a suite of capabilities and methodologies that exposes Intel® architecture platform features for increased 
and deterministic application and network performance7. This section outlines K8s capabilities common to all profiles within the 
BMRA 21.09. 

4.3.1 Node Feature Discovery 
In a standard deployment, Kubernetes reveals very few details about the underlying platform to the user. This may be a good 
strategy for general data center use, but, in many cases a workload behavior or its performance may improve by leveraging the 
platform (hardware and/or software) features. Node Feature Discovery (NFD) is a Kubernetes add-on that detects and advertises 
hardware and software capabilities of a platform that can be used to facilitate intelligent scheduling of a workload. NFD currently 
detects following features: 
• CPUID: NFD advertises CPU features such as Intel® Advanced Vector Extensions (Intel® AVX). Certain workloads, such as 

machine learning, may gain a significant performance improvement from these extensions.  
• SR-IOV networking: NFD detects the presence of SR-IOV-enabled NICs, allowing optimized scheduling of network-intensive 

workloads.  
• Intel® Resource Director Technology (Intel® RDT): Intel RDT allows visibility and control over the use of last-level cache (LLC) 

and memory bandwidth between co-running workloads. By allowing allocation and isolation of these shared resources, and 
thus reducing contention, Intel RDT helps in mitigating the effects of noisy neighbors. NFD detects the different Intel RDT 
technologies supported by the underlying hardware platform.  

• Intel® Turbo Boost Technology: NFD detects the state of Intel® Turbo Boost Technology, allowing optimal scheduling of 
workloads that have a well-understood dependency on this technology.  

• IOMMU: An input/output memory management unit (IOMMU), such as Intel® Virtualization Technology (Intel® VT) for Directed 
I/O (Intel® VT-d) technology, allows isolation and restriction of device accesses. This enables direct hardware access in 
virtualized environments, highly accelerating I/O performance by removing the need for device emulation and bounce buffers. 

• SSD storage: NFD detects the presence of non-rotational block storage on the node, making it possible to accelerate workloads 
requiring fast local disk access. 

• NUMA topology: NFD detects the presence of NUMA topology, making it possible to optimize scheduling of applications based 
on their NUMA-awareness. 

 
7 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

https://github.com/intel/intel-device-plugins-for-kubernetes
https://github.com/intel/intel-device-plugins-for-kubernetes
http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  29 

• Linux kernel: NFD detects the kernel version and advertises it through multiple labels, allowing the deployment of workloads 
with different granularity of kernel version dependency.  

• PCI: NFD detects PCI devices, allowing optimized scheduling of workloads dependent on certain PCI devices. 

Some of the features that NFD currently detects are shown in the following table. For more information, see https://kubernetes-
sigs.github.io/node-feature-discovery/v0.9/get-started/features.html#feature-sources. 

Table 4. Features Detected by NFD8 

FEATURE SOURCE FEATURE NAME ATTRIBUTE DESCRIPTION 

cpu 

cpuid <cpuid flag> CPU capability is supported 

hardware_multithreading  Hardware multithreading, such as Intel® Hyper-Threading 
Technology (Intel® HT Technology), is enabled 

power sst_bf.enabled Intel SST-BF is enabled 

pstate 

status The status of the Intel P-state driver when in use and enabled; either 
‘active' or ‘passive' 

turbo Set to ‘true' if turbo frequencies are enabled in Intel P-state driver; 
set to ‘false' if they have been disabled 

scaling_governor The value of the Intel P-state scaling_governor when in use; either 
‘powersave' or ‘performance' 

cstate enabled Set to ‘true' if C-states are set in the intel_idle driver; otherwise set to 
‘false'. Clear if intel_idle cpuidle driver is not active 

rdt 

RDTMON Intel RDT monitoring 

RDTCMT Cache Monitoring Technology (CMT) 

RDTMBM Memory Bandwidth Monitoring (MBM) 

RDTL3CA L3 Cache Allocation Technology 

RDTL2CA L2 Cache Allocation Technology 

RDTMBA Memory Bandwidth Allocation (MBA) 

iommu enabled  IOMMU is present and enabled in the kernel 

kernel 

config <option name> Kernel config option is enabled (set ‘y' or ‘m'). Default options are 
NO_HZ, NO_HZ_IDLE, NO_HZ_FULL, and PREEMPT 

selinux enabled SELinux is enabled on the node 

version 

full Full kernel version as reported by /proc/sys/kernel/osrelease 
(for example, ‘4.5.6-7-g123abcde') 

major First component of the kernel version (for example, ‘4') 

minor Second component of the kernel version (for example, ‘5') 

revision Third component of the kernel version (for example, ‘6') 

memory 

numa  Multiple memory nodes, for example, NUMA architecture detected 

nv present NVDIMM devices are present 

nv dax NVDIMM regions configured in DAX mode are present 

network sriov 
capable SR-IOV-enabled network interface cards are present 

configured SR-IOV virtual functions have been configured 

pci 
<device label> present PCI device is detected 

<device label> sriov.capable SR-IOV-enabled PCI device present 

storage nonrotationaldisk  Non-rotational disk, such as SSD, is present in the node 

system os_release 

ID Operating system identifier 

VERSION_ID Operating system version identifier (for example, ‘6.7') 

VERSION_ID.major First component of the OS version id (for example, ‘6') 

VERSION_ID.minor Second component of the OS version id (for example, ‘7') 

usb <device label> present USB device is detected 

 
8 Paraphrased from “Feature Discovery · Node Feature Discovery,” · Node Feature Discovery (Kubernetes SIGs, August 20, 2021), https://kubernetes-
sigs.github.io/node-feature-discovery/v0.9/get-started/features.html#feature-sources. 

https://kubernetes-sigs.github.io/node-feature-discovery/v0.9/get-started/features.html#feature-sources
https://kubernetes-sigs.github.io/node-feature-discovery/v0.9/get-started/features.html#feature-sources
https://kubernetes-sigs.github.io/node-feature-discovery/v0.9/get-started/features.html#feature-sources
https://kubernetes-sigs.github.io/node-feature-discovery/v0.9/get-started/features.html#feature-sources


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  30 

For more details see: https://github.com/kubernetes-sigs/node-feature-discovery 

4.3.2 Topology Manager 
Today’s systems use a combination of CPUs and hardware accelerators to support latency-critical execution and high-throughput 
parallel computation. To help extract the optimal performance out of such systems, the required optimizations related to CPU 
isolation, memory, and device locality must be made. In Kubernetes however, these optimizations are handled by a disjointed set of 
components. Topology Manager is a feature of Kubernetes distribution. It is a kubelet component that coordinates the set of 
components that are responsible for making topology aligned resource allocations. 

For details see: https://builders.intel.com/docs/networkbuilders/topology-management-implementation-in-kubernetes-
technology-guide.pdf  

4.3.3 Kubernetes Native CPU Manager 
Native CPU Manager for Kubernetes provides mechanisms for allocation of CPU cores to workloads in situation where pods 
contend for resources of the CPU. When contention happens workloads may get moved to other CPUs and workload performance 
may be impacted. To avoid this, CPU Manager offers an option to allocate exclusive cores to a workload (pod) by specifying 
“guaranteed QoS” and integer CPU requests.  

See: https://kubernetes.io/blog/2018/07/24/feature-highlight-cpu-manager/ 

4.3.4 CPU Manager for Kubernetes (CMK) 
Intel’s CPU Manager for Kubernetes provides mechanisms for CPU core pinning and isolation of containerized workloads. Intel’s 
CMK divides the CPUs on a system into three pools (by default) with an additional optional pool. The CPUs are divided into pools 
according to exclusivity: exclusive, shared, and infra. The CMK maintains lists of CPUs in each of the lists from which user containers 
can acquire CPUs. Intel’s CMK delivers predictable performance for high-priority applications due to reduced or eliminated thread 
preemption and maximizing CPU cache utilization. CMK provides a single multiuse command-line program to perform various 
functions for host configuration, managing groups of CPUs, and constraining workloads to specific CPUs.  

See: https://builders.intel.com/docs/networkbuilders/cpu-pin-and-isolation-in-kubernetes-app-note.pdf 

4.3.5 Telemetry Aware Scheduling 
Telemetry Aware Scheduling (TAS) makes telemetry data available for scheduling and descheduling decisions in Kubernetes. 
Through a user-defined policy, TAS enables rule-based decisions on pod placement powered by up-to-date platform metrics. 
Policies can be applied on a workload-by-workload basis - allowing the right indicators to be used to place the right pod. 

For example, a pod that requires certain cache characteristics can be scheduled based on output from Intel® RDT metrics. Likewise, 
a combination of RDT, RAS, and other platform metrics could be used to provide a signal for the overall health of a node and could 
be used to help proactively ensure workload resiliency. 

Telemetry Aware Scheduling is made up of two components deployed in a single pod on a Kubernetes cluster.  
• Telemetry Aware Scheduler Extender is contacted by the generic Kubernetes scheduler every time it needs to make a 

scheduling decision on a pod calling for telemetry scheduling. The extender checks if there is a telemetry policy associated with 
the workload. If so, it inspects the strategies associated with the policy and returns opinions on pod placement to the generic 
scheduler. The scheduler extender has two strategies it acts on - scheduleonmetric and dontschedule. This is 
implemented and configured as a Kubernetes Scheduler Extender. 

• Telemetry Policy Controller consumes TAS Policies - a custom resource. The controller parses these policies and places them 
in a cache to make them locally available to all TAS components. It consumes new telemetry policies as they are created, 
removes them when deleted, and updates them as they are changed. The policy controller also monitors the current state of 
policies to see if they are violated 

TAS acts on three strategy types.  
• scheduleonmetric has only one rule. It is consumed by the Telemetry Aware Scheduling Extender and prioritizes nodes based 

on a comparator and an up-to-date metric value. For example:  
scheduleonmetric when health_metric is LessThan  

• dontschedule has multiple rules, each with a metric name and operator and a target. A pod with this policy is never scheduled 
on a node that breaks any one of the rules. For example:  
dontschedule if health_metric Equals 1 

• deschedule is consumed by the Telemetry Policy Controller and can have multiple rules. If a pod is running on a node that 
violates this policy, it can be descheduled with the Kubernetes descheduler. For example:  
deschedule if health_metric Equals 2 

TAS allows arbitrary, user-defined rules to be put in place in order to impact scheduling in a K8s cluster. Using the K8s descheduler, 
it can evict workloads that are breaking some rules in order to have it replaced on a more suitable node. 

https://github.com/kubernetes-sigs/node-feature-discovery
https://builders.intel.com/docs/networkbuilders/topology-management-implementation-in-kubernetes-technology-guide.pdf
https://builders.intel.com/docs/networkbuilders/topology-management-implementation-in-kubernetes-technology-guide.pdf
https://kubernetes.io/blog/2018/07/24/feature-highlight-cpu-manager/
https://builders.intel.com/docs/networkbuilders/cpu-pin-and-isolation-in-kubernetes-app-note.pdf
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#cluster-level-extended-resources


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  31 

In a modern cloud computing cluster, there is a torrent of data that only certain subject matter experts know how to interpret and 
act upon. In scheduling workloads, operators know on which compute nodes a workload may perform better based on up-to-date 
utilization metrics. Likewise, certain telemetry values, or combinations of values, can be recognized as signs that a node has some 
serious problem that is interfering with workload operation. The TAS policy system allows these insights to influence the scheduling 
and lifecycle placement process – turning implicit personal knowledge into formal, actionable information. 

For details, refer to: https://networkbuilders.intel.com/solutionslibrary/telemetry-aware-scheduling-automated-workload-
optimization-with-kubernetes-k8s-technology-guide  

 

4.4 Istio Service Mesh 
Istio is an open source service mesh that layers transparently onto existing distributed applications. “A service mesh is a dedicated 
infrastructure layer that you can add to your applications. It allows you to transparently add capabilities like observability, traffic 
management, and security, without adding them to your own code. The term “service mesh” describes both the type of software 
you use to implement this pattern, and the security or network domain that is created when you use that software.”9 

Istio’s features provide a uniform and efficient way to help secure, connect, and monitor services. Istio is the path to load balancing, 
service-to-service authentication, and monitoring – with few or no service code changes. Its powerful control plane brings vital 
features, including: 
• More secure service-to-service communication in a cluster with TLS encryption, strong identity-based authentication, and 

authorization 
• Automatic load balancing for HTTP, gRPC, WebSocket, and TCP traffic 
• Fine-grained control of traffic behavior with rich routing rules, retries, failovers, and fault injection 
• A pluggable policy layer and configuration API supporting access controls, rate limits, and quotas 
• Automatic metrics, logs, and traces for all traffic within a cluster, including cluster ingress and egress 

For more details, refer to: https://istio.io/latest/about/service-mesh/ 

4.4.1 Istio Deployment Example 
You can enable the Intel SGX operator as an external certificate authority to protect the private keys of an Istio service mesh. Istio 
supports Custom Certificate Authority (CA) integration using Kubernetes Certificate Signing Request (CSR). This requires a 
Kubernetes version >= 1.18. You can implement Istio with Intel SGX while using the Intel SGX operator as an external CA to Istio, 
running as a pod in the “sgx-operator” namespace. 

Once configured, whenever a new istio-proxy (Envoy container) is injected into a newly started pod, the certificate signing request 
begins. The istio-proxy auto-generates its own certificate for service mesh communication and requests that it be signed by the Istio 
custom CA private key. This private key is stored in an encrypted SGX enclave only accessible by the Intel SGX operator. The 
certificate goes from the Istio operator to the Intel SGX operator, which signs the public certificate within the enclave in DRAM 
memory. Once signed, it is returned back through the same path to the newly started pod that initiated the request. That pod can 
now communicate with other pods in the configured service mesh. 

 

4.5 Operators 
Kubernetes operators are subject-specific controllers that extend the functionality of the Kubernetes API to create, configure, and 
manage complex entities on behalf of a Kubernetes user. Kubernetes is designed from the ground up for automation as it includes 
native mechanisms for deploying, running, and scaling workloads. However, some workloads and services require deeper 
knowledge of how the system should behave outside the bounds of core Kubernetes. Operators are purpose-built with operational 
intelligence to address the individuality of such constructs. Tools for operator creation help developers build an automation 
experience for cluster administrators and end users. By extending a common set of Kubernetes APIs and tools, Kubernetes 
operators can help provide ease of deployment and streamlined Day 1 and Day 2 operations. The Kubernetes Operator Pattern has 
emerged as a solution to help ensure the automation of these function-specific applications is possible in a Kubernetes cluster. 

4.5.1 SR-IOV Network Operator 
The SR-IOV Network Operator is designed to help the user to provision and configure the SR-IOV CNI plugin and device plugin in 
the Kubernetes cluster. 

When SR-IOV Network Operator is enabled by setting sriov_network_operator_enabled: true in the 
group_vars/all.yml file, it is mutually exclusive with SR-IOV CNI and device plugins. The plugins must be disabled by setting the 

 
9 “The Istio Service Mesh.” Istio. Accessed October 8, 2021. https://istio.io/latest/about/service-mesh/. 

https://networkbuilders.intel.com/solutionslibrary/telemetry-aware-scheduling-automated-workload-optimization-with-kubernetes-k8s-technology-guide
https://networkbuilders.intel.com/solutionslibrary/telemetry-aware-scheduling-automated-workload-optimization-with-kubernetes-k8s-technology-guide


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  32 

respective options in the group_vars/host_vars. SR-IOV Network Operator is enabled by default, and SR-IOV CNI and device 
plugins are disabled by default. 

To configure SR-IOV device custom resource definition (CRD), SriovNetworkNodePolicy should be provided.  

BMRA handles creation of such CRDs and creates and populates them automatically according to the provided configuration in the 
host_vars/node1.yml file, namely in the section dataplane_interfaces. 

For more details, refer to: https://github.com/k8snetworkplumbingwg/sriov-network-operator 

4.5.2 Intel Device Plugins Operator 
Intel device plugins operator is a Kubernetes custom controller. Its goal is to serve the installation and lifecycle management of Intel 
device plugins for Kubernetes. It provides a single point of control for GPU, QAT, SGX, and FPGA devices to cluster administrators. 
Device plugins are deployed by applying custom resource, and each device plugin has its own custom resource definition (CRD). The 
corresponding controller watches CRUD operations to those custom resources. Currently, BMRA uses the Intel device plugins 
operator to deploy Intel SGX device plugin and Intel GPU device plugin. 

For more details, refer to: https://github.com/intel/intel-device-plugins-for-kubernetes 

4.5.3 Istio Operator 
Istio operator brings the ability to avoid manual install, upgrade, and uninstall of the Istio service mesh. It enables deployment of 
Istio service mesh by defining the IstioOperator CRD. The Istio operator can be enabled or disabled by setting the istio_enabled 
flag in the group_vars/all.yml file. The Istio operator is enabled by default for all BMRA profiles except basic. 

BMRA is shipped with a predefined set of Istio configuration profiles. The following Istio configuration profiles are available: default, 
minimal, external, empty, none. If no Istio configuration profile is defined by the variable istio_profile in the 
group_vars/all.yml file, then the default Istio configuration profile is applied. If no Istio configuration profile is set, then no Istio 
configuration profile is deployed. For more details on Istio configuration profiles, see https://istio.io/latest/docs/setup/additional-
setup/config-profiles/. For more details on the Istio operator, see https://istio.io/latest/docs/setup/install/operator. 

 

4.6 Dynamic Device Personalization (DDP) 
One of the key technologies of the Intel® Ethernet 700 and 800 Series Network Adapters is Dynamic Device Personalization (DDP). 
This technology enables workload-specific optimizations using the programmable packet-processing pipeline. Additional protocols 
in the default set help improve packet processing efficiency and result in enhanced performance in specific use cases.10 

Additional information about DDP can be found in https://www.intel.com/content/www/us/en/architecture-and-
technology/ethernet/dynamic-device-personalization-brief.html 

4.6.1 DDP on Intel Ethernet 700 Series Network Adapters 
Intel Ethernet 700 Series Network Adapters support only one DDP image loaded on a network card. An image must be loaded to the 
first physical function of the device (PF0), but the configuration is applied to all ports of the adapter. 

For Intel Ethernet 700 Series Network Adapters, BMRA provides the following list of DDP images: 
• ecpri.pkg 
• esp-ah.pkg 
• ppp-oe-ol2tpv2.pkgo 
• mplsogreudp.pkg 
• gtp.pkgo 

To use specific DDP-enabled virtual functions in BMRA, create a new resource with ddpImage selector by extending the 
sriovdp_config_data variable before deployment. 

PATH: examples/full_nfv/group_vars/all.yml: 
sriovdp_config_data: | 
    { 
        "resourceList": [ 
            { 
                "resourceName": " intel_sriov_dpdk_700_series_gtpgo", 
                "selectors": { 
                    "vendors": ["8086"], 
                    "devices": ["154c"], 
                    "drivers": ["vfio-pci"] 

 
10 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

https://github.com/k8snetworkplumbingwg/sriov-network-operator
https://github.com/intel/intel-device-plugins-for-kubernetes
https://istio.io/latest/docs/setup/additional-setup/config-profiles/
https://istio.io/latest/docs/setup/additional-setup/config-profiles/
https://istio.io/latest/docs/setup/install/operator
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/dynamic-device-personalization-brief.html
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/dynamic-device-personalization-brief.html
http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  33 

                    "ddpProfiles": ["GTPv1-C/U IPv4/IPv6 payload"]  
                } 
            }, 
            {(...)} 
        ] 
    } 
For more details about SR-IOV device plugin configuration, refer to https://github.com/intel/sriov-network-device-
plugin#configurations 

After BMRA Deployment, request the intel_sriov_dpdk_700_series_gtpgo resource in the workload’s Pod manifest: 
apiVersion: v1 
kind: Pod 
metadata: 
  name: testpod1 
  annotations: 
    k8s.v1.cni.cncf.io/networks: sriov-net1 
spec: 
  containers: 
  - name: appcntr1  
    image: centos/tools  
    imagePullPolicy: IfNotPresent 
    command: [ "/bin/bash", "-c", "--" ] 
    args: [ "while true; do sleep 300000; done;" ] 
    resources: 
      requests: 
        intel.com/intel_sriov_dpdk_700_series_gtpgo: '1' 
      limits: 
        intel.com/intel_sriov_dpdk_700_series_gtpgo: '1' 

Keep the following points in mind when working with DDP images on Intel® Ethernet 700 Series Network Adapters: 
• DDP profiles are NOT automatically unloaded when the driver is unbound/unloaded. Note that subsequent driver reload may 

corrupt the profile configuration during its initialization and is NOT recommended. 
• DDP profiles should be manually rolled-back before driver unload/unbind if the intention is to start with a clean hardware 

configuration. 
• Exercise caution while loading DDP profiles. Attempting to load files other than DDP profiles provided by Intel may cause 

system instability, system crashes, or system hangs. 

Additional References 
• https://software.intel.com/content/www/us/en/develop/articles/dynamic-device-personalization-for-intel-ethernet-700-

series.html 
• https://builders.intel.com/docs/networkbuilders/intel-ethernet-controller-700-series-gtpv1-dynamic-device-

personalization.pdf 
• https://github.com/intel/sriov-network-device-plugin 

4.6.2 DDP on Intel® Ethernet 800 Series Network Adapters 
Intel® Ethernet 800 Series Network Adapters support a broad range of protocols in DDP profile images11. You can choose the 
default image or the telecommunications (comms) image that supports certain market-specific protocols in addition to protocols in 
the OS-default package. The OS-default DDP package supports the profiles listed in the following table. 

DEFAULT PACKAGE 

MAC 

EtherType 

VLAN 

IPv4 

IPv6 

TCP 

ARP 

UDP 

SCTP 

ICMP 

 
11 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

https://github.com/intel/sriov-network-device-plugin#configurations
https://github.com/intel/sriov-network-device-plugin#configurations
https://software.intel.com/content/www/us/en/develop/articles/dynamic-device-personalization-for-intel-ethernet-700-series.html
https://software.intel.com/content/www/us/en/develop/articles/dynamic-device-personalization-for-intel-ethernet-700-series.html
https://builders.intel.com/docs/networkbuilders/intel-ethernet-controller-700-series-gtpv1-dynamic-device-personalization.pdf
https://builders.intel.com/docs/networkbuilders/intel-ethernet-controller-700-series-gtpv1-dynamic-device-personalization.pdf
https://github.com/intel/sriov-network-device-plugin#configurations
http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  34 

DEFAULT PACKAGE 

ICMPV6 

CTRL 

LLDP 

VXLAN-GPE 

VxLAN (non-GPE) 

Geneve 

GRE 

NVGRE 

RoCEv2 

COMMS PACKAGE 

Extends default profile package with the following protocols: 

GTP 

PPPOE 

L2TPv3 

IPsec 

PFCP 

 

To deploy the communication profile on the network adapter, the host variable dataplane_interfaces must contain a proper 
ddp_profile value. For example: 

dataplane_interfaces: 
  - name: enp24s0f0                 # PF interface name 
    bus_info: "18:00.0"             # pci bus info 
    pf_driver: i40e                 # PF driver, "i40e", "ice" 
    default_vf_driver: "iavf"       # default driver to be used with VFs 
    sriov_numvfs: 6                 # total number of VFs to create                                     
    sriov_vfs:                      # list of VFs to create with specific driver 
      vf_00: "vfio-pci"             # VF driver to be attached to this VF under this PF. 
      vf_05: "vfio-pci"             # VF driver to be attached to this VF under this PF. 
    ddp_profile: "ice_comms-1.3.24.0" # DDP package name to be loaded into the NETWORK ADAPTER 

The image must be loaded to first physical function of the device (PF0), but the configuration is applied to all ports of the adapter. 

To deploy a workload with a DDP SR-IOV VF, the intel_sriov_dpdk_800_series resource must be requested in the workload’s 
pod manifest, after BMRA deployment. 

apiVersion: v1 
kind: Pod 
metadata: 
  name: testpod1 
  annotations: 
    k8s.v1.cni.cncf.io/networks: sriov-net1 
spec: 
  containers: 
  - name: appcntr1  
    image: centos/tools  
    imagePullPolicy: IfNotPresent 
    command: [ "/bin/bash", "-c", "--" ] 
    args: [ "while true; do sleep 300000; done;" ] 
    resources: 
      requests: 
        intel.com/intel_sriov_dpdk_800_series: '1' 
      limits: 
        intel.com/intel_sriov_dpdk_800_series: '1' 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  35 

4.6.2.1 Kubernetes Support for DDP in Intel Ethernet 800-Series Network Adapters 
SR-IOV devices (VFs included) are exposed to the Kubernetes pods via SR-IOV device plugin (SR-IOV DP). In BMRA, the plugin 
cannot discover loaded DDP plugins on Intel Ethernet 800-Series Network Adapters (https://github.com/intel/sriov-network-
device-plugin#configurations). As a result, one cannot orchestrate a workload that requires a DDP profile on such network adapters. 

However, you can work around this issue in the following ways: 
1. You can deploy comms profile on every node with Intel Ethernet 800 Series Network Adapter, or 
2. You can deploy comms profile on a subset of Intel Ethernet 800 Series Network Adapters and label the nodes accordingly using 

Kubernetes labels. Then deploy the workload that requires specific DDP profile with specific Node Selector. 
 

4.7 Intel® Speed Select Technology 
Intel SST is a collection of features that give more granular control over CPU performance. 

4.7.1 Intel Speed Select Technology – Base Frequency 
Select SKUs of 2nd Generation Intel Xeon Scalable processors (5218N, 6230N, and 6252N) and 3rd Generation Intel Xeon Scalable 
processors (6318N and 6338N) offer a capability called Intel Speed Select Technology – Base Frequency (Intel SST-BF). Intel SST-
BF controls the core frequency model. When enabled, some cores are at higher frequency and the remaining cores run at lower 
frequency12. 

 

Figure 9. CPU Core Frequency Deployment Methods 

Applications that consist of virtualized switches or load distribution functions in front of worker threads can benefit from the Intel 
SST-BF feature. With high frequencies, load distribution threads pass data extremely fast to workers. 

High frequency cores are advertised as exclusive cores by the CPU Manager for Kubernetes. Pod manifest must request for 
cmk.intel.com/exclusive-cores to obtain one. 

Intel SST-BF enabled on node is advertised by the Node Feature Discovery with the sst_bf.enabled label. 

Example pod manifest with exclusive cores request: 
apiVersion: v1 
kind: Pod 
metadata: 
 name: high-priority-pod 
 annotations: 
 cmk.intel.com/mutate: "true" 
spec: 
 restartPolicy: Never 
 containers: 
 - name: nginx 
   image: nginx:1.19.3 

 
12 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

https://github.com/intel/sriov-network-device-plugin#configurations
https://github.com/intel/sriov-network-device-plugin#configurations
http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  36 

   ports: 
   - containerPort: 80 
   resources: 
     requests: 
       cmk.intel.com/exclusive-cores: '1' 
     limits: 
       cmk.intel.com/exclusive-cores: '1' 
   nodeSelector: 
     feature.node.kubernetes.io/cpu-power.sst_bf.enabled: true 

For more information about scheduling workloads on Kubernetes with Intel SST-BF support, visit 
https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-with-kubernetes-application-
note.pdf  

On the 3rd Generation Intel Xeon Scalable processor, it is possible to prioritize power flow to the high priority cores in the event 
there is a case power constraint scenario, for example, TDP ceiling hit or power supply malfunction. Power prioritization helps high 
frequency cores to maintain their frequency. 

In BMRA deployment, Core Priority of high frequency cores is enabled by default. 

For more information about Intel SST-BF technology, refer to https://www.kernel.org/doc/html/latest/admin-guide/pm/intel-
speed-select.html#intel-r-speed-select-technology-base-frequency-intel-r-sst-bf 

4.7.2 Intel Speed Select Technology – Core Power 
Intel Speed Select Technology – Core Power (Intel SST-CP), available on 3rd Generation Intel Xeon Scalable processors, allows 
users to define priorities in core power flow in the event there is a power constraint scenario, for example TDP ceiling hit or power 
supply malfunction. Power prioritization helps cores maintain their frequency, while power is drawn from cores with lower priority. 

BMRA allows you to define four Intel SST-CP Classes of Service that contain: 
1. Priority 
2. Affected Cores 
3. Minimum CPU Frequency 
4. Maximum CPU Frequency 

Intel SST-CP configuration can be found in example/profile/host_vars/node1.yml. 

Intel SST-CP enabled on a node is advertised by Node Feature Discovery with sst_cp.enabled label. 

For more information about Intel® SST-CP technology, refer to:  https://www.kernel.org/doc/html/latest/admin-guide/pm/intel-
speed-select.html#intel-r-speed-select-technology-core-power-intel-r-sst-cp 

4.7.3 Intel Speed Select Technology – Turbo Frequency (Intel SST-TF) 
Intel SST-TF, available on 3rd Generation Intel Xeon Scalable processors, allows you to assign specific cores to get higher turbo 
frequency. This feature enables the ability to set different “All core turbo ratio limits” to cores based on the priority. By using this 
feature, some cores can be configured to get higher turbo frequency by designating them as high priority at the cost of lower or no 
turbo frequency on the low priority cores. For this reason, this feature is only useful when the system is busy utilizing all CPUs, but 
the user wants some configurable option to get high performance on some CPUs. 

The support of Intel SST-TF depends on Intel SST-PP performance level configuration. It is possible that only a certain performance 
level supports Intel SST-TF. It is also possible that only the base performance level (level = 0) has the support of Intel SST-TF. 
Hence, first select the desired performance level to enable this feature. 

For more information about Intel SST-TF technology, refer https://www.kernel.org/doc/html/latest/admin-guide/pm/intel-speed-
select.html#intel-r-speed-select-technology-turbo-frequency-intel-r-sst-tf. 

4.7.4 Intel Speed Select Technology – Performance Profile (Intel SST-PP) 
Intel SST-PP, available on 3rd Generation Intel Xeon Scalable processors, permits configuration of a server dynamically based on 
workload performance necessities. The working nature of Intel SST-PP is to set up CPUs that need to be online and others that 
need to remain offline to sustain a guaranteed frequency performance level. Intel SST-PP provides the ability to monitor changes in 
frequency levels dynamically.  

BMRA provides three options for Intel SST-PP deployment, as described below: 

• Configure Intel SST-PP with all features (Intel SST-BF, Intel SST-CP, and Intel SST-TF) in auto mode, which enables turbo 
frequency for all available online CPUs automatically. 

• Configure Intel SST-PP with all features (Intel SST-BF, Intel SST-CP, and Intel SST-TF) with user-defined specific CPUs 
ranges such as "2,3,5" to prioritize those CPUs over others. 

https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-with-kubernetes-application-note.pdf
https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-with-kubernetes-application-note.pdf
https://www.kernel.org/doc/html/latest/admin-guide/pm/intel-speed-select.html#intel-r-speed-select-technology-base-frequency-intel-r-sst-bf
https://www.kernel.org/doc/html/latest/admin-guide/pm/intel-speed-select.html#intel-r-speed-select-technology-base-frequency-intel-r-sst-bf
https://www.kernel.org/doc/html/latest/admin-guide/pm/intel-speed-select.html#intel-r-speed-select-technology-core-power-intel-r-sst-cp
https://www.kernel.org/doc/html/latest/admin-guide/pm/intel-speed-select.html#intel-r-speed-select-technology-core-power-intel-r-sst-cp
https://www.kernel.org/doc/html/latest/admin-guide/pm/intel-speed-select.html#intel-r-speed-select-technology-turbo-frequency-intel-r-sst-tf
https://www.kernel.org/doc/html/latest/admin-guide/pm/intel-speed-select.html#intel-r-speed-select-technology-turbo-frequency-intel-r-sst-tf


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  37 

• Configure Intel SST-PP by disabling all features (Intel SST-BF, Intel SST-CP, and Intel SST-TF). 

Intel SST-PP configuration can be found in example/profile/host_vars/node1.yml.  

For more information about Intel SST-PP technology, refer to https://www.kernel.org/doc/html/latest/admin-guide/pm/intel-
speed-select.html#intel-r-speed-select-technology-performance-profile-intel-r-sst-pp  

 

4.8 Security 
The following sections describe some of the security features in BMRA. 

4.8.1 Cluster Security 
Security for the Kubernetes cluster includes the following13: 
• Kubernetes audit trail and log backups by default 
• Certs for API server access and timeouts 
• Checksums for all downloaded artifacts 
• RBAC enabled by default 
• TLS cipher suites to help secure cluster communication 
• Help secure the container registry by: 

− Limited access with TLS and basic authentication 
− Required server keys and certs signed with Kubernetes Certificate Authority (CA) 

• Limited etcd permissions 
• Restricted open firewall ports and subnets 
• Pod Security Policies (PSP) admission controller enabled with minimal set of rules (defines a set of conditions pods must use to 

run within the system): 
− EventRateLimit – mitigates DoS attacks against API server 
− AlwaysPullImages – forces credential checks every time a pod image is accessed 
− NodeRestriction – limits objects that a kubelet can modify 
− PodSecurityPolicy 

• Security policies on each Helm chart for deployment (collectd, NFD, TAS, and the like) 

For additional security considerations, refer to:  
• https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/ 
• https://kubernetes.io/docs/concepts/policy/pod-security-policy/ 
• https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#noderestriction 

4.8.2 Intel® Security Libraries for Data Center (Intel® SecL – DC) 
Security for cloud native applications is an increasing challenge for developers. Hardware and software suppliers in the industry are 
cooperatively developing the cloud architecture to deliver 5G network and edge infrastructure, which makes security an important 
requirement as workloads and suppliers converge. 

By using Intel® SecL – DC, Hardware Root of Trust, and Secure Boot, we can create an end-to-end platform security solution for 
network and edge platforms. Key components of Intel® SecL – DC include the following: 
• Verification service: Installed in the central control node, it gathers the secure boot signatures and maintains the platform’s 

“trusted” or “untrusted” evaluation results. It maintains the platform trust database with established “known good” values or 
expected measurements. If a certain firmware or Linux kernel is found to be compromised, the policy can change the platform 
trust status. 

• Trust agent: Installed in every physical node that needs to be monitored by the platform security, it takes the TPM ownership 
on the platform and reports the platform security status to the remote management module. 

• Integration hub: Connects with orchestration software such as Kubernetes and contains an extension to work with K8s. It 
retrieves the information from the verification service and shares with the orchestration software at a specified interval. 

For details on how to deploy, refer to: https://builders.intel.com/docs/networkbuilders/secure-the-network-infrastructure-secure-
cloud-native-network-platforms-user-guide.pdf  

4.8.3 Intel® Software Guard Extensions 
Intel® Software Guard Extensions (Intel® SGX) is an Intel technology to protect select code and data from disclosure or modification. 
It operates by allocating hardware-protected memory where code and data reside. The protected memory area is called an enclave. 

 
13 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

https://www.kernel.org/doc/html/latest/admin-guide/pm/intel-speed-select.html#intel-r-speed-select-technology-performance-profile-intel-r-sst-pp
https://www.kernel.org/doc/html/latest/admin-guide/pm/intel-speed-select.html#intel-r-speed-select-technology-performance-profile-intel-r-sst-pp
https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#noderestriction
https://builders.intel.com/docs/networkbuilders/secure-the-network-infrastructure-secure-cloud-native-network-platforms-user-guide.pdf
https://builders.intel.com/docs/networkbuilders/secure-the-network-infrastructure-secure-cloud-native-network-platforms-user-guide.pdf
http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  38 

Data within the enclave memory can only be invoked via special instructions. This feature is only available on 3rd Generation Intel® 
Xeon® Scalable processors. 

4.8.4 OpenSSL and QAT Engine 
Network security vendors sometimes rely on the OpenSSL project, and specifically the libcrypto general purpose cryptographic 
library, when executing in the various cloud compute environment. To address the need to have both portability and performance, 
Intel offers the Intel® QAT Engine for OpenSSL as an additional option to the default library.    

The Intel® QAT Engine for OpenSSL 1.1.x provides support for secure applications by directing the requested computation of 
cryptographic operations to the available hardware acceleration or instruction acceleration present on the platform. The engine 
supports both the traditional synchronous mode for compatibility with existing applications and the new asynchronous mode 
introduced in OpenSSL 1.1.0 to achieve maximum performance. 

 

4.9 Security - Key Management Reference Application with Intel® SGX 
Key Management Reference Application (KMRA) is a proof-of-concept software created to demonstrate the integration of Intel® 
Software Guard Extensions (Intel® SGX) asymmetric key capability with a hardware security model (HSM) on a centralized key server. 
The goal of this section is to outline BMRA setup of KMRA infrastructure with Intel SGX for private key provisioning to an Intel® SGX 
enclave on a 3rd Generation Intel® Xeon® Scalable processor, using the Public-Key Cryptography Standard (PKCS) #11 interface and 
OpenSSL. The BMRA V21.09 release highlights KMRA support on the 3rd Generation Intel® Xeon® Scalable processor only. 

BMRA contains Ansible automation scripts to set up the KMRA infrastructure. This includes the setup of a centralized key server and 
multiple compute nodes enabled with Intel SGX. The compute nodes are provisioned with private keys into the Intel SGX enclaves 
to be used by workloads. This general solution can work with any application or workload. For this release, a sample NGINX 
workload/application Ansible script is provided as an example of how the KMRA infrastructure can be used. The NGINX workload 
uses the private keys from the Intel SGX enclave to establish TLS connections. The private key is never in the clear and the 
certificate signing happens more securely inside the enclave. 

Step-by-step instructions for deploying KMRA with BMRA are detailed in Workloads and Application Examples. The instructions 
also provide information on how to deploy the NGINX workload and configure it to use the private key more securely from inside 
the enclave to establish TLS connections. 

 

Figure 10. Key Management Reference Application Infrastructure with Intel® SGX 

For more information, see Intel® Software Guard Extensions (Intel® SGX) – Key Management on the 3rd Generation Intel® Xeon® 
Scalable Processor Technology Guide and Intel® Software Guard Extensions (Intel® SGX) – NGINX Private Key on 3rd Generation 
Intel® Xeon® Scalable Processor User Guide. 

 

https://networkbuilders.intel.com/solutionslibrary/intel-software-guard-extensions-intel-sgx-key-management-on-the-3rd-generation-intel-xeon-scalable-processor-technology-guide
https://networkbuilders.intel.com/solutionslibrary/intel-software-guard-extensions-intel-sgx-key-management-on-the-3rd-generation-intel-xeon-scalable-processor-technology-guide
https://networkbuilders.intel.com/solutionslibrary/intel-software-guard-extensions-intel-sgx-nginx-private-key-on-3rd-generation-intel-xeon-scalable-processor-user-guide
https://networkbuilders.intel.com/solutionslibrary/intel-software-guard-extensions-intel-sgx-nginx-private-key-on-3rd-generation-intel-xeon-scalable-processor-user-guide


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  39 

4.10 Intel® Server GPU 
The Intel® Server GPU is the first discrete graphics processing unit for data centers based on the new Intel Xe architecture with 
support for MPEG-2, AVC, HEVC, and VP9 transcoding plus AV1 decode. The Intel® Server GPU is a high-density media processing 
accelerator that enables users, via configurable presets, to choose the video quality/density setting that meets their requirements. 
The Intel® Server GPU programming is supported via open-source software including drivers, APIs, and developer tools such as the 
Intel® Media SDK and FFmpeg plugin. The Intel® Server GPU supports low level programmability including frame and subframe level 
controls. 

The Intel® Server GPU is based on a low-power discrete system-on-chip (SoC) design, with a 128-bit wide pipeline and 8 GB of 
dedicated onboard low-power DDR4 memory. Four GPU SoCs are packaged together in a three-quarter length, full height x16 PCIe 
Gen3 add-in card from H3C, with a target configuration of up to four cards per server.  

The Open Visual Cloud is a set of open-source software stacks (with full end-to-end sample pipelines) for media, analytics, graphics, 
and immersive media, optimized for cloud native deployment on commercial-off-the-shelf x86 CPU architecture. An Open Visual 
Cloud reference application for OTT transcoding and delivery via CDN, on both Intel® Xeon® and Intel® Server GPU, is available in 
the Open Visual Cloud GitHub site https://github.com/OpenVisualCloud/CDN-Transcode-Samplev.  

For more details on supported operating systems and required firmware for the Intel® Server GPU, work with your local Intel sales 
representative. For more details on the product, see the following links: 
https://www.intel.com/content/www/us/en/products/discrete-gpus/server-graphics-card.html 

https://www.intel.com/content/www/us/en/benchmarks/server/graphics/intelservergpu.html 

https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/server-graphics-card-product-brief.html 

https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/server-graphics-solution-brief.html 

https://ark.intel.com/content/www/us/en/ark/products/210576/intel-server-gpu.html 

 

4.11 Observability 
The BMRA Telemetry software stack consists of telemetry collectors deployed on every node, a telemetry time-series database that 
pulls the metrics from collectors, telemetry visualization software, and a policy agent that influences cluster scheduling decisions. 
 

 

Figure 11. Platform Telemetry Available with Collectd 

4.11.1 Observability Components Overview 
This section describes the components shown in the previous diagram, including Telegraf, Collectd, Node Exporter, Prometheus, 
Grafana, and Prometheus adapter. 

4.11.1.1 Telegraf 
Telegraf is an open-source plugin-based server agent that you can use to collect custom application metrics, logs, network 
performance data, platform metrics, and more. Developed by InfluxData, Telegraf’s pluggable architecture uses input plugins for 

https://github.com/OpenVisualCloud/CDN-Transcode-Sample
https://www.intel.com/content/www/us/en/products/discrete-gpus/server-graphics-card.html
https://www.intel.com/content/www/us/en/benchmarks/server/graphics/intelservergpu.html
https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/server-graphics-card-product-brief.html
https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/server-graphics-solution-brief.html
https://ark.intel.com/content/www/us/en/ark/products/210576/intel-server-gpu.html


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  40 

collecting metrics and output plugins for sending metrics to various endpoints, such as time series databases like Prometheus and 
Influx DB or data streaming services like Kafka. 

For more information on Telegraf and its available plugins, visit https://www.influxdata.com/time-series-platform/telegraf/. 

4.11.1.2 collectd 
collectd is a UNIX daemon responsible for collecting a wide spectrum of platform telemetry. It has a modular architecture and data 
acquisition depends on loaded plugins. Plugins that are loaded with collectd depend on an installed profile.  

Table 5. Collectd Plugins 

PLUGIN PROFILE 

cpu All 

cpufreq All 

disk All 

ipmi All 

numa All 

smart.conf All 

ethstat All 

netlink All 

intel_pmu All 

intel_rdt All 

pkgpower.py All 

dpdkevents Full 

dpdkstat Full 

hugepages Full 

ovs_events Full 

ovs_pmd_stats Full 

ovs_stats Full 

  

For detailed descriptions of the plugins and metrics available, visit https://collectd.org/ and 
https://wiki.opnfv.org/display/fastpath/Barometer+Home. 

For more information about pkgpower.py plugin, visit https://github.com/intel/CommsPowerManagement/blob/master/power.md 
Note: To enable intel_pmu plugin, set the enable_intel_pmu_plugin: true configuration variable. 
Note: When intel_rdt and intel_pmu plugins run on a node at the same time, the following metrics are measured incorrectly: 

 Instructions 
 Cycles 
 Instructions per cycle (IPC) 
 Cycles per instruction (CPI) 

These metrics are measured incorrectly because both plugins count the same metric using different means (MSR write vs. perf). 
You can choose to disable one plugin or the other by commenting the lines with – intel_pmu.conf or – rdt.conf in the 
roles/collectd-install/default/main.yml file.  

4.11.1.3 Node Exporter 
Node Exporter is a Prometheus exporter for hardware and OS metrics exposed by NIX kernels, written in Go with pluggable metric 
collectors. Node Exporter is run with its default configuration on every node. 

4.11.1.4 Prometheus 
Prometheus is an open-source systems-monitoring server that scrapes and stores time series data. 

4.11.1.5 Grafana 
Grafana is an open-source telemetry visualization tool, which is available under the HTTPS endpoint: https://localhost:30000 
on any of the cluster nodes.  Due to security reasons, this port is not exposed outside the cluster by default. 

https://www.influxdata.com/time-series-platform/telegraf/
https://collectd.org/
https://wiki.opnfv.org/display/fastpath/Barometer+Home
https://github.com/intel/CommsPowerManagement/blob/master/power.md


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  41 

Note: Grafana is deployed with default credentials of admin/admin. After first login, the user is asked to change the password. We 
recommend that you change this as soon as possible.  

4.11.1.6 Prometheus Adapter 
Prometheus Adapter is an implementation of the Kubernetes resource metrics API and custom metrics API. It provides Prometheus 
metrics to the Telemetry Aware Scheduler. 

4.11.2 Platform Telemetry Security 
Platform Telemetry is an asset that must be protected. This section provides an overview of telemetry security.  

4.11.2.1 Data at Rest Security 
Note: BMRA does not provide any data at rest security for telemetry. We recommend that you provide proper means of data at 

rest security, such as self-encrypting drives. 

4.11.2.2 Data in Transit Security 
BMRA helps secure the telemetry traffic between nodes using TLS. Prometheus verifies a collector’s certificate on connection using 
an in-cluster CA certificate while the collector helps ensure that the service account token provided with HTTP connection allows it 
to read a “/metrics” endpoint. Service Account Token verification is provided by the Kubernetes API Server.  

 
 

5 Reference Architecture Hardware Components and BIOS 
For all BMRA Configuration Profiles, this section provides a menu of all possible hardware components for control node and worker 
node as well as the BIOS components available. 

 

5.1 Hardware Component List for Control Node 
This table lists the hardware options for control nodes, which are responsible for managing the worker nodes in the cluster. 

Table 6. Hardware Options for Control Node – 2nd Generation Intel Xeon Scalable Processor 

INGREDIENT REQUIREMENT REQUIRED/ 
RECOMMENDED 

2nd Generation Intel® 
Xeon® Scalable 
processors  

Intel® Xeon® Gold 5218 or 5218N processor at 2.3 GHz, 16 C/32 T, 125 W, 
or higher number Intel® Xeon® Gold or Platinum CPU SKU 

Required 

Memory  DRAM only configuration: 192 GB (12 x 16 GB DDR4 2666 MHz) Required 

Network Adapter 

Option 1: Dual Port 25 GbE Intel® Ethernet Network Adapter XXV710-DA2 
SFP28+, or 

Required Option 2: Dual Port 10 GbE Intel® Ethernet Converged Network Adapter 
X710-DA2 SFP+, or 
Option 3: Dual Port 10 GbE Intel® Ethernet Converged Network Adapter 
X520-DA2 SFP+ 

Intel® QAT 
Intel® QuickAssist Adapter 8970 (PCIe) AIC or equivalent third-party Intel® 
C620 Series Chipset Intel® QAT enabled PCIe AIC, with minimum 8 lanes of 
PCIe connectivity 

Recommended 

Storage (Boot Drive) Intel® SATA Solid State Drive D3 S4510 at 480 GB or equivalent boot drive Required 
Storage  
(Capacity) 

Intel® NVMe SSD DC P4510 Series at 2 TB or equivalent (Recommended 
NUMA Aligned) Recommended 

LAN on Motherboard 
(LOM) 

10 Gbps or 25 Gbps port for Preboot Execution Environment (PXE) and 
Operation, Administration, and Management (OAM) 

Required 

1/10 Gbps port for Management Network Adapter Required 
Additional Plug-in 
cards 

N/A  

Table 7. Hardware Options for Control Node – 3rd Generation Intel Xeon Scalable Processor 

INGREDIENT REQUIREMENT REQUIRED/ 
RECOMMENDED 

3rd Generation Intel 
Xeon Scalable 
processors  

Intel® Xeon® Gold 5318N processor at 2.1 GHz, 20 C/40 T, 135W or higher 
number Intel® Xeon® Gold or Platinum CPU SKU 

Required 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  42 

INGREDIENT REQUIREMENT REQUIRED/ 
RECOMMENDED 

Memory  256 GB DRAM (16x 16 GB DDR4, 2666 MHz) Required 

Network Adapter Dual Port 100 GbE Intel® Ethernet Network Adapter E810-CQDA2 QSFP28 Required 

Intel® QAT Intel® QuickAssist Adapter 8960 or 8970 (PCIe*) AIC or equivalent third-
party Intel® C620 Series Chipset Recommended 

Storage (Boot Drive) Intel® SATA Solid State Drive D3 S4510 at 480 GB or equivalent boot drive Required 
Storage 
(Capacity) 

Intel® SSD D7-P5510 Series at 3.84 TB or equivalent drive (recommended 
NUMA aligned)  Recommended 

LAN on Motherboard 
(LOM) 

10 Gbps or 25 Gbps port for Preboot Execution Environment (PXE) and 
Operation, Administration, and Management (OAM) 

Required 

1/10 Gbps port for Management Network Adapter Required 
Additional Plug-in 
cards 

N/A  

 

5.2 Hardware Component List for Worker Node Base 
A Kubernetes cluster typically consists of multiple worker nodes managed by one or more Kubernetes control nodes.  

This table lists the hardware options for worker nodes in the “base” configuration. If your configuration needs improved processing, 
you may choose to use the “plus” configuration instead. See the next section for details.  

Table 8. Hardware Components for Worker Node Base – 2nd Generation Intel Xeon Scalable Processor 

INGREDIENT REQUIREMENT REQUIRED/ 
RECOMMENDED 

2nd Generation Intel® 
Xeon® Scalable 
processors 

Intel® Xeon® Gold 6230 processor @ 2.1 GHz or 6230N CPU @ 2.3 GHz 20 
C/40 T, 125 W, or higher number Intel® Xeon® Gold or Platinum CPU SKU 

Required 

Memory  

Option 1: DRAM only configuration: 384 GB 
(12 x 32 GB DDR4 2666 MHz) 

Required Option 2: DRAM only configuration: 384 GB 
(24 x 16 GB DDR4 2666 MHz) 
Option 3: DRAM + Intel® Optane™ Persistent Memory  
DRAM: 192 GB (12x 16 GB DDR4, 2666 MHz) 

Intel® Optane™ 
Persistent Memory 

512 GB (4x 128 GB Intel® Optane™ persistent memory in 2-1-1 Topology) Recommended 

Network Adapter 
Option 1: Dual Port 100 GbE Intel® Ethernet Network Adapter E810-
CQDA2 QSFP28 Required 
Option 2: Intel® Ethernet Network Adapter XXV710-DA2 QSFP28 

Intel® QAT Intel® QuickAssist Adapter 8970 (PCIe) AIC or equivalent third-party Intel® 
C620 Series Chipset Intel® QAT enabled with minimum 8 lanes of PCIe 
connectivity 

Required 

Storage (Boot Drive) Intel® SATA Solid State Drive D3 S4510 at 480 GB or equivalent boot drive Required 
Storage 
(Capacity) 

Intel® NVMe SSD DC P4510 Series P4510 at 2 TB or equivalent 
(Recommended NUMA Aligned) 

Required 

LAN on Motherboard 
(LOM) 

10 Gbps or 25 Gbps port for Preboot Execution Environment (PXE) and 
Operation, Administration, and Management (OAM) 

Required 

1/10 Gbps port for Management Network Adapter Required 
Additional Plug-in cards N/A  

Table 9. Hardware Components for Worker Node Base – 3rd Generation Intel Xeon Scalable Processor 

INGREDIENT REQUIREMENT REQUIRED/ 
RECOMMENDED 

3rd Generation Intel 
Xeon Scalable 
processors 

Intel® Xeon® Gold 5318N processor at 2.1 GHz, 24 C/48 T, 150 W, or higher 
number Intel® Xeon® Gold or Platinum CPU SKU 

Required 

Memory  

Option 1: DRAM only configuration: 256 GB 
(8 x 32 GB DDR4, 2666 MHz) 

Required 
Option 2: DRAM only configuration: 256 GB 
(16 x 16 GB DDR4, 2666 MHz) 

Intel® Optane™  
Persistent Memory 

512 GB (4x 128 GB Intel® Optane™ persistent memory in 2-1-1 Topology) Recommended 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  43 

INGREDIENT REQUIREMENT REQUIRED/ 
RECOMMENDED 

Network Adapter 
Option 1: Intel® Ethernet Network Adapter E810-CQDA2  

Required 
Option 2: Intel® Ethernet Network Adapter E810-XXVDA-2 

Intel® QAT Intel® QuickAssist Adapter 8960 or 8970 (PCIe*) AIC or equivalent third-
party Intel® C620 Series Chipset 

Required 

Storage (Boot Drive) Intel® SATA Solid State Drive D3 S4510 at 480 GB or equivalent boot drive Required 
Storage 
(Capacity) 

Intel® SSD D7-P5510 Series at 3.84 TB or equivalent drive (recommended 
NUMA aligned)  

Required 

LAN on Motherboard 
(LOM) 

10 Gbps or 25 Gbps port for Preboot Execution Environment (PXE) and 
Operation, Administration, and Management (OAM) 

Required 

1/10 Gbps port for Management Network Adapter Required 
Additional Plug-in cards N/A  

 

5.3 Hardware Component List for Worker Node Plus 
A Kubernetes cluster typically consists of multiple worker nodes managed by one or more Kubernetes control nodes. 

This table lists the hardware options for worker nodes in the “plus” configuration, which helps improves the processing capability 
due to more powerful CPU, more memory, more disk space, and an amazingly fast network. 

Table 10. Hardware Components for Worker Node Plus – 2nd Generation Intel Xeon Scalable Processor 

INGREDIENT REQUIREMENT REQUIRED/ 
RECOMMENDED 

2nd Generation Intel® 
Xeon® Scalable 
processors 

Intel® Xeon® Gold 6252 processor @ 2.1 GHz or 6252N processor @ 2.3 
GHz 24 C/48 T, 150 W, or higher number Intel® Xeon® Gold/Platinum CPU 
SKU 

Required 

Memory  

Option 1: DRAM only configuration: 384 GB (12 x 32 GB DDR4 2666 MHz) 

Required Option 2: DRAM only configuration: 384 GB (24 x 16 GB DDR4 2666 MHz) 
Option 3: DRAM + Intel® Optane™ persistent memory 
DRAM: 192 GB (12 x 16 GB DDR4 2666 MHz) 

Intel® QAT 

Intel® C620 Series Chipset integrated on base board Intel® C627/C628 
Chipset, integrated with NUMA connectivity to each CPU or minimum 16 
Peripheral Component Interconnect express (PCIe) lane connectivity to 
one CPU 

Required 

Intel® Optane™ 
Persistent Memory 

Option 1: 1 TB (8x 128 GB Intel® Optane™ persistent memory in 2-2-1 
Topology) 

Recommended 
Option 2: 1.5 TB (12x 128 GB Intel® Optane™ persistent memory in 2-2-2 
Topology) 

Network Adapter Option 1: Dual Port 25 GbE Intel® Ethernet Network Adapter X710-DA4 
SFP+, or 

Required 
Option 2: Dual Port 100 GbE Intel® Ethernet Network Adapter E810-
CQDA2 QSFP28 

Storage (Boot Drive) Intel® SATA Solid State Drive D3 S4510 at 480 GB or equivalent boot drive Required 
Storage 
(Capacity) 

Intel® NVMe SSD DC P4510 Series at 2 TB or equivalent (Recommended 
NUMA Aligned) 

Required 

LAN on Motherboard 
(LOM) 

10 Gbps or 25 Gbps port for Preboot Execution Environment (PXE) and 
Operation, Administration, and Management (OAM) Required 

1/10 Gbps port for Management Network Adapter Required 
Additional Plug-in 
cards 

N/A  

Table 11. Hardware Components for Worker Node Plus – 3rd Generation Intel Xeon Scalable Processor 

INGREDIENT REQUIREMENT REQUIRED/ 
RECOMMENDED 

3rd Generation Intel 
Xeon Scalable 
processors 

Intel® Xeon® Gold 6338N CPU @ 2.2 GHz 32 C/64 T, 185 W, or higher 
number Intel® Xeon® Gold or Platinum CPU SKU 

Required 

Memory  
Option 1: DRAM only configuration: 512 GB (16x 32 GB DDR4, 2666 MHz) 

Required 
Option 2: DRAM only configuration: 512 GB (32x 16 GB DDR4, 2666 MHz) 

Intel® QAT 

Intel® C620 Series Chipset integrated on base board Intel® C627/C628 
Chipset, integrated with NUMA connectivity to each CPU or minimum 16 
Peripheral Component Interconnect express (PCIe) lane connectivity to 
one CPU 

Required 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  44 

INGREDIENT REQUIREMENT REQUIRED/ 
RECOMMENDED 

Intel® Optane™ 
Persistent Memory 

Option 1: 1 TB (8x 128 GB Intel® Optane™ persistent memory in 8+4 
Topology) 

Recommended 
Option 2: 2 TB (16x 128 GB Intel® Optane™ persistent memory in 8+8 
Topology) 

Network Adapter 
Option 1: Intel® Ethernet Network Adapter E810-CQDA2 

Required 
Option 2: Intel® Ethernet Network Adapter E810-2CQDA2 

Storage (Boot Drive) Intel® SATA Solid State Drive D3 S4510 at 480 GB or equivalent boot drive Required 
Storage 
(Capacity) 

Intel® SSD D7-P5510 Series at 4 TB or equivalent drive (recommended 
NUMA aligned)  

Recommended  

LAN on Motherboard 
(LOM) 

10 Gbps or 25 Gbps port for Preboot Execution Environment (PXE) and 
Operation, Administration, and Management (OAM) Required 

1/10 Gbps port for Management Network Adapter Required 
Additional Plug-in 
cards 

Intel® Server Graphics 1 card  Optional 

 

5.4 Hardware BOMs for all Configuration Profiles 
The following tables list the hardware BOMs for Control Nodes, Worker Node Base, and Worker Node Plus. 

Choose your controller profile from the three available profiles (Controller_xGen_1, Controller_xGen_2, or Controller_xGen_3) 
based on your BIOS Profile (Energy Balance, Deterministic, or Max Performance, respectively). 

The profiles for Worker Nodes vary with respect to Network Interface card, Intel® QuickAssist Technology, and BIOS profiles. You 
may choose based on the requirement for the workloads to be run on the worker nodes.  

Table 12. Control Node Hardware Setup for all Configuration Profiles – 2nd Generation Intel Xeon Scalable Processor 

NAME Controller_2ndGen_1 Controller_2ndGen_2 Controller_2ndGen_3 

Platform S2600WFQ S2600WFQ S2600WFQ 

CPU/node 2x 5218 or 2x 5218N 2x 5218 or 2x 5218N 2x 5218 or 2x 5218N 

Mem 192 GB 192 GB 192 GB 

Intel Optane 
Persistent Memory Recommended Recommended Recommended 

Network Adapter 
2x XXV710-DA2 or 

2x X710-DA2 or 
2x X520-DA2 

2x XXV710-DA2 2x XXV710-DA2 

Storage (Boot 
Media) Required - 2x Required - 2x Required - 2x 

Storage (Capacity) Recommended - 2x (1 per 
NUMA) 

Recommended - 2x (1 per 
NUMA) 

Recommended - 2x (1 per 
NUMA) 

LOM No No No 

Intel® QAT Recommended N/A N/A 

BIOS Configuration 

Intel® HT 
Technology 
enabled 

Yes Yes Yes 

Intel® VT-x enabled No Yes Yes 

Intel® VT‑d enabled No Yes Yes 

BIOS Profile Energy Balance Deterministic Max Performance 

Virtualization 
enabled No Yes Yes 

Table 13. Control Node Hardware Setup for all Configuration Profiles – 3rd Generation Intel Xeon Scalable Processor 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  45 

NAME Controller_3rdGen_1 Controller_3rdGen_2 Controller_3rdGen_3 

Platform M50CYP M50CYP M50CYP 

CPU/node 2x 5318N 20c 2x 5318N 20c 2x 5318N 20c 

Mem 256 GB 256 GB 256 GB 

Intel Optane 
Persistent Memory Recommended Recommended Recommended 

Network Adapter 2x E810-CQDA2 2x E810-CQDA2 2x E810-CQDA2 

Storage (Boot 
Media) Required - 2x Required - 2x Required - 2x 

Storage (Capacity) Recommended - 2x (1 per 
NUMA) 

Recommended - 2x (1 per 
NUMA) 

Recommended - 2x (1 per 
NUMA) 

LOM No No No 

Intel® QAT  Recommended N/A N/A 

BIOS Configuration 

Intel® HT 
Technology enabled Yes Yes Yes 

Intel® VT-x enabled No Yes Yes 

Intel® VT‑d enabled No Yes Yes 

BIOS Profile Energy Balance Deterministic Max Performance 

Virtualization 
enabled No Yes Yes 

Table 14. Worker Node Base Hardware Setup for all Configuration Profiles – 2nd Generation Intel Xeon Scalable Processor 
NAME Worker_2ndGen_Base_1 Worker_2ndGen_Base_2 Worker_2ndGen_Base_3 
Platform S2600WFQ S2600WFQ S2600WFQ 
CPU/node 2x 6230 or 6230N 2x 6230 or 6230N 2x 6230 or 6230N 
Mem 384 GB 384 GB 384 GB 
Intel Optane 
Persistent Memory Recommended – 512 GB Recommended – 512 GB Recommended – 512 GB 

Network Adapter 2x XXV710-DA2 or 
2x E810-CQDA2 2x XXV710-DA2 2x XXV710-DA2 

Storage (Boot 
Media) Required - 2x Required - 2x Required - 2x 

Storage (Capacity) Required- 2x (1 per 
NUMA) 

Required- 2x (1 per 
NUMA) Required- 2x (1 per NUMA) 

LOM No No Yes 
Intel® QAT  No Optional Yes 
Additional Plug-in 
cards No No No 

BIOS Configuration 
Intel® HT 
Technology enabled Yes Yes Yes 

Intel® VT-x enabled Yes Yes Yes 
Intel® VT‑d enabled Yes Yes Yes 
BIOS Profile Energy Balance Deterministic Max Performance 
Virtualization 
enabled No Yes Yes 

Table 15. Worker Node Plus Hardware Setup for all Configuration Profiles – 2nd Generation Intel Xeon Scalable Processor 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  46 

NAME Worker_2ndGen_Plus_1 Worker_2ndGen_Plus_2 

Platform S2600WFQ S2600WFQ 

CPU/node 2x 6252 or 6252N 2x 6252 or 6252N 

Mem 384 GB 384 GB 

Intel Optane 
Persistent Memory 

Recommended –  
1 TB/1.5 TB 

Recommended –  
1 TB/1.5 TB 

Network Adapter 2x E810-CQDA2 2x E810-CQDA2 

Storage (Boot Media) Required – 256 GB Required – 256 GB 

LOM No Yes 

Intel® QAT  No Yes 

Additional Plug-in 
cards No No 

BIOS Configuration 

Intel® HT Technology 
enabled Yes Yes 

Intel® VT-x enabled Yes Yes 

Intel® VT‑d enabled Yes Yes 

BIOS Profile Deterministic Max Performance 

Virtualization enabled Yes Yes 

Table 16. Worker Node Base Hardware Setup for all Configuration Profiles – 3rd Generation Intel Xeon Scalable Processor 
NAME Worker_3rdGen_Base_1 Worker_3rdGen_Base_2 Worker_3rdGen_Base_3 

Platform M50CYP M50CYP M50CYP 

CPU/node 2x 5318N 24c 2x 5318N 24c 2x 5318N 24c 

Mem 512 GB 512 GB 512 GB 

Intel Optane Persistent 
Memory Recommended – 512 GB Recommended – 512 GB Recommended – 512 GB 

Network Adapter 2x E810-CQDA2 2x E810-CQDA2 2x E810-2CQDA2 or 4x 
E810-CQDA2 

Storage (Boot Media) Required - 2x Required - 2x Required - 2x 

Storage (Capacity) Required- 2x (1 per 
NUMA) 

Required- 2x (1 per 
NUMA) 

Required- 2x (1 per 
NUMA) 

LOM No Yes No 

Intel® QAT  No Yes Optional 

Additional Plug-in cards No No No 

BIOS Configuration 

Intel® HT Technology 
enabled Yes Yes Yes 

Intel® VT-x enabled Yes Yes Yes 

Intel® VT‑d enabled Yes Yes Yes 

BIOS Profile Energy Balance Max Performance Deterministic 

Virtualization enabled No Yes Yes 

Table 17. Worker Node Plus Hardware Setup for all Configuration Profiles – 3rd Generation Intel Xeon Scalable Processor 
NAME Worker_3rdGen_Plus_1 Worker_3rdGen_Plus_2 Worker_3rdGen_Plus_3 

Platform M50CYP M50CYP M50CYP 

CPU/node 2x 6338N 32c 2x 6338N 32c 2x 6338N 32c 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  47 

NAME Worker_3rdGen_Plus_1 Worker_3rdGen_Plus_2 Worker_3rdGen_Plus_3 

Mem 512 GB 512 GB 512 GB 

Intel Optane 
Persistent 
Memory 

Recommended – 512 GB Recommended – 512 GB Recommended – 512 GB 

Network 
Adapter 

2x E810-2CQDA2 or 4x 
E810-CQDA2 2x E810-2CQDA2 2x E810-2CQDA2 or 4x 

E810-CQDA2 

Storage (Boot 
Media) Required - 2x Required - 2x Required - 2x 

Storage 
(Capacity) 

Required- 4x (2 per 
NUMA) Required- 4x (2 per NUMA) Required- 4x (2 per 

NUMA) 

LOM Yes Yes No 

Intel® QAT  Yes No Optional 

Additional 
Plug-in cards No Intel Server GPU No 

BIOS Configuration 

Intel® HT 
Technology 
enabled 

Yes Yes Yes 

Intel® VT-x 
enabled Yes Yes Yes 

Intel® VT‑d 
enabled Yes Yes Yes 

BIOS Profile Max Performance Max Performance Deterministic 

Virtualization 
enabled Yes Yes Yes 

 

5.5 Platform BIOS 
This section provides BIOS Configuration Profiles for each of the BMRA Configuration Profiles. For details on how the BIOS 
configuration should be set per each Configuration Profile, go to tables in Section 5.4. 

For more information about BIOS settings, visit https://www.intel.com/content/dam/support/us/en/documents/server-
products/Intel_Xeon_Processor_Scalable_Family_BIOS_User_Guide.pdf. 

 
  

https://www.intel.com/content/dam/support/us/en/documents/server-products/Intel_Xeon_Processor_Scalable_Family_BIOS_User_Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/server-products/Intel_Xeon_Processor_Scalable_Family_BIOS_User_Guide.pdf


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  48 

Table 18. Platform BIOS Settings for 2nd Generation Intel® Xeon® Scalable Processor 

MENU 
(ADVANCED) 

PATH TO 
BIOS 
SETTING 

BIOS 
SETTINGS 

ENERGY 
BALANCE 

MAX 
PERFORMANCE DETERMINISTIC 

Advanced 

Processor 
Configuration 

Intel® Hyper-
Threading 
Tech 

Enabled Enabled Enabled 

Intel® 
Virtualization 
Technology 

Enabled Enabled Enabled 

Integrated IO 
Configuration 

Intel® VT for 
Directed I/O Enabled Enabled Enabled 

Advanced/Power 
Configuration 

Power and 
Performance 

CPU Power 
and 
Performance 
Policy 

Balanced 
Performance Performance Performance 

Workload 
Configuration I/O sensitive I/O sensitive I/O sensitive 

CPU P-state 
control 

Enhanced 
Intel 
SpeedStep® 
Technology 

Enabled Enabled Disabled* 
[Read footnote] 

Activate PBF Disabled Enabled Enabled 

Configure 
PBF Disabled Disabled Disabled 

Intel® Turbo 
Boost 
Technology 

Enabled Enabled Disabled* 
[Read footnote] 

Energy 
Efficient 
Turbo 

Enabled Disabled N/A 

Intel 
Configurable 
TDP 

Disabled Disabled Disabled 

Hardware P-
states 

Hardware P-
states 

Native Mode 
with no 
legacy 
Support 

Disabled** 
[Read footnote] 

Disabled** 
[Read footnote] 

EPP Enable Enabled Enabled Enabled 
RAPL 
Prioritization Disabled Enabled Enabled 

CPU C-state 
Control 

Package C-
state C6 Retention C6 Retention C0/C1 State 

C1E Enabled Enabled Disabled 
Processor C6 Enabled Enabled Disabled 

Uncore Power 
Management 

Uncore 
Frequency 
scaling 

Enabled Disabled Disabled 

Performance 
P-limit Enabled Disabled Disabled 

Advanced 

Memory 
Configuration 

IMC 
Interleaving 

2-way 
interleave 

2-way 
Interleave 2-way Interleave 

System 
Acoustic and 
Performance 
Configuration 

Set Fan 
Profile Acoustic Performance Performance 

GPU GPU Fz Lock 900Mhz Optional Optional Optional 

* Enabled in the case where Intel® SST-BF is enabled to allow for configuration of individual core speeds. 

** "Native Mode with No Legacy Support" where Intel® SST-BF need to be enabled 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  49 

Table 19. Platform BIOS Settings for 3rd Generation Intel® Xeon® Scalable Processor 

MENU 
(Advanced) 

Path to BIOS 
Setting 

BIOS Setting Energy 
Balance 

Max 
Performance 
with Turbo 

Deterministic 

Socket 
Configuration 

Processor 
Configuration 

Hyper-
Threading 

Enable Enable Enable 

XAPIC Enable Enable Enable 

VMX Enable Enable Enable 

Uncore 
frequency 
scaling 

Enable Enable Disable 

Uncore 
frequency  

800-2400 800-2400 2400 

Power 
Configuration 

Power and 
Performance 

CPU Power and 
Performance 
Policy 

Balance 
Performance 

Performance Performance 

Workload 
Configuration 

I/O sensitive I/O sensitive I/O sensitive 

CPU P State 
Control 

EIST PSD 
Function 

HW_ALL HW_ALL HW_ALL 

Boot 
Performance 
Mode  

Max. 
Performance  

Max. 
Performance  

Max. Performance  

AVX License 
Pre-Grant  

Disable Disable Disable 

AVX ICCP Pre 
Grant Level 

NA NA NA 

AVX P1 Nominal Nominal Nominal 

Energy Efficient 
Turbo  

Enable Enable Disable 

WFR Uncore 
GV rate 
Reduction 

Enable Enable Enable 

GPSS timer 500us 0us 0us 

Intel Turbo 
Boost 
Technology 

Enable Enable Disable 

Intel 
SpeedStep® 
Technology (P-
states) 

Enable Enable Disable 

Frequency 
Prioritization 

RAPL 
Prioritization 

Enable Disable Disable 

Hardware PM 
State Control  

Hardware P-
States  

Native Mode 
with no 
legacy 
Support 

Disable Disable 

EPP enable Enable Disable Disable 

CPU C State 
Control 

Enable Monitor 
Mwait 

Enable Enable Enable 

CPU C1 Auto 
Demotion 

Enable Disable Disable 

CPU C1 Auto 
unDemotion 

Enable Disable Disable 

CPU C6 Report  Enable Enable Disable 

Processor C6 Enable Enable Disable 

Enhanced Halt 
State (C1E) 

Enable Enable Disable 

OS ACPI Cx ACPI C2 ACPI C2 ACPI C2 

Energy 
Performance 
Bias 

Power 
Performance 
Tuning 

OS Controls 
EPB  

OS Controls EPB  OS Controls EPB  



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  50 

ENERGY_PERF
_BIAS_CFG 
mode 

Performance Performance Performance 

Workload 
Configuration 

I/O Sensitive I/O Sensitive I/O Sensitive 

Package C State 
Control  

Package C 
State  

C6 Retention C6 Retention C0/C1 State 

Dynamic L1 Enable Disable Disable 

Package C-
state Latency 
Negotiation 

Disable Disable Disable 

PKGC_SA_PS_
CRITERIA  

Disable Disable Disable 

Memory Configuration 
Memory 
Configuration 

2-way 
interleave 

2-way interleave 2-way interleave 

Enforce POR  Enable  Enable  Enable  

Platform 
Configuration 

Miscellaneous 
Configuration 

Serial Debug 
Message Level 

Minimum  Minimum  Minimum  

PCI Express* 
Configuration  

PCIe* ASPM 
Support  

Per Port  Per Port  Per Port  

PCI Express* 
Configuration  

PCIe* ASPM  Enable Disable Disable 

PCI Express* 
Configuration  

ECRC 
generation and 
checking  

Enable Enable Enable 

Server Management Resume on AC 
Power Loss 

Power On Power On Power On 

System Acoustic and Performance 
Configuration 

Set Fan Profile Acoustic Performance Performance 

Use the following table to configure the BIOS settings to use Intel SST-BF, Intel SST-TF, and Intel SST-PP in 3rd Generation Intel 
Xeon Scalable Processor systems. 

Table 20. BIOS Settings to Enable Intel SST-BF, Intel SST-TF, and Intel SST-PP 

BIOS SETTING STATUS 

Hardware PM State Control 

Scalability Disable 

Hardware PM Interrupt  Disable 

CPU P-state 

Dynamic SST-PP Enable 

Speed Step (P states) Enable 

Activate SST-BF Enable 

Configure SST-BF  Enable 

EIST PSD Function HW_All 

Turbo Enable 

Energy Efficient Turbo Enable 

Boot Performance Max 

Freq: Prioritization AC 

SST-CP Enable 

  

In BIOS, the configuration paths might be slightly different, depending on platform, but the key settings are as follows and must be 
performed in order. 

Table 21. BIOS Settings to Enable Intel SGX on 2nd Generation and 3rd Generation Intel Xeon Scalable Processors 

BIOS SETTING STATUS 

Socket Configuration > Processor Configuration > Total Memory Encryption (TME) Enable 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  51 

BIOS SETTING STATUS 

Socket Configuration > Common RefCode Configuration > UMA-Based Clustering Disable (All2All) 

Socket Configuration > Processor Configuration > SW Guard Extensions (SGX) Enable 

  

 

6 Reference Architecture Software Components 
This section describes the software version details.  

Table 22. Software Components 

SOFTWARE 
FUNCTION 

SOFTWARE COMPONENT LOCATION 

OS 

CentOS 8.3 Kernel version: 
4.18.0-240.el8.x86_64 https://www.centos.org/ 

Ubuntu 20.04 Kernel version: 
5.4.0-26-generic (20.04.2) 

https://www.ubuntu.com 
Ubuntu 21.04 Kernel version: 
5.11.0-16-generic 

RHEL 8.3 Kernel version: 
4.18.0-240.el8.x86_64 

https://www.redhat.com/ 
RHEL 8.4 Kernel version: 
4.18.0-305.el8.x86_64 

Data Plane 
Development Kit DPDK 21.08 https://core.dpdk.org/download/   

Open vSwitch with 
DPDK OVS-DPDK v2.16.0 https://github.com/openvswitch/ovs 

Vector Packet 
Processing VPP 19.04 https://docs.fd.io/vpp/ 

   

Telegraf Latest https://github.com/intel/observability-telegraf 

CollectD opnfv/barometer-collectd: 
latest https://www.collectd.org/ 

Grafana 8.1.2 https://www.grafana.com/ 

Prometheus 2.29.1  

Ansible Ansible v2.9.20 https://www.ansible.com/  

BMRA Ansible 
Playbook v21.09 https://github.com/intel/container-experience-kits 

Python 

Python 3.6.x for RHEL 
8/CentOS 8 
Python 3.8.x for Ubuntu 20.04 
and Python 3.9.x for Ubuntu 
21.04 

https://www.python.org/  

Kubespray 2.16 https://github.com/kubernetes-sigs/kubespray  

Docker Docker 19.03 https://www.docker.com/  

Containerd Containerd 1.4.6  

CRI-O CRI-O 1.21.3  

Container 
orchestration engine 

Kubernetes v1.21.x 

https://github.com/kubernetes/kubernetes  Kubernetes v1.20.x 

Kubernetes v1.19.x 

CPU Manager (native 
to Kubernetes)  Available natively in K8s N/A 

https://www.centos.org/
https://www.ubuntu.com/
https://www.redhat.com/
https://core.dpdk.org/download/
https://github.com/openvswitch/ovs.git
https://docs.fd.io/vpp/
https://github.com/intel/observability-telegraf
https://www.collectd.org/
https://www.grafana.com/
https://www.ansible.com/
https://github.com/intel/container-experience-kits
https://www.python.org/
https://github.com/kubernetes-sigs/kubespray
https://www.docker.com/
https://github.com/kubernetes/kubernetes


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  52 

SOFTWARE 
FUNCTION 

SOFTWARE COMPONENT LOCATION 

CPU Manager for 
Kubernetes 

CPU Manager for Kubernetes 
v1.5.1 

https://github.com/intel/CPU-Manager-for-Kubernetes 

Container image requires GNU libc 2.29 or newer to run CPU Manager for Kubernetes. 

Telemetry Aware 
Scheduling TAS 0.4 https://github.com/intel/telemetry-aware-scheduling  

k8s-prometheus-
adapter 

0.8.4  

k8s node-exporter 1.2.2  

k8s prometheus-
operator 

0.50.0 https://github.com/prometheus-operator/kube-prometheus 

k8s kube-rbac-proxy 0.11.0  

Node Feature 
Discovery 

NFD 0.9.0 https://github.com/kubernetes-sigs/node-feature-discovery  

Multus CNI Multus CNI v3.7 https://github.com/intel/multus-cni  

SR-IOV CNI SR-IOV CNI v2.6.1 https://github.com/intel/sriov-cni   

SR-IOV network device 
plugin 

SR-IOV network device plugin 
v3.3.2 https://github.com/intel/sriov-network-device-plugin 

SR-IOV Network 
Operator master https://github.com/openshift/sriov-network-operator 

Device Plugins 
Operator v0.21.0 https://github.com/intel/intel-device-plugins-for-kubernetes 

Istio Operator 1.11.1 https://github.com/istio/istio/releases/download/ 

QAT device plugin v0.21.0 https://github.com/intel/intel-device-plugins-for-kubernetes 

GPU device plugin v0.21.0 https://github.com/intel/intel-device-plugins-for-kubernetes 

Intel® SGX device 
plugin v0.21.0 https://github.com/intel/intel-device-plugins-for-kubernetes 

Userspace CNI Userspace CNI v1.3 https://github.com/intel/userspace-cni-network-plugin 

Bond CNI plugin Bond CNI plugin v1.0 https://github.com/intel/bond-cni 

Intel® SecL – DC v1.6 https://01.org/intel-secl 

Intel® Ethernet Drivers 
i40e v2.16.11 
ice v1.6.4 
iavf v4.2.7 

https://sourceforge.net/projects/e1000/files/i40e%20stable/2.16.11/ 
https://sourceforge.net/projects/e1000/files/ice%20stable/1.6.4/ 
https://sourceforge.net/projects/e1000/files/iavf%20stable/4.2.7/ 

Intel® Ethernet NVM 
Update Package 700 
Series 

v8.4 https://www.intel.com/content/www/us/en/download/18190/non-volatile-memory-
nvm-update-utility-for-intel-ethernet-network-adapter-700-series.html 

Intel® Ethernet NVM 
Update Package 800 
Series 

v3.00 https://downloadmirror.intel.com/29738/eng/e810_nvmupdatepackage_v3_00_linux
.tar_.gz 

DDP Profiles 

Dynamic Device 
Personalization for Intel® 
Ethernet 700 Series 
Version 25.4 

https://downloadmirror.intel.com/27587/eng/gtp.zip 
https://downloadmirror.intel.com/28940/eng/mplsogreudp.zip 
https://downloadmirror.intel.com/28040/eng/ppp-oe-ol2tpv2.zip 
https://downloadmirror.intel.com/29446/eng/esp-ah.zip 
https://downloadmirror.intel.com/29780/eng/ecpri.zip 

1.3.30.0 https://downloadcenter.intel.com/download/29889/Intel-Ethernet-800-Series-
Telecommunication-Comms-Dynamic-Device-Personalization-DDP-Package 

Intel® QAT Drivers 1.7.L.4.14.0-00031 https://downloadmirror.intel.com/30178/eng/QAT1.7.L.4.14.0-00031.tar.gz 

OpenSSL openssl-3.0.0 
https://github.com/openssl/openssl 

https://www.openssl.org/source/ 

Intel QAT Engine for 
OpenSSL v0.6.7 https://github.com/intel/QAT_Engine 

Intel ipsec-mb 1.00 https://github.com/intel/intel-ipsec-mb 

https://github.com/intel/CPU-Manager-for-Kubernetes
https://github.com/intel/telemetry-aware-scheduling
https://github.com/prometheus-operator/kube-prometheus
https://github.com/kubernetes-sigs/node-feature-discovery
https://github.com/intel/multus-cni
https://github.com/intel/sriov-cni
https://github.com/intel/sriov-network-device-plugin
https://github.com/openshift/sriov-network-operator
https://github.com/intel/intel-device-plugins-for-kubernetes
https://github.com/istio/istio/releases/download/
https://github.com/intel/intel-device-plugins-for-kubernetes
https://github.com/intel/intel-device-plugins-for-kubernetes.git
https://github.com/intel/intel-device-plugins-for-kubernetes.git
https://github.com/intel/userspace-cni-network-plugin
https://github.com/intel/bond-cni
https://01.org/intel-secl
https://sourceforge.net/projects/e1000/files/i40e%20stable/2.16.11/
https://sourceforge.net/projects/e1000/files/ice%20stable/1.6.4/
https://sourceforge.net/projects/e1000/files/iavf%20stable/4.2.7/
https://downloadmirror.intel.com/27587/eng/gtp.zip
https://downloadmirror.intel.com/28940/eng/mplsogreudp.zip
https://downloadmirror.intel.com/28040/eng/ppp-oe-ol2tpv2.zip
https://downloadmirror.intel.com/29446/eng/esp-ah.zip
https://downloadmirror.intel.com/29780/eng/ecpri.zip
https://downloadcenter.intel.com/download/29889/Intel-Ethernet-800-Series-Telecommunication-Comms-Dynamic-Device-Personalization-DDP-Package
https://downloadcenter.intel.com/download/29889/Intel-Ethernet-800-Series-Telecommunication-Comms-Dynamic-Device-Personalization-DDP-Package
https://downloadmirror.intel.com/30178/eng/QAT1.7.L.4.14.0-00031.tar.gz
https://github.com/openssl/openssl.git
https://www.openssl.org/source/
https://github.com/intel/QAT_Engine.git
https://github.com/intel/intel-ipsec-mb.git


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  53 

SOFTWARE 
FUNCTION 

SOFTWARE COMPONENT LOCATION 

Intel® SGX DCAP 
Drivers 1.41 https://download.01.org/intel-sgx/sgx-dcap/1.10.3/linux/ 

Intel® SGX SDK 2.14.100.2 https://download.01.org/intel-sgx/sgx-dcap/1.10.3/linux/ 

Intel® KMRA AppHSM 1.2.1 https://hub.docker.com/r/intel/kmra 

Intel® KMRA CTK 1.2.1 https://hub.docker.com/r/intel/kmra 

Intel® KMRA PCCS 1.2.1 https://hub.docker.com/r/intel/kmra 

   

 

7 Post Deployment Verification Guidelines 
This section describes a set of processes that you can use to verify the components deployed by the scripts. The processes are not 
Configuration Profile-specific. They can be implemented for each of the Configuration Profiles described in the following 
appendixes: 
• Appendix B, BMRA Basic Configuration Profile Setup 
• Appendix C, BMRA Full Configuration Profile Setup 
• Appendix D, BMRA On-Premises Edge Configuration Profile Setup 
• Appendix E, BMRA Remote CO-Forwarding Configuration Profile Setup 
• Appendix F, BMRA Regional Data Center Configuration Profile Setup 

 

7.1 Check the Kubernetes Cluster 
Perform the following steps: 
1. Check the post-deployment node status of the control nodes and worker nodes. 

# kubectl get nodes -o wide 
NAME          STATUS   ROLES    AGE    VERSION   INTERNAL-IP      EXTERNAL-IP   OS-IMAGE             
KERNEL-VERSION     CONTAINER-RUNTIME  
controller1   Ready    master   4d1h   v1.19.8   10.250.192.155   <none>        Ubuntu 20.04.2 
LTS   5.4.0-66-generic   docker://19.3.12 
node1         Ready    <none>   4d1h   v1.19.8   10.250.190.112   <none>        Ubuntu 20.04.2 
LTS   5.4.0-66-generic   docker://19.3.12 

 
2. Check pod status of control nodes and worker nodes. All pods should be in Running or Completed status. 

# kubectl get pods --all-namespaces  
NAMESPACE                NAME                                                     READY   
STATUS      RESTARTS   AGE 
cert-manager             cert-manager-56b686b465-g44nj                            1/1    
Running     0          41h 
cert-manager             cert-manager-cainjector-75c94654d-pvl7x                  1/1     
Running     14         41h 
cert-manager             cert-manager-webhook-69bd5c9d75-tldnf                    1/1     
Running     8          41h 
istio-operator           istio-operator-77bb9d9884-stf4m                          1/1     
Running     0          40h 
istio-system             istio-ingressgateway-574dff7b88-98zzp                    1/1     
Running     0          40h 
istio-system             istiod-59db6b6d9-cdbmd                                   1/1     
Running     0          40h 
kmra                     kmra-apphsm-6d7d945d54-nj9zc                             2/2     
Running     0          40h 
kmra                     kmra-ctk-55d989fc6f-ftc6n                                1/1     
Running     0          40h 
kmra                     kmra-pccs-b744d7d99-hwjmj                                2/2     
Running     0          40h 
kube-system              calico-kube-controllers-5b4d7b4594-rnn8h                 1/1     
Running     2          41h 
kube-system              calico-node-2jbxq                                        1/1     
Running     3          41h 

https://download.01.org/intel-sgx/sgx-dcap/1.10.3/linux/
https://download.01.org/intel-sgx/sgx-dcap/1.10.3/linux/
https://hub.docker.com/r/intel/kmra
https://hub.docker.com/r/intel/kmra
https://hub.docker.com/r/intel/kmra


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  54 

kube-system              calico-node-tw8c5                                        1/1     
Running     0          41h 
kube-system              cmk-init-discover-ar09-03-cyp-pp7pb                      0/3     
Completed   0          40h 
kube-system              cmk-rfckb                                                2/2   Running     
0          40h 
kube-system              cmk-webhook-6c9d5f8578-8cqb4                             1/1     
Running     0          40h 
kube-system              container-registry-7869d9c577-p9bs4                      2/2     
Running     0          41h 
kube-system              coredns-8474476ff8-4wm8f                                 1/1     
Running     1          41h 
kube-system              coredns-8474476ff8-rprlm                                 1/1     
Running     1          41h 
kube-system              dns-autoscaler-7df78bfcfb-8zxdz                          1/1     
Running     1          41h 
kube-system              intel-qat-plugin-intel-qat-plugin-htb48                  1/1     
Running     0          40h 
kube-system              intel-sgx-aesmd-9n68d                                    1/1     
Running     0          40h 
kube-system              intel-sgx-plugin-zqxp9-vp7bp                             1/1     
Running     0          40h 
kube-system              inteldeviceplugins-controller-manager-577b89579c-grdgx   2/2     
Running     0          40h 
kube-system              kube-apiserver-ar09-17-cyp                               1/1     
Running     0          41h 
kube-system              kube-controller-manager-ar09-17-cyp                      1/1     
Running     2          41h 
kube-system              kube-multus-ds-amd64-5b5vs                               1/1     
Running     1          41h 
kube-system              kube-multus-ds-amd64-chp98                               1/1     
Running     1          41h 
kube-system              kube-proxy-6lsbf                                         1/1     
Running     2          41h 
kube-system              kube-proxy-cg62f                                         1/1     
Running     2          41h 
kube-system              kube-scheduler-ar09-17-cyp                               1/1     
Running     0          40h 
kube-system              kubernetes-dashboard-785dcbb76d-fjbkg                    1/1     
Running     1          41h 
kube-system              kubernetes-metrics-scraper-5558854cb-flh56               1/1     
Running     1          41h 
kube-system              nginx-proxy-ar09-03-cyp                                  1/1     
Running     2          41h 
kube-system              node-feature-discovery-controller-67b59d6cf4-7gnvv       1/1     
Running     0          40h 
kube-system              node-feature-discovery-worker-8d9mp                      1/1     
Running     0          40h 
monitoring               node-exporter-2stqw                                      2/2     
Running     0          40h 
monitoring               node-exporter-w4tfm                                      2/2     
Running     0          40h 
monitoring               prometheus-k8s-0                                         4/4     
Running     0          40h 
monitoring               prometheus-operator-bf54b8f56-fhj78                      2/2     
Running     0          40h 
monitoring               tas-telemetry-aware-scheduling-84ff454dfb-c86c7          1/1     
Running     0          40h 
monitoring               telegraf-tpj2z                                           2/2     
Running     0          40h 
sriov-network-operator   sriov-device-plugin-zs226                                1/1     
Running     0          40h 
sriov-network-operator   sriov-network-config-daemon-cwbsm                        3/3     
Running     0          40h 
sriov-network-operator   sriov-network-operator-bb8ff65d9-2td74                   1/1     
Running     0          40h 

 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  55 

7.2 Check Intel Speed Select Technology – Base Frequency (Intel SST-BF) Configuration on 2nd 
Generation Intel Xeon Scalable Processor 

The Intel SST-BF feature enables base frequency configuration, which allows some cores to run at a higher guaranteed base 
frequency than others, if such option is required. It provides three different configuration modes: 
• sst_bf_mode: s - set high priority cores to 2700/2800 minimum and 2700/2800 maximum and set normal priority cores to 

2100 minimum and 2100 maximum. 
• sst_bf_mode: m - set P1 on all cores (2300 minimum and 2300 maximum). 
• sst_bf_mode: r - revert cores to minimum/Turbo (set all cores to 800 minimum and 3900 maximum).  

To verify, that Intel SST-BF was configured as expected, use the following command: 

# sst-bf.py -i 

The output should show the current Intel SST-BF frequency information, as shown below with mode s. 
Name = 6252N 
CPUs = 96 
Base = 2300 
     |------sysfs-------|  
Core | base   max   min |  
-----|------------------|  
   0 | 2100  2100  2100 |  
   1 | 2800  2800  2800 |  
   2 | 2800  2800  2800 |  
   3 | 2100  2100  2100 | 
(...) 
  94 | 2800  2800  2800 | 
  95 | 2100  2100  2100 | 
-----|------------------|  

To learn more about Intel SST-BF, visit https://github.com/intel/CommsPowerManagement. 
Note: The minimum OS distribution with Intel SST-BF support is Ubuntu 20.04 and CentOS 8.2. 

 

7.3 Check Intel Speed Select Technology on 3rd Generation Intel Xeon Scalable Processor 
The steps in this section describe how to verify Intel Speed Select Technology.  

7.3.1 Check Intel Speed Select Technology - Base Frequency (Intel SST-BF) Configuration 
To display Intel SST-BF properties, use the following command: 

root@sdp1146:~# intel-speed-select base-freq info -l 0  
Intel® Speed Select Technology 
Executing on CPU model:106[0x6a] 
 package-0 
  die-0 
    cpu-0 
      speed-select-base-freq-properties 
        high-priority-base-frequency(MHz):2400 
        high-priority-cpu-mask:00000000,000030cc,cc0c0330 
        high-priority-cpu-list:4,5,8,9,18,19,26,27,30,31,34,35,38,39,44,45 
        low-priority-base-frequency(MHz):1800 
        tjunction-temperature(C):105 
        thermal-design-power(W):185 
 package-1 
  die-0 
    cpu-48 
      speed-select-base-freq-properties 
        high-priority-base-frequency(MHz):2400 
        high-priority-cpu-mask:000c0f3c,c3c00000,00000000 
        high-priority-cpu-list:54,55,56,57,62,63,66,67,68,69,72,73,74,75,82,83 
        low-priority-base-frequency(MHz):1800 
        tjunction-temperature(C):105 
        thermal-design-power(W):185 
                                            

To help ensure that Intel SST-BF is enabled, check the CPU base frequency:  
root@sdp1146:~# cat /sys/devices/system/cpu/cpu0/cpufreq/base_frequency 
1800000 
root@sdp1146:~# cat /sys/devices/system/cpu/cpu4/cpufreq/base_frequency 

https://github.com/intel/CommsPowerManagement/blob/master/sst_bf.md


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  56 

2400000 
root@sdp1146:~# cat /sys/devices/system/cpu/cpu5/cpufreq/base_frequency 
2400000 

CPUs 4 and 5 are marked as high priority CPUs and have base frequency of 2.4 GHz. 

CPU 0 is marked as low priority CPU and has base frequency of 1.8 GHz. 

7.3.2 Check Intel Speed Select Technology – Core Power (Intel SST-CP) 
Intel SST-CP enables a user to set up to four Classes of Service (CLOS) and assign CPUs to certain CLOSes. 

To verify the correctness of CLOS 0, use the following command: 
root@sdp1146:~# intel-speed-select core-power get-config -c 0 
Intel® Speed Select Technology 
Executing on CPU model:106[0x6a] 
 package-0 
  die-0 
    cpu-0 
      core-power 
        clos:0 
        epp:0 
        clos-proportional-priority:0 
        clos-min:2400 MHz 
        clos-max:Max Turbo frequency 
        clos-desired:0 MHz 
 package-1 
  die-0 
    cpu-48 
      core-power 
        clos:0 
        epp:0 
        clos-proportional-priority:0 
        clos-min:2400 MHz 
        clos-max:Max Turbo frequency 
        clos-desired:0 MHz 
root@sdp1146:~/linux/tools/power/x86/intel-speed-select# 

To verify the CLOS assignment for CPUs 0, 4, and 5, use the following command: 
root@sdp1146:~# intel-speed-select -c 0,4-5 core-power get-assoc 
Intel® Speed Select Technology 
Executing on CPU model:106[0x6a] 
 package-0 
  die-0 
    cpu-0 
      get-assoc 
        clos:3 
 package-0 
  die-0 
    cpu-4 
      get-assoc 
        clos:0 
 package-0 
  die-0 
    cpu-5 
      get-assoc 
        clos:0 
root@sdp1146:~/linux/tools/power/x86/intel-speed-select# 

To learn more about Intel SST-CP or Intel SST-CP Classes of Service, refer to:  https://www.kernel.org/doc/html/latest/admin-
guide/pm/intel-speed-select.html#intel-r-speed-select-technology-core-power-intel-r-sst-cp 

 

7.4 Check Intel Speed Select Technology – Performance Profile (Intel SST-PP) with Intel Speed Select 
Technology – Turbo Frequency (Intel SST-TF) on 3rd Generation Intel Xeon Scalable Processors 

To verify the availability of Intel SST-PP and its features, use the following command. 
root@sdp1146:~/linux/tools/power/x86/intel-speed-select# 
[root@as09-35-ac ~]# intel-speed-select –info 
Intel(R) Speed Select Technology 

https://www.kernel.org/doc/html/latest/admin-guide/pm/intel-speed-select.html#intel-r-speed-select-technology-core-power-intel-r-sst-cp
https://www.kernel.org/doc/html/latest/admin-guide/pm/intel-speed-select.html#intel-r-speed-select-technology-core-power-intel-r-sst-cp


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  57 

Executing on CPU model:143[0x8f] 
Platform: API version : 1 
Platform: Driver version : 1 
Platform: mbox supported : 1 
Platform: mmio supported : 1 
Intel(R) SST-PP (feature perf-profile) is supported 
TDP level change control is unlocked, max level: 3 
Intel(R) SST-TF (feature turbo-freq) is supported 
Intel(R) SST-BF (feature base-freq) is supported 
Intel(R) SST-CP (feature core-power) is supported 

To verify that Intel SST-PP is unlocked in the BIOS, use the following command: 
[root@as09-35-ac ~]# intel-speed-select perf-profile get-lock-status 
Intel(R) Speed Select Technology 
Executing on CPU model:143[0x8f] 
Caching topology information 
 package-0 
  die-0 
    cpu-0 
      get-lock-status:unlocked 

To confirm that the statuses of Intel SST-BF, Intel SST-CP, and Intel SST-TF are enabled or disabled, which must match the value 
of SST-PP in host_vars, and to check the properties of perf-level, use the following commands: 

[root@as09-35-ac ~]# intel-speed-select perf-profile info -l 0 2>&1 | grep 'speed-select' 
        speed-select-turbo-freq:enabled 
        speed-select-base-freq:enabled 
        speed-select-core-power:enabled 
        speed-select-base-freq-properties 
        speed-select-turbo-freq-properties 
          speed-select-turbo-freq-clip-frequencies 
 
[root@as09-35-ac ~]# intel-speed-select perf-profile get-config-levels 
Intel(R) Speed Select Technology 
Executing on CPU model:143[0x8f] 
 package-0 
  die-0 
    cpu-0 
      get-config-levels:3 

Note: config-levels must be get-config-levels:3 (Intel SST-BF, Intel SST-CP, and Intel SST-TF ). get-config-levels: 
0 means misconfiguration of setup in software or BIOS. 

Set turbo status on and off to verify busy workload frequency ranges dynamically when Intel SST-PP is configured. For example, if 
CPUs 0,40,1,41,2,42,3,43,5,45,8,48,9,49,10,50,11,51,13,53 are defined in host_vars for Intel SST-PP to get 100 MHz boost, use 
following commands for verification. 

[root@as09-35-ac ~]# echo 1 > /sys/devices/system/cpu/intel_pstate/no_turbo 
[root@as09-35-ac ~]# turbostat -c 0,40,1,41,2,42,3,43,5,45,8,48,9,49,10,50,11,51,13,53 --show Package,Core,CPU,Bzy_MHz -i 
1 
 
Core     CPU      Bzy_MHz 
-                        -        798 
0        0        800 
0        40       803 
1        1        800 
1        41       799 
2        2        800 
2        42       803 
3        3        800 
3        43       803 
5        5        800 
5        45       801 
8        8        800 
8        48       803 
9        9        800 
9        49       802 
10       10       800 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  58 

10       50       798 
11       11       800 
11       51       802 
13       13       800 
13       53       800 

 
[root@as09-35-ac ~]# echo 0 > /sys/devices/system/cpu/intel_pstate/no_turbo 
[root@as09-35-ac ~]# turbostat -c 0,40,1,41,2,42,3,43,5,45,8,48,9,49,10,50,11,51,13,53 --show Package,Core,CPU,Bzy_MHz -i 
1 
 
Core     CPU      Bzy_MHz 
-        -        2888 
0        0        2896 
0        40       2885 
1        1        2884 
1        41       2901 
2        2        2899 
2        42       2888 
3        3        2900 
3        43       2895 
5        5        2889 
5        45       2900 
8        8        2901 
8        48       2898 
9        9        2857 
9        49       2900 
10       10       2900 
10       50       2838 
11       11       2900 
11       51       2900 
13       13       2900 
13       53       2902 
14       14       2901 

Note that improved performance in a frequency range can be observed dynamically as it jumps from approximately 800 to 
approximately 2900 in CPUs when Intel SST-PP is configured with turbo-freq.14 

 

7.5 Check DDP Profiles 
DDP provides dynamic reconfiguration of the packet processing pipeline to meet specific use case needs on demand, adding new 
packet processing pipeline Configuration Profiles to a network adapter at runtime, without resetting or rebooting the server.  

7.5.1 Check DDP Profiles in Intel® Ethernet 700 Series Network Adapters 
To verify that a correct DDP profile was loaded, use the command shown below.  

~/ddp-tool# ./ddptool -a 
Intel(R) Dynamic Device Personalization Tool 
DDPTool version 2020.17.22.7 
Copyright (C) 2019 - 2021 Intel Corporation. 
 
NIC  DevId D:B:S.F      DevName         TrackId  Version      Name 
==== ===== ============ =============== ======== ============ ============================== 
001) 158B  0000:18:00.0 ens785f0        80000008 1.0.3.0      GTPv1-C/U IPv4/IPv6 payload    
002) 158B  0000:18:00.1 ens785f1        80000008 1.0.3.0      GTPv1-C/U IPv4/IPv6 payload    
003) 154C  0000:18:02.0 ens785f0v0      80000008 1.0.3.0      GTPv1-C/U IPv4/IPv6 payload    
004) 154C  0000:18:02.1 ens785f0v1      80000008 1.0.3.0      GTPv1-C/U IPv4/IPv6 payload    
005) 154C  0000:18:02.2 ens785f0v2      80000008 1.0.3.0      GTPv1-C/U IPv4/IPv6 payload    
006) 154C  0000:18:02.3 ens785f0v3      80000008 1.0.3.0      GTPv1-C/U IPv4/IPv6 payload    
007) 154C  0000:18:02.4 ens785f0v4      80000008 1.0.3.0      GTPv1-C/U IPv4/IPv6 payload    

 
14 Refer to https://software.intel.com/articles/optimization-notice for more information regarding performance and optimization choices in Intel 
software products. 

https://software.intel.com/articles/optimization-notice


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  59 

008) 154C  0000:18:02.5 ens785f0v5      80000008 1.0.3.0      GTPv1-C/U IPv4/IPv6 payload    
009) 154C  0000:18:0A.0 N/A             80000008 1.0.3.0      GTPv1-C/U IPv4/IPv6 payload    
010) 154C  0000:18:0A.1 N/A             -        -                                           
011) 154C  0000:18:0A.2 N/A             -        -                                           
012) 154C  0000:18:0A.3 N/A             -        -                                           
013) 1592  0000:AF:00.0 ens801f0        -        -            -                              
014) 1592  0000:AF:00.1 ens801f1        -        -            -                              

Download ddptool at: https://github.com/intel/ddp-tool/tree/1.0.9.0. 

7.5.2 Check DDP Profiles in Intel® Ethernet 800 Series Network Adapters 
To verify that a correct DDP profile was loaded, use the command shown below. 

~/ddp-tool# ./ddptool -a 
Intel(R) Dynamic Device Personalization Tool 
DDPTool version 2020.17.22.7 
Copyright (C) 2019 - 2021 Intel Corporation. 
 
NIC  DevId D:B:S.F      DevName         TrackId  Version      Name 
==== ===== ============ =============== ======== ============ ============================== 
001) 1592  0000:B1:00.0 ens801f0        C0000002 1.3.30.0     ICE COMMS Package              
002) 1592  0000:B1:00.1 ens801f1        C0000002 1.3.30.0     ICE COMMS Package              
003) 1889  0000:B1:01.0 ens801f0v0      C0000002 1.3.30.0     ICE COMMS Package              
004) 1889  0000:B1:01.1 ens801f0v1      C0000002 1.3.30.0     ICE COMMS Package              
005) 1889  0000:B1:01.2 ens801f0v2      C0000002 1.3.30.0     ICE COMMS Package              
006) 1889  0000:B1:01.3 ens801f0v3      C0000002 1.3.30.0     ICE COMMS Package              
007) 1889  0000:B1:01.4 ens801f0v4      C0000002 1.3.30.0     ICE COMMS Package              
008) 1889  0000:B1:01.5 ens801f0v5      C0000002 1.3.30.0     ICE COMMS Package              
009) 1889  0000:B1:11.0 N/A             C0000002 1.3.30.0     ICE COMMS Package              
010) 1889  0000:B1:11.1 N/A             -        -                                           
011) 1889  0000:B1:11.2 N/A             -        -                                           
012) 1889  0000:B1:11.3 N/A             -        -                                           

Download ddptool at: https://github.com/intel/ddp-tool/tree/1.0.9.0. 

7.5.3 Check SR-IOV Resources 
After everything is installed and set up correctly, you see that the device plugin is able to discover VFs with names given in the 
resource pool selector. 

# kubectl get node node1 -o json | jq ".status.allocatable" 
{ 
  "cpu": "8", 
  "ephemeral-storage": "169986638772", 
  "hugepages-1Gi": "0", 
  "hugepages-2Mi": "8Gi", 
  "intel.com/intel_sriov_dpdk_700_series": "2", 
  "intel.com/intel_sriov_dpdk_800_series": "0", 
  "memory": "7880620Ki", 
  "pods": "100" 
} 

BMRA does not create SR-IOV resources with DDP by default. These must be created by the user, as described in the Dynamic 
Device Personalization section.  

 

7.6 Check Node Feature Discovery 
Node Feature Discovery (NFD) is a Kubernetes add-on that detects and advertises hardware and software capabilities of a platform 
that can, in turn, be used to facilitate intelligent scheduling of a workload. NFD is one of the Intel technologies that supports 
targeting of intelligent configuration and capacity consumption of platform capabilities. NFD runs as a separate container on each 
individual node of the cluster, discovers capabilities of the node, and publishes these as node labels using the Kubernetes API. NFD 
only handles non-allocatable features.  

To verify that NFD is running as expected, use the following command: 

# kubectl get ds --all-namespaces | grep node-feature-discovery 
kube-system   node-feature-discovery-worker    1    1    1    1    1    <none>    3d2h 

To check the labels created by NFD, use the following command:  

https://github.com/intel/ddp-tool/tree/1.0.9.0
https://github.com/intel/ddp-tool/tree/1.0.9.0


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  60 

# kubectl label node --list --all 
Listing labels for Node./controller1:  
 kubernetes.io/arch=amd64 
 kubernetes.io/hostname=controller1 
 kubernetes.io/os=linux 
 node-role.kubernetes.io/master= 
 beta.kubernetes.io/arch=amd64 
 beta.kubernetes.io/os=linux 
Listing labels for Node./node1:  
 beta.kubernetes.io/arch=amd64 
 feature.node.kubernetes.io/cpu-pstate.turbo=true 
 feature.node.kubernetes.io/cpu-cpuid.VMX=true 
 feature.node.kubernetes.io/kernel-version.minor=4 
 feature.node.kubernetes.io/cpu-rdt.RDTMBM=true 
 feature.node.kubernetes.io/cpu-cpuid.AESNI=true 
 feature.node.kubernetes.io/cpu-cpuid.AVX512F=true 
 feature.node.kubernetes.io/pci-0b40_8086.present=true 
 feature.node.kubernetes.io/memory-numa=true 
 feature.node.kubernetes.io/cpu-cpuid.MPX=true 
 kubernetes.io/os=linux 
 feature.node.kubernetes.io/network-sriov.configured=true 
 feature.node.kubernetes.io/cpu-power.sst_bf.enabled=true 
 feature.node.kubernetes.io/system-os_release.VERSION_ID.minor=04 
 feature.node.kubernetes.io/cpu-cpuid.ADX=true 
 feature.node.kubernetes.io/cpu-cpuid.AVX512VL=true 
 feature.node.kubernetes.io/cpu-rdt.RDTMON=true 
 feature.node.kubernetes.io/system-os_release.VERSION_ID.major=20 
 feature.node.kubernetes.io/cpu-cpuid.AVX512VNNI=true 
 feature.node.kubernetes.io/system-os_release.VERSION_ID=20.04 
 feature.node.kubernetes.io/kernel-version.revision=0 
 feature.node.kubernetes.io/pci-0300_1a03.present=true 
 kubernetes.io/arch=amd64 
 feature.node.kubernetes.io/cpu-cpuid.AVX512CD=true 
 feature.node.kubernetes.io/kernel-version.major=5 
 kubernetes.io/hostname=node1 
 feature.node.kubernetes.io/network-sriov.capable=true 
 feature.node.kubernetes.io/cpu-cpuid.AVX512DQ=true 
 feature.node.kubernetes.io/cpu-cpuid.IBPB=true 
 feature.node.kubernetes.io/system-os_release.ID=ubuntu 
 feature.node.kubernetes.io/cpu-cpuid.STIBP=true 
 feature.node.kubernetes.io/cpu-rdt.RDTL3CA=true 
 feature.node.kubernetes.io/kernel-config.NO_HZ_IDLE=true 
 feature.node.kubernetes.io/cpu-rdt.RDTMBA=true 
 feature.node.kubernetes.io/storage-nonrotationaldisk=true 
 feature.node.kubernetes.io/iommu-enabled=true 
 feature.node.kubernetes.io/cpu-cpuid.AVX2=true 
 feature.node.kubernetes.io/cpu-cpuid.FMA3=true 
 feature.node.kubernetes.io/cpu-cpuid.AVX=true 
 feature.node.kubernetes.io/kernel-config.NO_HZ=true 
 beta.kubernetes.io/os=linux 
 feature.node.kubernetes.io/cpu-hardware_multithreading=true 
 feature.node.kubernetes.io/cpu-rdt.RDTCMT=true 
 feature.node.kubernetes.io/kernel-version.full=5.4.0-66-generic 
 cmk.intel.com/cmk-node=true 
 feature.node.kubernetes.io/cpu-cpuid.AVX512BW=true 

The node labels can be used when provisioning a pod. In the following example, the pod is scheduled only if there is a node with 
CPU Manager for Kubernetes (CMK) available: 

apiVersion: v1 
kind: Pod 
metadata: 
  name: pod-nfd-1 
spec: 
  nodeSelector: 
    cmk.intel.com/cmk-node: "true" 
  containers: 
  - name: pod-nfd-1 
    image: ubuntu:focal 
    command: 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  61 

    - "/bin/bash" 
    - "-c" 
    args: 
    - "tail -f /dev/null 

In the above node labels, this is true for node1, and the pod is scheduled there. If no node is available that matches the 
nodeSelectors, the pod remains in pending status. 

 

7.7 Check CPU Manager for Kubernetes 
Kubernetes supports CPU and memory first class resources, while also providing basic support for CPU pinning and isolation 
through the native CPU Manager. To aid commercial adoption, Intel has created CPU Manager for Kubernetes, an open-source 
project that introduces additional CPU optimization capabilities. Without CPU Manager for Kubernetes, the kernel task scheduler 
treats all CPUs as available for scheduling process threads and regularly preempts executing process threads to give CPU time to 
other threads. This non-deterministic behavior makes it unsuitable for latency sensitive workloads.  

Using the preconfigured isolcpus boot parameter, CPU Manager for Kubernetes can help ensure that a CPU (or set of CPUs) is 
isolated from the kernel scheduler. Then the latency-sensitive workload process threads can be pinned to execute on that isolated 
CPU set only, providing them exclusive access to that CPU set. While beginning to guarantee the deterministic behavior of priority 
workloads, isolating CPUs also addresses the need to manage resources, which allows multiple VNFs to coexist on the same 
physical server. The exclusive pool within CPU Manager for Kubernetes assigns entire physical cores exclusively to the requesting 
container, meaning no other container has access to the core.  

CPU Manager for Kubernetes performs a variety of operations to enable core pinning and isolation on a container or a thread level. 
These include: 
• Discovering the CPU topology of the machine 
• Advertising the resources available via Kubernetes constructs 
• Placing workloads according to their requests 
• Keeping track of the current CPU allocations of the pods, ensuring that an application receives the requested resources 

provided they are available 

CPU Manager for Kubernetes creates three distinct pools: exclusive, shared, and infra. The exclusive pool is restricted, meaning 
only a single task may be allocated to a CPU at a time, whereas the shared and infra pools are shared such that multiple 
processes may be allocated to a CPU. 

Following is an output for a successful CPU Manager for Kubernetes deployment and CPU initialization. In the example setup, 
Intel HT Technology is enabled; therefore, both physical and associated logical processors are isolated. Using the default values 
in the group_vars/all.yml file, CPU Manager for Kubernetes allocates two cores to the exclusive pool, and two cores to the 
shared pool. The default values for isolcpus for the node are “4-11”, which only partially isolates the physical cores as the system 
is configured with Intel HT Technology. Inspecting the logs for CPU Manager for Kubernetes shows output similar to the 
following.  

root@av09-07-wp:~# kubectl get pods -A 
NAMESPACE     NAME                                    READY   STATUS             RESTARTS   AGE 
kube-system   cmk-init-discover-av09-06-wp-pl5tv      0/3     Completed          0          26m 
kube-system   cmk-rnq9q                               2/2     Running            0          25m 
kube-system   cmk-webhook-6c9d5f8578-jkfc9            1/1     Running            0          25m 

 
root@av09-07-wp:~# kubectl get cm 
NAME                    DATA   AGE 
cmk-config-av09-06-wp   1      30m 
 
root@av09-07-wp:~# kubectl describe cm cmk-config-av09-06-wp 
Name:         cmk-config-av09-06-wp 
Namespace:    default 
Labels:       <none> 
Annotations:  Owner: 
 
Data 
==== 
config: 
---- 
exclusive: 
  0: 
    0,44: [] 
    1,45: [] 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  62 

 1: {} 
infra: 
  0: 
    
4,48,5,49,6,50,7,51,8,52,9,53,10,54,11,55,12,56,13,57,14,58,15,59,16,60,17,61,18,62,19,63,20,64
,21,65: 
    - '40218' 
  1: 
    ? 
22,66,23,67,24,68,25,69,26,70,27,71,28,72,29,73,30,74,31,75,32,76,33,77,34,78,35,79,36,80,37,81
,38,82,39,83,40,84,41,85,42,86,43,87 
    : - '40167' 
shared: 
  0: 
    2,46,3,47: [] 
  1: {} 
 
Events:  <none> 

CPU Manager for Kubernetes prioritizes using high priority Intel SST-BF cores for the exclusive core list when possible. If there are 
fully isolated physical cores (through isolcpus), these are also prioritized for the exclusive pool. In the above output, there are no 
physical cores that are fully isolated, in which case CPU Manager for Kubernetes only looks at high priority Intel SST-BF cores. 

On successful run, the allocatable resource list for the node should be updated with resources discovered by the plugin, as shown 
below. Note that the resource name is displayed in the format cmk.intel.com/exclusive-cores. 

# kubectl get node node1 -o json | jq '.status.allocatable' 
{  
  "cmk.intel.com/exclusive-cores": "2", 
  "cpu": "93", 
  "ephemeral-storage": "452220352993", 
  "hugepages-1Gi": "4Gi", 
  "intel.com/intel_sriov_dpdk_700_series": "2", 
  "intel.com/intel_sriov_dpdk_800_series": "0", 
  "intel.com/intel_sriov_netdevice": "4", 
  "memory": "191733164Ki", 
  "pods": "110", 
  "qat.intel.com/generic": "32" 

CPU Manager for Kubernetes helps ensure exclusivity; therefore, the performance of latency-sensitive workloads is not impacted by 
having a noisy neighbor on the system. CPU Manager for Kubernetes can be used along with the other Intel technology capabilities 
to achieve the improved network I/O, deterministic compute performance, and server platform sharing benefits offered by Intel 
Xeon processor-based platforms.  

An example pod requesting one exclusive core can be seen below: 
apiVersion: v1 
kind: Pod 
metadata: 
  name: pod-cmk-1 
  annotations: 
    cmk.intel.com/mutate: "true" 
  namespace: kube-system 
spec: 
  serviceAccountName: cmk 
  containers: 
  - name: pod-cmk-1 
    image: ubuntu:focal 
    command: 
    - "/bin/bash" 
    - "-c" 
    args: 
    - "tail -f /dev/null" 
    resources: 
      requests: 
        cmk.intel.com/exclusive-cores: '1' 
      limits: 
        cmk.intel.com/exclusive-cores: '1' 
    volumeMounts: 
    - mountPath: /opt/bin 
      name: cmk-install-dir 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  63 

  volumes: 
    - hostPath: 
        path: /opt/bin 
      name: cmk-install-dir 

After creating the pod, the core allocation from CPU Manager for Kubernetes can be seen in the pod: 
# kubectl exec pod-cmk-1 -n kube-system -- /opt/bin/cmk isolate --pool=exclusive env | grep CMK 
CMK_CPUS_ASSIGNED_MASK=2000000000002 
CMK_CPUS_ASSIGNED=1,49 
CMK_PROC_FS=/host/proc 
CMK_NUM_CORES=1 
CMK_CPUS_INFRA=0,48,3,51,4,52,5,53,6,54,7,55,8,56,11,59,12,60,13,61,14,62,15,63,16,64,17,65,18,
66,19,67,20,68,21,69,22,70,23,71,24,72,25,73,26,74,27,75,28,76,29,77,30,78,31,79,32,80,33,81,34
,82,35,83,36,84,37,85,38,86,39,87,40,88,41,89,42,90,43,91,44,92,45,93,46,94,47,95 

By default, CPU Manager for Kubernetes sets the affinity of the application. Some applications, e.g., DPDK-based ones, usually take 
the core allocation as an input parameter. These can be run by adding the --no-affinity option to CPU Manager for Kubernetes, 
and then reading the list of CMK_CPUS_ASSIGNED and using these for core pinning. 

For more details on usage, see: https://github.com/intel/CPU-Manager-for-Kubernetes 

 

7.8 Check Topology Manager 
An increasing number of systems use a combination of CPUs and hardware accelerators to support latency-critical execution and 
high-throughput parallel computation. These include workloads in fields such as telecommunications, scientific computing, 
machine learning, financial services, and data analytics. Such hybrid systems comprise a high-performance environment. 

To help extract the optimal performance15, required optimizations related to CPU isolation, memory, and device locality must be 
made. It is enabled by default starting with Kubernetes 1.19.8. Topology Manager is a beta feature and is enabled by default. 

Topology Manager supports its allocation policies via a Kubelet flag, --topology-manager-policy. There are four supported 
policies: 
• none:  Kubelet does not perform any topology alignment. 
• best-effort (default in BMRA deployment script):  Using resource availability reported by Hint Providers for each container in a 

Guaranteed Pod, the Topology Manager stores the preferred NUMA Node affinity for that container. If the affinity is not 
preferred, Topology Manager stores this and admits the pod to the node anyway. The Hint Providers can then use this 
information when making the resource allocation decision. 

• restricted:  Using resource availability reported by Hint Providers for each container in a Guaranteed pod, the Topology 
Manager stores the preferred NUMA Node affinity for that container. If the affinity is not preferred, Topology Manager rejects 
this pod from the node. This results in a pod in a Terminated state with a pod admission failure. 
After the pod is in a Terminated state, the Kubernetes scheduler will not attempt to reschedule the pod. We recommend you 
use a ReplicaSet or Deployment to trigger a redeploy of the pod. Alternatively, you could implement an external control loop to 
trigger a redeployment of pods that have the Topology Affinity error. 
If the pod is admitted, the Hint Providers can then use this information when making the resource allocation decision. 

• single-numa-node:  Using resource availability reported by Hint Providers for each container in a Guaranteed pod, the 
Topology Manager determines if a single NUMA Node affinity is possible. If it is, Topology Manager stores this and the Hint 
Providers can then use this information when making the resource allocation decision. If this is not possible, however, then the 
Topology Manager rejects the pod from the node. This results in a pod in a Terminated state with a pod admission failure. 
After the pod is in a Terminated state, the Kubernetes scheduler will not attempt to reschedule the pod. It is recommended to 
use a Deployment with replicas to trigger a redeploy of the pod. An external control loop could be also implemented to trigger 
a redeployment of pods that have the Topology Affinity error. 

To verify that Topology Manager is running as expected, use the following command: 
# journalctl | grep topologymanager 
Dec 04 10:39:27 silpixa00390843 kubelet[9247]: I1204 10:39:27.305994    9247 
topology_manager.go:92] [topologymanager] Creating topology manager with best-effort policy 
Dec 04 10:39:27 silpixa00390843 kubelet[9247]: I1204 10:39:27.306005    9247 
container_manager_linux.go:300] [topologymanager] Initilizing Topology Manager with best-effort 
policy 
Dec 04 10:39:48 silpixa00390843 kubelet[9247]: I1204 10:39:48.050934    9247 
topology_manager.go:308] [topologymanager] Topology Admit Handler 

 
15 Refer to https://software.intel.com/articles/optimization-notice for more information regarding performance and optimization choices in Intel 
software products. 

https://github.com/intel/CPU-Manager-for-Kubernetes
https://software.intel.com/articles/optimization-notice


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  64 

Dec 04 10:39:48 silpixa00390843 kubelet[9247]: I1204 10:39:48.050942    9247 
topology_manager.go:317] [topologymanager] Pod QoS Level: 
Dec 04 10:39:48 silpixa00390843 kubelet[9247]: I1204 10:39:48.050950    9247 
topology_manager.go:332] [topologymanager] Topology Manager only affinitises Guaranteed pods. 
Dec 04 10:39:48 silpixa00390843 kubelet[9247]: I1204 10:39:48.084236    9247 
topology_manager.go:308] [topologymanager] Topology Admit Handler 
Dec 04 10:39:48 silpixa00390843 kubelet[9247]: I1204 10:39:48.084251    9247 
topology_manager.go:317] [topologymanager] Pod QoS Level: BestEffort 
Dec 04 10:39:48 silpixa00390843 kubelet[9247]: I1204 10:39:48.084263    9247 
topology_manager.go:332] [topologymanager] Topology Manager only affinitises Guaranteed pods. 

7.8.1 Change Topology Manager Policy: Redeploy Kubernetes Playbook 
This section describes one of two ways to change Topology Manager policy configuration after cluster deployment, by redeploying 
the Kubernetes playbook. 
1. Update the group_vars/all.yml file: 

... 
# Enable Kubernetes built-in Topology Manager 
topology_manager_enabled: true 
# There are four supported policies: none, best-effort, restricted, single-numa-node. 
topology_manager_policy: "single-numa-node" 
... 

2. Execute the ansible-playbook command to apply the new configuration cluster-wide: 
# ansible-playbook -i inventory.ini playbooks/k8s/k8s.yml 

7.8.2 Change Topology Manager Policy: Manually Update Kubelet Flags 
This section describes a method of changing Topology Manager policy configuration after cluster deployment, by manually 
updating Kubelet flags on a specific node.  
1. Log in to the worker node via SSH, for example: 

# ssh node1 
2. Edit the kubelet configuration in the /etc/kubernetes/kubelet-config.yaml file: 

(...) 
topologyManagerPolicy: single-numa-node 
(...) 

3. Restart the Kubelet service: 
# systemctl restart kubelet 

 

7.9 Check Intel Device Plugins for Kubernetes 
Like other vendors, Intel provides many hardware devices that help deliver efficient acceleration of graphics, computation, data 
processing, more security, and compression. Those devices optimize hardware for specific tasks, which saves CPU cycles for other 
workloads and typically results in performance gains.16 The Kubernetes device plugin framework provides a vendor-independent 
solution for hardware devices. Intel has developed a set of device plugins that complies with the Kubernetes device plugin 
framework and allows users to request and consume hardware devices across Kubernetes clusters such as Intel® QuickAssist 
Technology, GPUs, and FPGAs. The detailed documentation and code are available at:  
• Documentation:  https://builders.intel.com/docs/networkbuilders/intel-device-plugins-for-kubernetes-appnote.pdf   
• Code:  https://github.com/intel/intel-device-plugins-for-kubernetes   

7.9.1 Check SR-IOV Network Device Plugin 
The SR-IOV network device plugin discovers, filters, and exposes VFs on nodes in a cluster. The plugin creates consumable 
resources based on custom filters, which provides a flexible way of grouping VFs according to a set of selectors. 

Using the default configuration, two resources are created. These resources both include VFs from common Intel network adapters 
but differentiate based on the driver used. Following a successful deployment, the resources are visible as shown below: 

# kubectl get node node1 -o json | jq '.status.allocatable' 
{  
  "cmk.intel.com/exclusive-cores": "2", 
  "cpu": "93", 
  "ephemeral-storage": "452220352993", 
  "hugepages-1Gi": "4Gi", 
  "intel.com/intel_sriov_dpdk_700_series": "2", 
  "intel.com/intel_sriov_dpdk_800_series": "0", 

 
16 Refer to http://software.intel.com/en-us/articles/optimization-notice for more information regarding performance and optimization choices in 
Intel software products. See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

https://builders.intel.com/docs/networkbuilders/intel-device-plugins-for-kubernetes-appnote.pdf
https://github.com/intel/intel-device-plugins-for-kubernetes
http://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  65 

  "intel.com/intel_sriov_netdevice": "4", 
  "memory": "191733164Ki", 
  "pods": "110", 
  "qat.intel.com/generic": "32" 
} 

In the above, there are two SR-IOV network device plugin resources: “intel.com/intel_sriov_dpdk_710_series” and 
“intel.com/intel_sriov_netdevice”. The “netdevice” VFs are bound to a kernel driver and can be configured using the SR-
IOV CNI Plugin. The “dpdk” VFs are bound to a DPDK driver, which allows an application to operate in userspace, bypassing the 
kernel network stack for ultra-high performance.17 

To check allocation of a DPDK resource, create the following pod: 
apiVersion: v1   
kind: Pod 
metadata: 
  name: pod-sriov-dpdk-1 
spec: 
  containers: 
  - name: pod-sriov-dpdk-1 
    image: docker.io/centos/tools:latest 
    command: 
    - /sbin/init 
    resources: 
      requests: 
        intel.com/intel_sriov_dpdk_700_series: '1' 
      limits: 
        intel.com/intel_sriov_dpdk_700_series: '1' 

After the pod is running, check that the resource is listed in the environment of the pod: 
# kubectl exec pod-sriov-dpdk-1 -- env | grep PCIDEVICE  
PCIDEVICE_INTEL_COM_INTEL_SRIOV_DPDK_700_SERIES=0000:86:02.1 

The same approach can be used to check the “netdevice” resources, but if the default configuration has been used, the SR-IOV CNI 
and example network attachment definition were installed and can be used as well. 

# kubectl get net-attach-def  
NAME               AGE  
sriov-net          3d23h 

 
# kubectl describe net-attach-def sriov-net | grep Annotations  
Annotations:  k8s.v1.cni.cncf.io/resourceName: intel.com/intel_sriov_netdevice 

Using this information, create a pod that assigns a netdevice VF from SR-IOV network device plugin and creates an interface in 
the pod using the SR-IOV CNI plugin: 

apiVersion: v1   
kind: Pod 
metadata: 
  name: pod-sriov-netdevice-1 
  annotations: 
    k8s.v1.cni.cncf.io/networks: sriov-net 
spec: 
  containers: 
  - name: pod-sriov-netdevice-1 
    image: docker.io/centos/tools:latest 
    command: 
    - /sbin/init 
    resources: 
      requests: 
        intel.com/intel_sriov_netdevice: '1' 
      limits: 
        intel.com/intel_sriov_netdevice: '1' 

Start by checking that the VF has been added to the pod, and then check that the interface has been created through SR-IOV CNI: 
# kubectl exec pod-sriov-netdevice-1 -- env | grep PCIDEVICE  
PCIDEVICE_INTEL_COM_INTEL_SRIOV_NETDEVICE=0000:86:0a.1 

 
# kubectl exec pod-sriov-netdevice-1 -- ip a 

 
17 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  66 

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000  
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 
    inet 127.0.0.1/8 scope host lo 
       valid_lft forever preferred_lft forever 
3: eth0@if69: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UP group default 
    link/ether c6:0d:c3:a5:57:15 brd ff:ff:ff:ff:ff:ff link-netnsid 0 
    inet 10.244.1.26/24 brd 10.244.1.255 scope global eth0 
       valid_lft forever preferred_lft forever 
16: net1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000 
    link/ether 7e:ad:44:41:91:e5 brd ff:ff:ff:ff:ff:ff 
    inet 10.56.217.172/24 brd 10.56.217.255 scope global net1 
       valid_lft forever preferred_lft forever 

7.9.2 Check QAT Device Plugin 
The Intel® QuickAssist Technology (Intel® QAT) device plugin discovers and exposes QAT device VFs as consumable resources in 
Kubernetes18. It works like the SR-IOV network device plugin but provides access to accelerated cryptographic and compression 
features. 

If enabled and supported, QAT resources show up as a node resource: 
# kubectl get node node1 -o json | jq '.status.allocatable'                                                                                                                                                                                             
{  
  "cmk.intel.com/exclusive-cores": "2", 
  "cpu": "93", 
  "ephemeral-storage": "452220352993", 
  "hugepages-1Gi": "4Gi", 
  "intel.com/intel_sriov_dpdk_700_series": "2", 
  "intel.com/intel_sriov_dpdk_800_series": "0", 
  "intel.com/intel_sriov_netdevice": "4", 
  "memory": "191733164Ki", 
  "pods": "110", 
  "qat.intel.com/generic": "32"  
} 

Now create a pod that requests a VF from the above resource: 
apiVersion: v1   
kind: Pod 
metadata: 
  name: pod-qat-1 
spec: 
  containers: 
  - name: pod-qat-dpdk-1 
    image: docker.io/centos/tools:latest 
    command: 
    - /sbin/init 
    resources: 
      requests: 
        qat.intel.com/generic: '1' 
      limits: 
        qat.intel.com/generic: '1' 

After the pod is running, verify that the VF was correctly assigned to the pod: 
kubectl exec pod-qat-1 -- env | grep QAT  
QAT0=0000:3e:02.1 

To further test the VFs, an application that supports offloading and acceleration is required, which can be done through DPDK. More 
information and examples can be found here: https://github.com/intel/intel-device-plugins-for-kubernetes/tree/master/demo 

7.9.3 Check SGX Device Plugin 
The Intel® SGX device plugin discovers and exposes SGX device nodes to kubelet as consumable resources in Kubernetes19.  

If enabled and supported, SGX resources show up as a node resource: 
# kubectl get node node1 -o json | jq '.status.allocatable'                                                                                                                                                                                             
{  
  "cmk.intel.com/exclusive-cores": "2", 
  "cpu": "77", 

 
18 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 
19 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

https://github.com/intel/intel-device-plugins-for-kubernetes/tree/master/demo
http://www.intel.com/PerformanceIndex
http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  67 

  "ephemeral-storage": "282687233580", 
  "hugepages-1Gi": "4Gi", 
  "memory": "125651052Ki", 
  "pods": "110", 
  "sgx.intel.com/enclave": "20", 
  "sgx.intel.com/epc": "1054863360", 
  "sgx.intel.com/provision": "20" 
} 

 

7.10 Check Networking Features (After Installation) 
This section describes how to verify certain CNI plugins. 

7.10.1 Check Multus CNI Plugin 
To verify that Multus CNI Plugin is running, an additional network can be created using the basic CNI plugins installed as part of the 
playbooks. For this example, the “macvlan” CNI is used. Start by creating a NetworkAttachmentDefinition (net-attach-def) using the 
provided template and update the {{ interface }} value to match an interface name on the worker nodes of the system, for 
example, “ens786f1”.20 

apiVersion: "k8s.cni.cncf.io/v1" 
kind: NetworkAttachmentDefinition 
metadata: 
  name: macvlan-multus-1 
spec: 
  config: '{ 
            "cniVersion": "0.3.0", 
            "type": "macvlan", 
            "master": "{{ interface }}", 
            "mode": "bridge", 
            "ipam": { 
                "type": "host-local", 
                "ranges": [ 
                    [ { 
                         "subnet": "10.10.0.0/16", 
                         "rangeStart": "10.10.1.20", 
                         "rangeEnd": "10.10.3.50", 
                         "gateway": "10.10.0.254" 
                    } ] 
                ] 
            } 
        }' 

After applying the configuration, verify that it has been created and is available in the cluster: 
# kubectl get net-attach-def  
NAME               AGE  
macvlan-multus-1   4d1h 

Following this, create a pod that requests an interface from the newly created net-attach-def: 
apiVersion: v1   
kind: Pod 
metadata: 
  name: pod-macvlan-1 
  annotations: 
    k8s.v1.cni.cncf.io/networks: macvlan-multus-1 
spec: 
  containers: 
  - name: pod-macvlan-1 
    image: docker.io/centos/tools:latest 
    command: 
    - /sbin/init 

After the pod is running, verify that the additional interface is available in the pod: 
# kubectl exec pod-macvlan-1 -- ip a  
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000  
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 

 
20 Refer to https://software.intel.com/articles/optimization-notice for more information regarding performance and optimization choices in Intel 
software products. 

https://software.intel.com/articles/optimization-notice


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  68 

    inet 127.0.0.1/8 scope host lo 
       valid_lft forever preferred_lft forever 
3: eth0@if71: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UP group default 
    link/ether 7e:33:5e:5b:1b:4f brd ff:ff:ff:ff:ff:ff link-netnsid 0 
    inet 10.244.1.28/24 brd 10.244.1.255 scope global eth0 
       valid_lft forever preferred_lft forever 
4: net1@if11: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default 
    link/ether 8e:c0:49:08:8a:ab brd ff:ff:ff:ff:ff:ff link-netnsid 0 
    inet 10.10.1.21/16 brd 10.10.255.255 scope global net1 
       valid_lft forever preferred_lft forever 

7.10.2 Check SR-IOV CNI Plugin 
Intel introduced the SR-IOV CNI plugin to allow a Kubernetes pod to be attached directly to an SR-IOV virtual function (VF) using the 
standard SR-IOV VF driver in the container host’s kernel. Details on the SR-IOV CNI plugin can be found at:  
https://github.com/intel/sriov-cni  

Verify the networks using the following command: 
# kubectl get net-attach-def  
NAME            AGE  
sriov-net       4d3h 

An example using the SR-IOV CNI Plugin can be found in Section 7.8.1. To test it again, create a pod as shown below: 
apiVersion: v1   
kind: Pod 
metadata: 
  name: pod-sriov-netdevice-1 
  annotations: 
    k8s.v1.cni.cncf.io/networks: sriov-net 
spec: 
  containers: 
  - name: pod-sriov-netdevice-1 
    image: docker.io/centos/tools:latest 
    command: 
    - /sbin/init 
    resources: 
      requests: 
        intel.com/intel_sriov_netdevice: '1' 
      limits: 
        intel.com/intel_sriov_netdevice: '1' 

After the pod is running, verify that the additional network interface has been added to the pod: 
# kubectl exec pod-sriov-netdevice-1 -- ip a  
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000  
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 
    inet 127.0.0.1/8 scope host lo 
       valid_lft forever preferred_lft forever 
3: eth0@if72: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UP group default 
    link/ether 32:b8:e3:04:c8:93 brd ff:ff:ff:ff:ff:ff link-netnsid 0 
    inet 10.244.1.29/24 brd 10.244.1.255 scope global eth0 
       valid_lft forever preferred_lft forever 
14: net1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000 
    link/ether de:05:9d:bc:62:f3 brd ff:ff:ff:ff:ff:ff 
    inet 10.56.217.173/24 brd 10.56.217.255 scope global net1 
       valid_lft forever preferred_lft forever 

7.10.3 Check Userspace CNI Plugin 
The Userspace CNI is a Container Network Interface (CNI) plugin designed to implement userspace networking, such as DPDK-based 
applications. The current implementation supports the DPDK enhanced Open vSwitch (OVS-DPDK) and Vector Packet Processing 
(VPP) along with the Multus CNI plugin in Kubernetes for the bare metal container deployment model. It enhances the high-
performance container networking solution and data plane acceleration for NFV environment.21 

By default, OVS is installed as the vSwitch, alongside a net-attach-def to expose vhostuser resources through Userspace CNI in 
Kubernetes. 

Verify the resource is available using the following command: 

 
21 Refer to https://software.intel.com/articles/optimization-notice for more information regarding performance and optimization choices in Intel 
software products. See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

https://github.com/intel/sriov-cni
https://software.intel.com/articles/optimization-notice
http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  69 

# kubectl get net-attach-def 
NAME            AGE 
userspace-ovs   7d 

With the userspace-ovs resource available, create a pod requesting an interface: 
apiVersion: v1   
kind: Pod 
metadata: 
  name: pod-userspace-1 
  annotations: 
    k8s.v1.cni.cncf.io/networks: userspace-ovs 
spec: 
  containers: 
  - name: pod-userspace-1 
    image: docker.io/centos/tools:latest 
    command: 
    - /sbin/init 
    volumeMounts: 
    - mountPath: /vhu/ 
      name: socket 
  volumes: 
  - name: socket 
    hostPath: 
      path: /var/lib/cni/vhostuser/ 

After the pod is running, verify that the vhostuser socket has been added to the container: 
# kubectl exec pod-userspace-1 -- ls /vhu/      
e4c7e6fb63ec737f7aee3f451e79f7fba2cac6d212b88fb0725da1b9afed1cfb 

Before checking OVS, check the node that the pod is deployed on: 
# kubectl describe pod pod-userspace-1 | grep Node:  
Node:         node1/<node IP> 

Connect to the node using SSH, and check that the vhostuser socket and interface has been added to OVS: 
# ovs-vsctl show  
fbb7d4e6-6f93-4bcd-a254-ff10f1bd5fd7  
    Bridge br0 
        datapath_type: netdev 
        Port br0 
            Interface br0 
                type: internal 
        Port e4c7e6fb63ec-net1 
            Interface e4c7e6fb63ec-net1 
                type: dpdkvhostuser 
    ovs_version: "2.13.0" 

At this point, the vhostuser socket is ready to use in the pod. The steps for using VPP as the vSwitch are similar, but instead of the 
userspace CNI resource name userspace-ovs, it is userspace-vpp.  

More details and examples can be found here: https://github.com/intel/userspace-cni-network-plugin 

7.10.4 Check Bond CNI Plugin 
Bond CNI provides a method for aggregating multiple network interfaces into a single bonded interface inside a container in a 
Kubernetes pod. Linux bonding drivers provide several modes for interface bonding, such as round robin and active aggregation. 

Bond CNI integrates with Multus and the network attachment definition policy declaration. It can be used alongside Multus and 
SR-IOV CNI to provide failover for network interfaces in a Kubernetes cluster, to increase the total bandwidth available to a single 
container interface, or for other cases in which interface bonding is used. 
To verify that Bond CNI is installed on the host, look for its binary in the /opt/cni/bin directory: 

# ll /opt/cni/bin/bond 
-rwxr-xr-x. 1 root root 3836352 Feb 27 13:03 /opt/cni/bin/bond 

Assuming the cluster was created using the provided configuration default, there should be SR-IOV network resources on the node 
as shown below: 

# kubectl get node node1 -o json | jq '.status.allocatable'          
  "cmk.intel.com/exclusive-cores": "2", 
  "cpu": "93", 
  "ephemeral-storage": "452220352993", 
  "hugepages-1Gi": "4Gi", 

https://github.com/intel/userspace-cni-network-plugin


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  70 

  "intel.com/intel_sriov_dpdk_700_series": "2", 
  "intel.com/intel_sriov_dpdk_800_series": "0", 
  "intel.com/intel_sriov_netdevice": "4", 
  "memory": "191733164Ki", 
  "pods": "110", 
  "qat.intel.com/generic": "32" 
} 

If there are netdevice VFs configured, create a simple SR-IOV CNI resource as shown below: 
apiVersion: "k8s.cni.cncf.io/v1"  
kind: NetworkAttachmentDefinition 
metadata: 
  name: sriov-bond-net 
  annotations: 
    k8s.v1.cni.cncf.io/resourceName: intel.com/intel_sriov_netdevice 
spec: 
  config: '{ 
  "type": "sriov", 
  "name": "sriov-network", 
  "spoofchk":"off" 
}' 

Now create a Bond CNI resource: 
apiVersion: "k8s.cni.cncf.io/v1"  
kind: NetworkAttachmentDefinition 
metadata: 
  name: bond-net 
spec: 
  config: '{ 
  "type": "bond", 
  "cniVersion": "0.3.1", 
  "name": "bond-net", 
  "ifname": "bond0", 
  "mode": "active-backup", 
  "failOverMac": 1, 
  "linksInContainer": true, 
  "miimon": "100", 
  "links": [ 
     {"name": "net1"}, 
     {"name": "net2"} 
  ], 
  "ipam": { 
    "type": "host-local", 
    "subnet": "10.56.217.0/24", 
    "routes": [{ 
      "dst": "0.0.0.0/0" 
    }], 
    "gateway": "10.56.217.1" 
  } 
}' 

Verify that both bond-net and sriov-bond-net were created: 
# kubectl get net-attach-def  
NAME             AGE  
bond-net         15s 
sriov-bond-net   36s 

Now create a pod requesting two VFs from sriov-bond-net, which is used to create a bonded interface from bond-net through 
Bond CNI: 

apiVersion: v1   
kind: Pod 
metadata: 
  name: pod-bond-cni-1 
  annotations: 
    k8s.v1.cni.cncf.io/networks: '[ 
{"name": "sriov-bond-net", 
"interface": "net1" 
}, 
{"name": "sriov-bond-net", 
"interface": "net2" 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  71 

}, 
{"name": "bond-net", 
"interface": "bond0" 
}]' 
spec: 
  containers: 
  - name: pod-bond-cni-1 
    image: docker.io/centos/tools:latest 
    command: 
    - /sbin/init 
    resources: 
      requests: 
        intel.com/intel_sriov_netdevice: '2' 
      limits: 
        intel.com/intel_sriov_netdevice: '2' 

After the pod is running, verify that the two interfaces and the bonded interface were added using the command ip a inside the 
container. The two VFs are shown as net1 and net2, and the bonded interface configured with an IP address is shown as bond0. 

For more information on how to use Bond CNI, refer to: https://github.com/intel/bond-cni 

 

7.11 Check Grafana Telemetry Visualization 
BMRA deploys Grafana for telemetry visualization. It is available on every cluster node on port 30000. Due to security reasons, this 
port is not exposed outside the cluster by default. Default credentials are admin/admin and you should change the default 
password after first login. 

The Grafana TLS certificate is signed by the cluster CA and it is available in /etc/kubernetes/ssl/ca.crt 

Visit Grafana at https://<node-ip>:30000/ 

BMRA comes with a set of dashboards from the kube-prometheus project (https://github.com/prometheus-operator/kube-
prometheus). Dashboards are available in the Dashboards -> Manage menu as shown in Figure 12. 

 

 

Figure 12. Grafana Dashboard Example 

 

7.12 Check Telemetry Aware Scheduler 
BMRA can deploy TAS Health Metric Demo Policy (https://github.com/intel/platform-aware-scheduling/blob/master/telemetry-
aware-scheduling/docs/health-metric-example.md) when tas_enable_demo_policy: true, as shown below:  

# Intel Telemetry Aware Scheduling 
tas_enabled: true 
tas_namespace: monitoring 

https://github.com/intel/bond-cni
https://github.com/prometheus-operator/kube-prometheus
https://github.com/prometheus-operator/kube-prometheus
https://github.com/intel/platform-aware-scheduling/blob/master/telemetry-aware-scheduling/docs/health-metric-example.md
https://github.com/intel/platform-aware-scheduling/blob/master/telemetry-aware-scheduling/docs/health-metric-example.md


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  72 

# create and enable TAS demonstration policy: [true, false] 
tas_enable_demo_policy: true 

The Health Metric Demo Policy requires a Prometheus metric file to exist on the node and read by Prometheus. For security 
reasons, BMRA does not deploy it in the /tmp directory, where every user has access. Instead, it is deployed in the 
/opt/intel/tas-demo-policy/ directory with root-only access. 

To verify that the policy has been deployed, use the command: 
kubectl get taspolicies -n monitoring  

Details of this policy, including the rules and associated metrics, can be described with following command: 
kubectl describe taspolicies demo-policy -n monitoring 

To verify that the proper files exist on the worker node, use the following command: 
# cat /opt/intel/tas-demo-policy/test.prom 
node_health_metric 0 

The node health metric value indicates the following: 
• When node_health_metric = 0, it allows scheduling of pods on this node. 
• When node_health_metric = 2, then the descheduler deschedules pods from this node. 

7.12.1 Check Dontschedule Policy 
To change the value of the node_health_metric to dontschedule, use the following command: 

echo 'node_health_metric 2’ | ssh <user@worker> -T "cat /opt/intel/tas-demo-policy/test.prom" 

Then, to deploy a pod susceptible to the dontschedule policy, run the following command on the first controller node: 
kubectl apply -f /usr/src/telemetry-aware-scheduling/deploy/health-metric-demo/demo-pod.yaml 
The pod should not be deployed on node with node_health_metric == 2. 

You can verify that TAS has been called to schedule the pod by looking at the logs: 
kubectl logs pod/tas-telemetry-aware-scheduling-xxxx-yyyy -c tas-controller -n monitoring 
Example output: 
2019/08/19 15:30:59 NODE_B health_metric = 2 
2019/08/19 15:30:59 NODE_A health_metric = 0 
2019/08/19 15:30:59 NODE_A violating : health_metric Equals 2 
2019/08/19 15:30:59 NODE_C health_metric = 0] 
2019/08/19 15:30:59 Filtered nodes available for demo-policy : NODE_A NODE_C 

7.12.2 Check Deschedule Policy 
To see the impact of the descheduling policy, use a component called descheduler. For more details, visit 
https://github.com/intel/platform-aware-scheduling/blob/master/telemetry-aware-scheduling/docs/health-metric-
example.md#seeing-the-impact 

Set the node_health_metric to deschedule as follows:  
echo 'node_health_metric 2’ | ssh <user@worker> -T "cat /opt/intel/tas-demo-policy/test.prom" 

Then run the descheduler with following command: 
/usr/src/sigs.k8s.io/descheduler/_output/bin/descheduler --policy-config-file 
/usr/src/telemetry-aware-scheduling/deploy/health-metric-demo/descheduler-policy.yaml --
kubeconfig /etc/kubernetes/admin.conf 

The pod should be rescheduled onto a healthier node based on its TAS policy. If no other suitable node is available, the new pod 
fails to schedule. 

 

7.13 Check Key Management Infrastructure with Intel SGX 
To verify the Key Management infrastructure with SGX and use the private keys provisioned to Intel SGX enclaves, see Enabling Key 
Management NGINX Applications for step-by-step instructions to set up and run the NGINX workload. 

 

7.14 Check Intel® Server GPU Device and Driver 
BMRA deploys the intel-gpu/kernel project from GitHub for the latest Intel® Server GPU kernel driver for media processing. To verify 
that the devices and drivers are present in the system with the correct configuration, perform the following actions. 

After installation, confirm the i915 driver presence and that the ASPEED device is ignored. The kernel option 915.force_probe=* 
helps ensure the i915 driver probes for the SG1 device and i915.enable_guc=2 helps ensure the device is enabled for SR-IOV. 

# lsmod | grep i915 

https://github.com/intel/platform-aware-scheduling/blob/master/telemetry-aware-scheduling/docs/health-metric-example.md%23seeing-the-impact
https://github.com/intel/platform-aware-scheduling/blob/master/telemetry-aware-scheduling/docs/health-metric-example.md%23seeing-the-impact
https://github.com/intel-gpu/kernel


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  73 

i915_spi               24576  0 
mtd                    77824  17 i915_spi 
i915                 2609152  0 
video                  53248  1 i915 
i2c_algo_bit           16384  1 i915 
drm_kms_helper        217088  1 i915 
drm                   610304  3 drm_kms_helper,i915 
 
# cat /proc/cmdline 
BOOT_IMAGE=/boot/vmlinuz-5.4.48+ root=/dev/sda1 ro crashkernel=auto rhgb quiet 
i915.force_probe=* modprobe.blacklist=ast,snd_hda_intel i915.enable_guc=2 

Verify the Intel Server GPU devices (4907) are present and using i915 driver. 
# lspci | grep -i VGA 
02:00.0 VGA compatible controller: ASPEED Technology, Inc. ASPEED Graphics Family (rev 41) 
1c:00.0 VGA compatible controller: Intel Corporation Device 4907 (rev 01) 
21:00.0 VGA compatible controller: Intel Corporation Device 4907 (rev 01) 
26:00.0 VGA compatible controller: Intel Corporation Device 4907 (rev 01) 
2b:00.0 VGA compatible controller: Intel Corporation Device 4907 (rev 01) 
 
# lspci -n -v -s 1c:00.0 
1c:00.0 0300: 8086:4907 (rev 01) (prog-if 00 [VGA controller]) 
        Subsystem: 8086:35cf 
        Flags: bus master, fast devsel, latency 0, IRQ 423, NUMA node 0 
        Memory at a8000000 (64-bit, non-prefetchable) [size=16M] 
        Memory at 387e00000000 (64-bit, prefetchable) [size=8G] 
        Expansion ROM at <ignored> [disabled] 
        Capabilities: [40] Vendor Specific Information: Len=0c <?> 
        Capabilities: [70] Express Endpoint, MSI 00 
        Capabilities: [ac] MSI: Enable+ Count=1/1 Maskable+ 64bit+ 
        Capabilities: [d0] Power Management version 3 
        Capabilities: [100] Latency Tolerance Reporting 
        Kernel driver in use: i915 
        Kernel modules: i915 

Confirm the Intel Server GPU kernel drivers are present on the system 
# ls /dev/dri/ -l 
total 0 
crw-rw----. 1 root video 226,   0 Apr  8 10:15 card0 
crw-rw----. 1 root video 226,   1 Apr  8 10:15 card1 
crw-rw----. 1 root video 226,   2 Apr  8 10:15 card2 
crw-rw----. 1 root video 226,   3 Apr  8 10:15 card3 
crw-rw----. 1 root video 226, 128 Apr  8 10:15 renderD128 
crw-rw----. 1 root video 226, 129 Apr  8 10:15 renderD129 
crw-rw----. 1 root video 226, 130 Apr  8 10:15 renderD130 
crw-rw----. 1 root video 226, 131 Apr  8 10:15 renderD131 

You are now ready to deploy transcode workloads to utilize the hardware components. For more information, see the Open Visual 
Cloud GitHub site: https://github.com/OpenVisualCloud/CDN-Transcode-Sample. 

 

7.15 Check Intel QAT Engine with OpenSSL 
Check the version of Intel® QAT crypto engine present on the system. 

# openssl engine -v qatengine 
(qatengine) Reference implementation of QAT crypto engine(qat_sw) v0.6.7 
     ENABLE_EXTERNAL_POLLING, POLL, ENABLE_HEURISTIC_POLLING, 
     GET_NUM_REQUESTS_IN_FLIGHT, INIT_ENGINE 

Run an OpenSSL speed test. 
# openssl speed rsa2048 
Doing 2048 bits private rsa's for 10s: 
9943 2048 bits private RSA's in 9.99s 
Doing 2048 bits public rsa's for 10s: 
347087 2048 bits public RSA's in 10.00s 
OpenSSL 1.1.1j  16 Feb 2021 
built on: Thu Mar 25 15:44:30 2021 UTC 
options:bn(64,64) rc4(16x,int) des(int) aes(partial) blowfish(ptr) 
compiler: gcc -fPIC -pthread -m64 -Wa,--noexecstack -Wall -Wa,--noexecstack -g -O2 -ffile-
prefix-map=/build/openssl-8MEVD6/openssl-1.1.1j=. -flto=auto -ffat-lto-objects -fstack-

https://github.com/OpenVisualCloud/CDN-Transcode-Sample


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  74 

protector-strong -Wformat -Werror=format-security -DOPENSSL_TLS_SECURITY_LEVEL=2 -
DOPENSSL_USE_NODELETE -DL_ENDIAN -DOPENSSL_PIC -DOPENSSL_CPUID_OBJ -DOPENSSL_IA32_SSE2 -
DOPENSSL_BN_ASM_MONT -DOPENSSL_BN_ASM_MONT5 -DOPENSSL_BN_ASM_GF2m -DSHA1_ASM -DSHA256_ASM -
DSHA512_ASM -DKECCAK1600_ASM -DRC4_ASM -DMD5_ASM -DAESNI_ASM -DVPAES_ASM -DGHASH_ASM -
DECP_NISTZ256_ASM -DX25519_ASM -DPOLY1305_ASM -DNDEBUG -Wdate-time -D_FORTIFY_SOURCE=2 
                  sign    verify    sign/s verify/s 
rsa 2048 bits 0.001005s 0.000029s    995.3  34708.7 

Repeat the OpenSSL speed test with QAT engine for increased performance. 
# openssl speed -engine qatengine -async_jobs 8 rsa2048 
engine "qatengine" set. 
Doing 2048 bits private rsa's for 10s: 
45272 2048 bits private RSA's in 9.87s 
Doing 2048 bits public rsa's for 10s: 
756968 2048 bits public RSA's in 9.25s 
OpenSSL 1.1.1j  16 Feb 2021 
built on: Thu Mar 25 15:44:30 2021 UTC 
options:bn(64,64) rc4(16x,int) des(int) aes(partial) blowfish(ptr) 
compiler: gcc -fPIC -pthread -m64 -Wa,--noexecstack -Wall -Wa,--noexecstack -g -O2 -ffile-
prefix-map=/build/openssl-8MEVD6/openssl-1.1.1j=. -flto=auto -ffat-lto-objects -fstack-
protector-strong -Wformat -Werror=format-security -DOPENSSL_TLS_SECURITY_LEVEL=2 -
DOPENSSL_USE_NODELETE -DL_ENDIAN -DOPENSSL_PIC -DOPENSSL_CPUID_OBJ -DOPENSSL_IA32_SSE2 -
DOPENSSL_BN_ASM_MONT -DOPENSSL_BN_ASM_MONT5 -DOPENSSL_BN_ASM_GF2m -DSHA1_ASM -DSHA256_ASM -
DSHA512_ASM -DKECCAK1600_ASM -DRC4_ASM -DMD5_ASM -DAESNI_ASM -DVPAES_ASM -DGHASH_ASM -
DECP_NISTZ256_ASM -DX25519_ASM -DPOLY1305_ASM -DNDEBUG -Wdate-time -D_FORTIFY_SOURCE=2 
                  sign    verify    sign/s verify/s 
rsa 2048 bits 0.000218s 0.000012s   4586.8  81834.42632.7  48921.5 
 

Note that the number of sign operations per second jumps from 995.3 to 4586.8, which shows that approximately 19 to 20% 
performance gain is observed when Intel QAT Engine for OpenSSL is used.22 

 

8 Conclusion – Automation Eases Reference Application Deployment 
This document contains notes on installation, configuration, and use of networking and device plug-in features for Kubernetes. By 
following this document, it is possible to set up a Kubernetes cluster and add simple configurations for some of the features 
provided by Intel. The playbook enables users to perform automated deployments, which decrease installation time from days to 
hours. The included example use cases show how the features can be consumed to provide additional functionality in both 
Kubernetes and the deployed pods, including but not limited to flexible network configurations, Node Feature Discovery, and CPU 
pinning for exclusive access to host cores. 

Intel and its partners have been working with open-source communities to add new techniques and address key barriers to 
networking adoption in Kubernetes for containers by harnessing the power of Intel® architecture-based servers to help improve 
configuration, manageability, deterministic performance, network throughput, service-assurance, and resilience of container 
deployments. 

We highly recommend that you take advantage of these advanced network features and device plug-ins in container-based NFV 
deployments. 
  

 
22 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part 3: 

Build Your Reference Architecture 
 
  



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A 
BMRA Setup for All 

Configuration Profile Options 
 
  



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  77 

 BMRA Setup for All Configuration Profile Options 
This appendix is relevant for generating BMRA Flavors based on their Configuration Profiles. It provides the prerequisites for a 
system setup and includes information that enables you to review BIOS prerequisites and software BOMs at a glance. The 
information is presented in multi-column tables to give an easy way to compare and assess the differences between the BMRA 
Flavors that are available. 

After setting up the Kubernetes system, refer to the specific appendix from the following list to build the BMRA flavor:  
Appendix B, BMRA Basic Configuration Profile Setup 
Appendix C, BMRA Full Configuration Profile Setup 
Appendix D, BMRA On-Premises Edge Configuration Profile Setup 
Appendix E, BMRA Remote CO-Forwarding Configuration Profile Setup 
Appendix F, BMRA Regional Data Center Configuration Profile Setup 

Note: The taxonomy for the BMRA Configuration Profile settings is defined in Section 0. 

 

 Set Up an Ansible Host 
BMRA Kubernetes clusters require an Ansible Host that stores information about all remote nodes managed. In general, any 
machine running a recent Linux distribution can be used as Ansible Host for any of the supported BMRA deployments (regardless of 
target OS on the control and worker nodes), as long as it meets the following basic requirements: 

• Network connectivity to the control and worker nodes, including SSH 
• Internet connection (using Proxy if necessary) 
• Git utility installed 
• Python 3 installed 
• Ansible version 2.9.20 installed 

Step-by-step instructions for building the Ansible Host are provided below for the same list of operating systems that are 
supported for the control and worker nodes (see Section 3.1.3): 

A.1.1 CentOS Linux or RHEL Version 8 or Version 7 as Ansible Host 
1. Install the Linux OS using any method supported by the vendor (CentOS Community or Red Hat, Inc., respectively). If using 

the iso image, choose the Minimal iso version, or select the "Minimal Install" (Basic functionality) option under Software 
Selection. 

2. Make the proper configuration during installation for the following key elements: Network (Ethernet) port(s) IP Address; 
Host Name, Proxies (if necessary), and NTP (Network Time Protocol). 

3. After the installation completes and the machine reboots, login as root and confirm that it has a valid IP address and can 
connect (ping) to the control and worker nodes. 

4. Make sure the http and https proxies are set, if necessary, for internet access. The configuration can be completed with the 
export command or by including the following lines in the /etc/environment file: 
http_proxy=http://proxy.example.com:1080 
https_proxy=http://proxy.example.com:1080 

Then, load the proxies configuration in the current environment: 
# source /etc/environment 

5. Install Git: 
# yum install -y git 

6. Install Python 3: 
# yum -y install python3 

7. Install Ansible: 
# pip3 install ansible==2.9.20 

The Ansible Host box is now ready to deploy the Container BMRA. Follow the instructions in Section 3.3. 

A.1.2 Ubuntu 20.04 LTS as Ansible Host 
1. Install the OS using any method supported by the vendor (Canonical Ltd.). Either the Desktop or Server distribution can be 

used. Select the “Minimal installation” option under “Updates and Other software”. 
2. Follow steps 2, 3, and 4 as described above for CentOS or RHEL. 
3. Update the installation: 

# sudo apt update 

4. Install SSH utilities: 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  78 

# sudo apt install openssh-server 

5. Install Git: 
# sudo apt install -y git 

6. Install Python 3-pip: 
# sudo apt install -y python3-pip 

7. Install Ansible: 
# sudo pip3 install ansible==2.9.20 

The Ansible Host box is now ready to deploy the Container BMRA. Follow the instructions in Section 3.3. 

 

 Set Up the Control and Worker Nodes - BIOS Prerequisites 
This section is applicable for all BMRA Configuration Profiles. 

Enter the UEFI or BIOS menu and update the configuration as shown in Table 23 and Table 24. 
Note: The method for accessing the UEFI or BIOS menu is vendor-specific, for example: 

https://www.dell.com/support/article/us/en/04/sln167315/how-to-boot-into-the-bios-or-the-lifecycle-controller-on-your-
poweredge-server?lang=en  

Table 23. BIOS Prerequisites for Control and Worker Nodes for Basic and Full Configuration Profiles 

PROFILES 

BASIC 
CONFIGURATION 

PROFILE 

FULL 
CONFIGURATION 

PROFILE 

Configuration 

BIOS Profile Energy Balance Max Performance 

Grub Command Line (values are set by Ansible) 

Isolcpus Optional Yes 

Hugepages Optional Yes 

P-state=disable Optional Yes, No-SST-BF 

Limit C-state Optional Yes 

   

Table 24. BIOS Prerequisites for Control and Worker Nodes for On-Premises Edge, Remote Co-Forwarding, and Regional Data 
Center Configuration Profiles 

PROFILES 

ON-PREMISES EDGE 
CONFIGURATION 

PROFILE 

REMOTE CO-
FORWARDING 

CONFIGURATION 
PROFILE 

REGIONAL DATA 
CENTER 

CONFIGURATION 
PROFILE 

Configuration 
BIOS Profile Max Performance Deterministic Max Performance 

Grub Command Line (values are set by Ansible) 
Isolcpus Yes Yes Optional 
Hugepages Yes Yes Optional 
P-state=disable No Yes, No-SST-BF Optional 
Limit C-state No Yes Optional 

    

The BIOS profile referenced in these tables consists of a number of configurations in the power management, thermal management, 
and configuration for Intel® platform technologies such as Intel® Virtualization Technology, Intel® Hyper-Threading Technology, 
Intel SpeedStep® technology, and Intel® Turbo Boost Technology. 

The table provides three different BIOS profiles. 
1. Energy Balance 
2. Max Performance 
3. Deterministic 

The configuration and values set per each BIOS profile are defined in Table 18 and Table 19. 

https://www.dell.com/support/article/us/en/04/sln167315/how-to-boot-into-the-bios-or-the-lifecycle-controller-on-your-poweredge-server?lang=en
https://www.dell.com/support/article/us/en/04/sln167315/how-to-boot-into-the-bios-or-the-lifecycle-controller-on-your-poweredge-server?lang=en


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  79 

Note: The above values are the recommended configuration options on the Intel® S2600WFQ and Intel® M50CYP server boards. 
Some server boards may not provide the same options that are documented in this table. Vendors typically provide options 
for max performance configuration with virtualization. 

 

 Configuration Dictionary - Group Variables 
All of the variables are important but pay special attention to the variables in bold as they almost always need to be updated to 
match the target environment. 

Table 25. Configuration Dictionary – Group Variables 

COMPONENT 
COMPONENT 
PARAMETER TYPE VALUE DESCRIPTION/COMMENT 

Common Cluster Configuration 

Kubernetes  Boolean true/false Specifies whether to deploy Kubernetes 

 kube_version String v1.21.1 Kubernetes version 

 container_runtime String docker, crio, 
containerd 

Container runtime to use as base engine for 
cluster deployment 

 docker_version String 19.03 Docker version 

 containerd_version String 1.4.6 Containerd version 

 crio_version String 1.21.3 CRI-O version 

 update_all_packages Boolean false Runs system-wide package update (apt dist-
upgrade, yum update, ...). Tip: Can be set using 
host_vars for more granular control. 

 http_proxy URL http://proxy.examp
le.com:1080 

HTTP proxy address. Comment out if your 
cluster is not behind proxy. 

 https_proxy URL http://proxy.examp
le.com:1080 

HTTPS proxy address. Comment out if your 
cluster is not behind proxy. 

 additional_no_proxy Comma-separated 
list of addresses 

.example.com Additional URLs that are not behind proxy, for 
example your corporate intra network DNS 
domain, e.g., “.intel.com”. Note: Kubernetes 
nodes addresses, pod network, etc. are added to 
no_proxy automatically. 

 kube_network_plugin_
multus 

Boolean True Specifies whether to use the network plugin 
Multus 

 multus_version String V3.7 Multus version 

 kube_network_plugin String calico/flannel Specifies networking CNI to use 

 kube_pods_subnet CIDR 10.244.0.0/16 Kubernetes pod subnet. Make sure that it matches 
your CNI plugin requirements (Calico by default) 
and doesn’t overlap with your corporate LAN. 

 kube_service_address
es 

CIDR 10.233.0.0/18 Kubernetes service subnet. Make sure that it 
matches your CNI plugin requirements (Calico by 
default) and doesn’t overlap with your corporate 
LAN. 

 kube_proxy_mode String Iptables Instructs kube_proxy how to set up NAT and load 
balancing functions 

 kube_proxy_nodeport
_addresses_cidr: 

CIDR 127.0.0.0/8 Kubernetes service subnet 

 cluster_name DNS domain cluster.local Name of the cluster 

 registry_local_address String “localhost:30500” Container registry address IP and port 

 psp_enabled Boolean true/false Enable pod security policy admission controller 
and create minimal set of rules 

 always_pull_enabled Boolean true/false Set image pull policy to Always. Pulls images 
before starting containers. Valid credentials must 
be configured. 

Node Feature Discovery 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  80 

COMPONENT 
COMPONENT 
PARAMETER TYPE VALUE DESCRIPTION/COMMENT 

nfd_enabled  Boolean true/false Specifies whether to deploy Node Feature 
Discovery 

 nfd_version String 0.9 NFD version 

 nfd_build_image_locall
y 

Boolean false Builds NFD image locally instead of using the one 
from public registry. 

 nfd_namespace String kube-system Kubernetes namespace used for NFD deployment 

 nfd_sleep_interval String 60s Defines how often NFD queries node status and 
update node labels 

Intel CPU Manager for Kubernetes23 

cmk_enabled  Boolean true/false Enables Intel CPU Manager for Kubernetes. 

 cmk_namespace String kube-system Kubernetes namespace used for CMK deployment 

 cmk_use_all_hosts Boolean false Enables all hosts 

 cmk_hosts_list Comma-separated 
strings 

node1,node2 Comma-separated list of K8s worker node 
names that the CMK runs on 

 cmk_shared_num_cor
es 

Integer 2 Number of CPU cores to be assigned to the 
"shared" pool on each of the nodes 

 cmk_exclusive_num_c
ores  

Integer 2 Number of CPU cores to be assigned to the 
"exclusive" pool on each of the nodes 

 cmk_shared_mode String, options: 
packed, spread 

packed Shared pool allocation mode 

 cmk_exclusive_mode String, options: 
packed, spread 

packed Exclusive pool allocation mode 

Native Built-in Kubernetes CPU Manager 

native_cpu_manager_
enabled 

 Boolean true/false Enabling CMK and built-in CPU Manager is not rec
ommended. Setting this option as "true" enables 
the "static" policy; otherwise the default "none" 
policy is used. 

 native_cpu_manager_s
ystem_reserved_cpus 

Kubernetes 
millicores 

2000m Number of CPU cores to be reserved for 
housekeeping (2000m = 2000 millicores = 2 
cores) 

 native_cpu_manager_k
ube_reserved_cpus 

Kubernetes 
millicores 

1000m Number of CPU cores to be reserved for Kubelet 

 native_cpu_manager_r
eserved_cpus 

Comma-separated 
list of integers or 
integer ranges 

0,1,2 Explicit list of the CPUs reserved from pods 
scheduling. 

Note: Supported only with kube_version 
1.17 and newer, overrides 2 previous 
options. 

Topology Manager (Kubernetes Built-in)24 

topology_manager_e
nabled 

 Boolean true/false Enables Kubernetes built-in Topology Manager 

 topology_manager_pol
icy 

String, options: 
none, best-
effort, restricted, si
ngle-numa-node 

best-effort Topology Manager policy 

Intel SR-IOV Network Device Plugin 

sriov_network_operat
or_enabled 

 Boolean  true/false Enables SR-IOV Network Operator 
 

 sriov_network_operato
r_namespace 

String sriov-network-
operator 

Kubernetes namespace used to deploy SR-IOV 
network operator 

 
23 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 
24 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

http://www.intel.com/PerformanceIndex
http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  81 

COMPONENT 
COMPONENT 
PARAMETER TYPE VALUE DESCRIPTION/COMMENT 

sriov_net_dp_enable
d 

 Boolean true/false Enables SR-IOV network device plugin 

 sriov_net_dp_namespa
ce 

String kube-system Kubernetes namespace used to deploy SR-IOV 
network device plugin 

 sriov_net_dp_build_im
age_locally 

Boolean true/false Build and store image locally or use one from 
public external registry 

 sriovdp_config_data Multi-line string in 
JSON format 

Two resource pools 
for kernel stack and 
DPDK-based 
networking 
respectively 

SR-IOV network device plugin configuration. For 
more information on supported configurations, 
refer to https://github.com/intel/sriov-network-
device-plugin#configurations  

Intel Device Plugins for Kubernetes 

Intel_dp_namespace  String kube-system Kubernetes namespace used to deploy Intel 
device plugin operator 

qat_dp_enabled  Boolean true/false Enables Intel QAT device plugin 

 qat_dp_namespace String kube-system Namespace used for Intel QAT device plugin 

sgx_dp_enabled  Boolean true/false Enables Intel SGX device plugin 

 sgx_dp_build_image_l
ocally 

Boolean true/false Build and store image locally or use one from 
public external registry 

 sgx_aesmd_namespac
e 

String kube-system Kubernetes namespace used to deploy SGX 
device plugin 

 sgx_dp_provision_limit Integer 20  

 sgx_dp_enclave_limit Integer 20  

gpu_dp_enabled  Boolean true Enables Intel GPU device plugin 

 gpu_dp_namespace String kube-system Namespace used for Intel GPU device plugin 

Intel Key Management Reference Application 

kmra_enabled  Boolean true/false Enables Intel Key Management Reference 
Application 

 kmra_pccs_api_key String “ffffff……” API Key obtained from Intel’s Provisioning 
Certificate Service 

 kmra_deploy_demo_w
orkload 

Boolean true/false Enable to deploy a KMRA demo workload (NGINX 
Server) 

Service Mesh 

Istio_enabled  Boolean true/false Enables Istio service mesh for Kubernetes 

Intel Telemetry Aware Scheduling 

tas_enabled  Boolean true/false Enables Intel Telemetry Aware Scheduling 

 tas_namespace String monitoring Kubernetes namespace used for TAS deployment 

 tas_enable_demo_poli
cy 

Boolean false Creates demo TAS policy 

Telemetry Configuration 

collectd_scrap_interv
al 

 Integer 30 Duration to gather metrics using collectd 

telegraf_scrap_interv
al 

 Integer 30 Duration to gather metrics using Telegraf 

Example Network Attachment Definitions (Ready to Use Examples of Custom CNI Plugin Configuration) 

example_net_attach_
defs.  

 List of dictionaries [ ] Example network attached definition objects to 
create 

 userspace_ovs_dpdk Boolean true/false Example net-attach-def for Userspace CNI with 
OVS-DPDK 

 userspace_vpp Boolean true/false Example net-attach-def for Userspace CNI with 
VPP 

https://github.com/intel/sriov-network-device-plugin#configurations
https://github.com/intel/sriov-network-device-plugin#configurations


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  82 

COMPONENT 
COMPONENT 
PARAMETER TYPE VALUE DESCRIPTION/COMMENT 

 sriov_net_dp Boolean true/false Example net-attach-def for SR-IOV Net DP and 
SR-IOV CNI 

     

 Configuration Dictionary - Host Variables 
All of the variables are important but pay special attention to the variables in bold as they almost always need to be updated to 
match the target environment. 

Table 26. Configuration Dictionary – Host Variables 

COMPONENT 
COMPONENT 
PARAMETER TYPE VALUE DESCRIPTION/COMMENT 

SR-IOV and Network Devices Configuration 

iommu_enabled  Boolean true/false Sets up SR-IOV related kernel parameters and 
enables further SR-IOV configuration 

dataplane_interfaces  List of dictionaries n/a SR-IOV related NIC configuration using per-port 
approach 

 dataplane_interfaces[
*].name 

String enp24s0f0, 
enp24s0f1 

Name of the interface representing PF port 

 dataplane_interfaces[
*].bus_info 

String (PCI 
address) 

18:00.0, 18:00.1 PCI address of the PF port 

 dataplane_interfaces[
*].pf_driver 

String ice PF driver, "i40e", "ice" 

 dataplane_interfaces[
*].sriov_numvfs 

Integer 6, 4 Number of VFs to be created, associated with the 
PF 

 dataplane_interfaces[
*].default_vf_driver 

String, options: 
"i40evf", "iavf", "vf
io-pci", "igb_uio" 

vfio-pci for DPDK, 
iavf for kernel 
network stack 

Default driver module name that the VFs are 
bound to 

 dataplane_interfaces[
*].sriov_vfs[*] 

List of dictionaries n/a List of vfs to create with specific driver (non-
default) 

 dataplane_interfaces[
*].ddp_profile 

String, optional gtp.pkgo Name of the DDP package to be loaded onto the 
Network Adapter. Note: Use only for the port 0 
of the Network Adapter (PCI address ending with 
:00.0) 

update_nic_drivers  Boolean true/false Set to 'true' to update Linux kernel drivers for Intel 
Network Adapters 

update_nic_firmware  Boolean true/false Set 'true' to update Network Adapter firmware 

 firmware_update_nics List of strings   [enp24s0f0, enp24
s0f1] 

Additional list of Network Adapter interfaces that 
the FW update is executed on. Note: FW update is 
also executed on all Network Adapters listed in 
"dataplane_interfaces[*].name" 

install_ddp_packages  Boolean true/false Install Intel X700 and X800 series Network 
Adapters DDP packages. Required if DDP packages 
configured in dataplane_interfaces. 

install_dpdk  Boolean true/false DPDK installation is required for 
sriov_cni_enabled:true 

 dpdk_version String 21.08 DPDK version to install 

 dpdk_local_patches_di
r 

String Empty Path to user-supplied patches to apply against the 
specified version of DPDK 

SR-IOV and Bond CNI Plugins 

sriov_cni_enabled  Boolean true/false Installs SR-IOV CNI plugin binary on the node 

bond_cni_enabled  Boolean true/false Installs Bond CNI plugin binary on the node 

Userspace Networking Plugins and Accelerated Virtual Switches 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  83 

COMPONENT 
COMPONENT 
PARAMETER TYPE VALUE DESCRIPTION/COMMENT 

userspace_cni_enable
d 

 Boolean true/false Installs userspace CNI plugin binary on the node 

ovs_dpdk_enabled  Boolean true/false Installs OVS-DPDK on the node 

 ovs_dpdk_lcore_mask Hex integer 0x1 CPU mask for OVS-DPDK PMD threads 

 ovs_dpdk_socket_me
m 

Integer or comma-
separated list of 
integers 

256,0 Amount of memory per NUMA node allocated to 
OVS-DPDK PMD threads 

vpp_enabled  Boolean true/false Installs FD.io VPP (CentOS 7 and Ubuntu 18.04 
only) 

Hugepages/Memory Configuration 

hugepages_enabled  Boolean true/false Enables hugepages support 

 default_hugepage_size String, options: 2M, 
1G 

1G Default hugepages size 

 number_of_hugepages Integer 4 Sets how many hugepages should be created 

CPU Configuration 

isolcpus_enabled  Boolean true/false Enables CPU cores isolation from Linux scheduler 

 isolcpus Comma-separated 
list of CPU 
cores/ranges 

4-11 CPU cores isolated from Linux scheduler, if CMK is 
enabled it’s a good practice to match it with total 
number of shared and exclusive cores 

intel_pstate  String hwp_only Enables Intel P-state scaling driver 

 turbo_boost_enabled Boolean true/false Enables Turbo Boost for P-state attribute 

sst_pp_configuration
_enabled 

 Boolean true/false Enables Intel SST Performance Profiles for flexible 
configuration of SST-BF, SST-CP, and SST-TF 

 sst_pp_config_list List of dictionaries sst_bf: 
enable/disable 
sst_cp: 
enable/disable 
sst_tf: 
enable/disable 

Enables configuration of SST features through 
SST-PP 

 online_cpus_range String auto Specifies automatic configuration of online CPUs 
versus manual configuration of each SST feature 

sst_bf_configuration_
enabled 

 Boolean true/false Enables Intel SST Base Frequency technology. 
Support of SST-BF requires 'intel_pstate' to be 
'enabled' 

 clx_sst_bf_mode Character, options: 
s, m, r 

s Configure SST-BF mode for 2nd Generation Intel® 
Xeon® 
[s] Set SST-BF config (set min/max to 2700/2700 
and 2100/2100) 
[m] Set P1 on all cores (set min/max to 
2300/2300) 
[r] Revert cores to min/Turbo (set min/max to 
800/3900) 

 icx_sst_bf_enabled Boolean true/false Enables Intel SST Base Frequency technology. 3rd 
Generation Intel® Xeon® support of SST-BF 
requires 'intel_pstate' to be 'enabled'. 

 icx_sst_bf_with_core_p
riority 

Boolean true/false Prioritize (SST-CP) power flow to high frequency 
cores  

sst_cp_configuration_
enabled 

 Boolean true/false Enables Intel SST Core Power technology on 3rd 
Generation Intel® Xeon®.  SST-CP overrides any 
‘SST-BF configuration’. 

 sst_cp_priority_type Integer 1 0 – proportional 
1 - ordered 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  84 

COMPONENT 
COMPONENT 
PARAMETER TYPE VALUE DESCRIPTION/COMMENT 

 sst_cp_clos_groups List of dictionaries [ ] Allows for configuration of up to 4 CLOS groups 
including id, frequency_weight, min_MHz, 
max_MHz 

 sst_cp_cpu_clos List of dictionaries [ ] Allows for definition of CPU cores per close group 

sst_tf_configuration_
enabled 

 Boolean true/false Enables Intel SST Turbo Frequency 

Miscellaneous 

dns_disable_stub_list
ener 

dns_disable_stub_liste
ner 

Boolean true/false (Ubuntu only) Disables DNS stub listener from the 
systemd-resolved service, which is known to cause 
problems with DNS and Docker containers on 
Ubuntu 

install_real_time_pac
kage 

install_real_time_pack
age 

Boolean true/false (CentOS 7 only) Installs real-time Linux kernel 
packages. 

QAT Configuration 

update_qat_drivers  Boolean true/false Install QAT drivers and services 

qat_devices  List of dictionaries [ ] SR-IOV related QAT configuration using per-port 
approach 

 qat_devices[*].qat_dev String Crypto01, Crypto02, 
Crypto03 

Name of the interface representing PF port 

 qat_devices[*].qat_id String (PCI 
address) 

0000:ab:00.0, 
0000:xy:00.0, 
0000:yz:00.0 

PCI address of the PF port 

 qat_devices[*].module
_type 

String qat_c62x QAT hardware identifier, qat_c62x, qat_dh895xcc, 
qat_c3xxx, etc… 

 qat_devices[*].pci_type String c6xx  PF driver, "c6xx", "c3xx", “d15xx”, etc… 

 qat_devices[*].qat_srio
v_numvfs 

Integer 10 Number of VFs to be created per QAT device 
physical function 

openssl_install  Boolean true/false Install OpenSSL for use with QAT engine 

     

 

 
  



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B 
BMRA Basic 

Configuration Profile Setup 
 
  



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  86 

 BMRA Basic Configuration Profile Setup 
This appendix contains a step-by-step description of how to set up your BMRA Basic Configuration Profile Flavor. 

To use the BMRA Basic Configuration Profile, perform the following steps: 
1. Choose your hardware, set it up, and configure the BIOS. Refer to B.1 for details. 

You also need to build your Kubernetes cluster. Figure 1 is an example. 
2. Download the Ansible playbook for your Configuration Profile. Refer to B.2 for details. 
3. Set up the optional Ansible parameters using the information in the Configuration Profile tables. Refer to B.3 for details. 
4. Deploy the platform. Refer to B.4 for details. 
5. Validate the setup of your Kubernetes cluster. Refer to the tasks in Section 7 and run the validation processes according to the 

hardware and software components that you have installed. 

Be aware of the definitions of terminology used in tables in this appendix. 

TERM DESCRIPTION 

Hardware Taxonomy 
ENABLED Setting must be enabled in the BIOS (configured as Enabled, Yes, True, or similar value) 
DISABLED Setting must be disabled in the BIOS (configured as Disabled, No, False, or any other value 

with this meaning.) 
OPTIONAL Setting can be either disabled or enabled, depending on user's workload. Setting does not 

affect the Configuration Profile or platform deployment. 
Software Taxonomy 
TRUE Feature is included and enabled by default. 
FALSE Feature is included but disabled by default - can be enabled and configured by user. 
N/A Feature is not included and cannot be enabled or configured. 
  

 Step 1 - Set Up Basic Configuration Profile Hardware 
This section describes the hardware BOM and the BIOS configuration recommendation for using the BMRA Basic Configuration 
Profile Flavor. 

The tables in this section list the Hardware BOM for the Basic Configuration Profile, including Control Node, Worker Node Base, and 
Worker Node Plus. We recommend that you set up at least one control node and one worker node. 

Table 27. Hardware Setup for Basic Configuration Profile – 2nd Generation and 3rd Generation Intel Xeon Scalable Processors 

NODE OPTIONS 

2ND GENERATION INTEL 
XEON SCALABLE 

PROCESSOR 

3RD GENERATION INTEL 
XEON SCALABLE 

PROCESSOR 

Control Node Options Controller_2ndGen_1 Controller_3rdGen_1 

Worker Node Options Worker_2ndGen_Base_1 Worker_3rdGen_Base_1 

   

 Step 2 - Download Basic Configuration Profile Ansible Playbook 
This section contains step-by-step details for downloading the Basic Configuration Profile Ansible playbook. It also provides an 
overview of the Ansible playbook and lists the software that is automatically installed when the playbook is deployed. 

Download the Basic Configuration Profile Ansible playbook using the following steps: 
1. Log in to your Ansible host (the one that you will run these Ansible playbooks from). 
2. Clone the source code and change working directory: 

git clone https://github.com/intel/container-experience-kits/ 
cd container-experience-kits 
Check out the latest version of the playbooks using the tag from Table 22. For example: 
git checkout v21.09 

3. Export the environmental variable for Kubernetes Basic Configuration Profile deployment: 
export PROFILE=basic 

4. Install requirements for render.py script: 
pip3 install -r profiles/requirements.txt 

5. Generate example profiles and copy the example configuration files to the project root dir: 
make bmra-profiles profile=$PROFILE 

https://github.com/intel/container-experience-kits/


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  87 

B.2.1 Basic Configuration Profile Ansible Playbook Overview 
The Ansible playbook for the Basic Configuration Profile allows you to provision a production-ready Kubernetes cluster. Every 
capability included in the Basic Configuration Profile playbook can be disabled or enabled. Refer to the diagram and group and host 
variables tables below to see which Ansible roles are included and executed by default. 

The diagram shows the architecture of the Ansible playbooks and roles that are included in the Basic Configuration Profile. 

 

 

Figure 13. Basic Configuration Profile Ansible Playbook 

 

 Step 3 - Set Up Basic Configuration Profile 
Review the optional Ansible group and host variables in this section and select options that match your desired configuration. 
1. Update the inventory.ini file with your environment details as described in Section 3.3.3. 
2. Create host_vars files for all worker nodes specified in the inventory. For example, if you have worker1, worker2, and worker3 in 

the kube-node group, execute: 
mv host_vars/node1.yml host_vars/worker1.yml 
cp host_vars/worker1.yml host_vars/worker2.yml 
cp host_vars/worker1.yml host_vars/worker3.yml 

3. Update group and host variables to match your desired configuration. Refer to the tables in B.3.1 and B.3.2. 
Note: Pay special attention to the variables in bold as these almost always need to be updated individually to match your 

environment details. Make sure that <worker_node_name>.yml files have been created for all worker nodes specified 
in your inventory file. 

vim group_vars/all.yml 
vim host_vars/<worker_node_name>.yml 

The complete set of configuration variables for the Basic Configuration Profile along with their default values can be found in 
examples/basic directory. 

Variables are grouped into two main categories: 
1. Group variables – apply to both control and worker nodes and have cluster-wide impact. 
2. Host variables – their scope is limited to a single worker node. 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  88 

The tables below are a summary of group and host variables. For lists showing all configurable properties, see Section A.3 and 
Section A.4. All of the variables are important but pay special attention to variables in bold as they almost always need to be 
updated to match the target environment. 

B.3.1 Basic Configuration Profile Group Variables 

Table 28. Basic Configuration Profile – Group Variables 

COMPONENT VALUE  

Kubernetes true 

For the list of all 
configurable 
properties, see 
Section A.3 

nfd_enabled true 

topology_manager_enabled true 

sriov_network_operator_enabled false 

sriov_net_dp_enabled false 

example_net_attach_defs, sriov_net_dp false 

   

B.3.2 Basic Configuration Profile Host Variables25 

Table 29. Basic Configuration Profile – Host Variables 

COMPONENT VALUE  

iommu_enabled false 
For the list of all 
configurable 
properties, see 
Section A.4 

sriov_cni_enabled false 

isolcpus_enabled false 

dns_disable_stub_listener  true 

   

 Step 4 - Deploy Basic Configuration Profile Platform 
Note: You must download the Configuration Profile playbook as described in B.2 and set it up as described in B.3 before you 

complete this step. 

In order to deploy the Basic Configuration Profile playbook, change the working directory to where you have cloned or unarchived 
the BMRA Ansible Playbook source code (as described in Section 3.3.2) and execute the command below: 
ansible-playbook -i inventory.ini playbooks/${PROFILE}.yml  

 

 Step 5 - Validate Basic Configuration Profile  
Validate the setup of your Kubernetes cluster. Refer to the tasks in Section 7 and run the validation processes according to the 
hardware and software components that you have installed.  

 
  

 
25 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C 
BMRA Full 

Configuration Profile Setup 
 
  



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  90 

 BMRA Full Configuration Profile Setup 
This appendix contains a step-by-step description of how to set up your BMRA Full Configuration Profile Flavor. 

To use the BMRA Full Configuration Profile, perform the following steps: 
1. Choose your hardware, set it up, and configure the BIOS. Refer to C.1 for details. 

You also need to build your Kubernetes cluster. Figure 1 is an example.  
2. Download the Ansible playbook for your Configuration Profile. Refer to C.2 for details. 
3. Configure the optional Ansible parameters using the information in the Configuration Profile tables. Refer to C.3 for details. 
4. Deploy the platform. Refer to C.4 for details. 
5. Validate the setup of your Kubernetes cluster. Refer to the tasks in Section 7 and run the validation processes according to the 

hardware and software components that you have installed. 

Be aware of the definitions of terminology used in tables in this appendix. 

TERM DESCRIPTION 

Hardware Taxonomy 
ENABLED Setting must be enabled in the BIOS (configured as Enabled, Yes, True, or similar value.) 
DISABLED Setting must be disabled in the BIOS (configured as Disabled, No, False, or any other value 

with this meaning.) 
OPTIONAL Setting can be either disabled or enabled, depending on user's workload. Setting does not 

affect the Configuration Profile or platform deployment. 
Software Taxonomy 
TRUE Feature is included and enabled by default. 
FALSE Feature is included but disabled by default - can be enabled and configured by user. 
N/A Feature is not included and cannot be enabled or configured. 
  

 

 Step 1 - Set Up Full Configuration Profile Hardware  
This section describes the hardware BOM and the BIOS configuration recommendation for using the BMRA Full Configuration 
Profile Flavor. 

The tables in this section list the Hardware BOM for the Full Configuration Profile, including Control Node, Worker Node Base, and 
Worker Node Plus. We recommend that you set up at least three control nodes and two worker nodes. 

Table 30. Hardware Setup for Full Configuration Profile – 2nd Generation and 3rd Generation Intel Xeon Scalable Processors 

NODE OPTIONS 

2ND GENERATION INTEL 
XEON SCALABLE 

PROCESSOR 

3RD GENERATION INTEL 
XEON SCALABLE 

PROCESSOR 

Control Node Options Controller_2ndGen_3 Controller_3rdGen_3 

Worker Node Options Worker_2ndGen_Plus_1 Worker_3rdGen_Plus_1 

   

 Step 2 - Download Full Configuration Profile Ansible Playbook 
This section contains step-by-step details for downloading the Full Configuration Profile Ansible playbook. It also provides an 
overview of the Ansible playbook and lists the software that is automatically installed when the playbook is deployed. 

Download the Full Configuration Profile Ansible playbook using the following steps: 
1. Log in to your Ansible host (the one that you will run these Ansible playbooks from). 
2. Clone the source code and change working directory: 

git clone https://github.com/intel/container-experience-kits/ 
cd container-experience-kits 
Check out the latest version of the playbooks using the tag from Table 22. For example: 
git checkout v21.09 

3. Export the environmental variable for Kubernetes Full Configuration Profile deployment: 
export PROFILE=full_nfv 

4. Install requirements for render.py script: 
pip3 install -r profiles/requirements.txt 

5. Generate example profiles and copy the example configuration files to the project root dir: 
make bmra-profiles profile=$PROFILE 

https://github.com/intel/container-experience-kits/


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  91 

C.2.1 Full Configuration Profile Ansible Playbook Overview 
The Ansible playbook for the Full Configuration Profile allows you to provision a production-ready Kubernetes. It also applies any 
additional requirements, such as host OS configuration or Network Adapter drivers and firmware updates. Full Configuration Profile 
playbook includes all features available through BMRA Ansible Playbook and provides one of the highest degrees of configurability. 
Every capability included in the Full Configuration Profile playbook can be disabled or enabled. Refer to the diagram and group and 
host variables tables below to see which Ansible roles are included and executed by default. 

The diagram shows the architecture of the Ansible playbooks and roles that are included in the Full Configuration Profile. 

 

 

Figure 14. Full Configuration Profile Ansible Playbook 

 

 Step 3 - Set Up Full Configuration Profile 
Review the optional Ansible group and host variables in this section and select options that match your desired configuration. 
1. Update the inventory.ini file with your environment details as described in Section 3.3.3. 
2. Create host_vars files for all worker nodes specified in the inventory. For example, if you have worker1, worker2, and worker3 in 

the kube-node group, execute: 
mv host_vars/node1.yml host_vars/worker1.yml 
cp host_vars/worker1.yml host_vars/worker2.yml 
cp host_vars/worker1.yml host_vars/worker3.yml 

3. Update group and host variables to match your desired configuration. Refer to the tables in Section C.3.1 and Section C.3.2. 
Note: Pay special attention to the variables in bold as these almost always need to be updated individually to match your 

environment details. Make sure that <worker_node_name>.yml files have been created for all worker nodes specified 
in your inventory file. 

vim group_vars/all.yml 
vim host_vars/<worker_node_name>.yml 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  92 

The complete set of configuration variables for the Full Configuration Profile along with their default values can be found in the 
examples/full_nfv directory. 

Variables are grouped into two main categories: 
1. Group variables – they apply to both control and worker nodes and have cluster-wide impact. 
2. Host variables – their scope is limited to a single worker node. 

The tables below are a summary of group and host variables. For lists showing all configurable properties, see Section A.3 and 
Section A.4. All of the variables are important but pay special attention to variables in bold as they almost always need to be 
updated to match the target environment. 

C.3.1 Full Configuration Profile Group Variables 

Table 31. Full Configuration Profile – Group Variables 

COMPONENT VALUE  

Kubernetes true 

For the list of all 
configurable 
properties, see 
Section A.3 

nfd_enabled true 

cmk_enabled true 

native_cpu_manager_enabled false 

topology_manager_enabled true 

sriov_network_operator_enabled true 

sriov_net_dp_enabled false 

sgx_dp_enabled true 

gpu_dp_enabled true 

qat_dp_enabled true 

openssl_enabled true 

kmra_enabled true 

istio_enabled true 

tas_enabled true 

sst_pp_configuration_enabled true 

example_net_attach_defs. userspace_ovs_dpdk true 

   

C.3.2 Full Configuration Profile Host Variables26 

Table 32. Full Configuration Profile – Host Variables 

COMPONENT VALUE  

iommu_enabled true 

For the list of all 
configurable 
properties, see 
Section A.4 

sriov_cni_enabled true 

bond_cni_enabled true 

userspace_cni_enabled true 

hugepages_enabled true 

isolcpus_enabled true 

dns_disable_stub_listener true 

install_dpdk true 

install_ddp_packages true 

install_real_time_package false 

qat_devices [ ] 

   

 
26 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  93 

 

 Step 4 - Deploy Full Configuration Profile Platform 
Note: You must download the Configuration Profile playbook as described in C.2 and configure it as described in C.3 before you 

complete this step. 

In order to deploy the Full Configuration Profile playbook, change the working directory to where you have cloned or unarchived 
the BMRA Ansible Playbook source code (as described in Section 3.3.2) and execute the command below: 
ansible-playbook -i inventory.ini playbooks/${PROFILE}.yml 

 

 Step 5 - Validate Full Configuration Profile 
Validate the setup of your Kubernetes cluster. Refer to the tasks in Section 7 and run the validation processes according to the 
hardware and software components that you have installed.  

 
  



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix D 
BMRA On-Premises Edge 

Configuration Profile Setup 
 
  



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  95 

 BMRA On-Premises Edge Configuration Profile Setup 
This appendix contains a step-by-step description of how to set up your BMRA On-Premises Edge Configuration Profile Flavor. 

To use the BMRA On-Premises Edge Configuration Profile, perform the following steps: 
1. Choose your hardware, set it up, and configure the BIOS. Refer to D.1 for details. 

You also need to build your Kubernetes cluster. Figure 1 is an example.  
2. Download the Ansible playbook for your Configuration Profile. Refer to D.2 for details. 
3. Configure the optional Ansible parameters using the information in the Configuration Profile tables. Refer to D.3 for details. 
4. Deploy the platform. Refer to D.4 for details.  
5. Validate the setup of your Kubernetes cluster. Refer to the tasks in Section 7 and run the validation processes according to the 

hardware and software components that you have installed. 

Be aware of the definitions of terminology used in tables in this appendix. 

TERM DESCRIPTION 

Hardware Taxonomy 
ENABLED Setting must be enabled in the BIOS (configured as Enabled, Yes, True, or similar value.) 
DISABLED Setting must be disabled in the BIOS (configured as Disabled, No, False, or any other value 

with this meaning.) 
OPTIONAL Setting can be either disabled or enabled, depending on user's workload. Setting does not 

affect the Configuration Profile or platform deployment. 
Software Taxonomy 
TRUE Feature is included and enabled by default. 
FALSE Feature is included but disabled by default - can be enabled and configured by user. 
N/A Feature is not included and cannot be enabled or configured. 
  

 

 Step 1 - Set Up On-Premises Edge Configuration Profile Hardware 
The tables in this section list the Hardware BOM for the On-Premises Edge Configuration Profile, including Control Node, Worker 
Node Base, and Worker Node Plus. 

We recommend that you set up at least one control node and one worker node. 

Table 33. Hardware Setup for On-Premises Edge Configuration Profile – 2nd Generation and 3rd Generation Intel Xeon 
Scalable Processors 

NODE OPTIONS 

2ND GENERATION INTEL 
XEON SCALABLE 

PROCESSOR 

3RD GENERATION INTEL 
XEON SCALABLE 

PROCESSOR 

Control Node Options Controller_2ndGen_1 Controller_3rdGen_1 

Worker Node Options 
Worker_2ndGen_Base_2 

or 
Worker_2ndGen_Plus_1 

Worker_3rdGen_Base_2 
or 

Worker_3rdGen_Plus_1 

 

 Step 2 - Download On-Premises Edge Configuration Profile Ansible Playbook 
This section contains step-by-step details for downloading the On-Premises Edge Configuration Profile Ansible playbook. It also 
provides an overview of the Ansible playbook and lists the software that is automatically installed when the playbook is deployed. 

Download the On-Premises Edge Configuration Profile Ansible playbook using the following steps: 
1. Log in to your Ansible host (the one that you will run these Ansible playbooks from). 
2. Clone the source code and change working directory: 

git clone https://github.com/intel/container-experience-kits/ 
cd container-experience-kits 
Check out the latest version of the playbooks using the tag from Table 22. For example: 
git checkout v21.09 

3. Export the environmental variable for Kubernetes On-Premises Edge Configuration Profile deployment: 
export PROFILE=on_prem 

4. Install requirements for render.py script: 
pip3 install -r profiles/requirements.txt 

5. Generate example profiles and copy the example configuration files to the project root dir: 
make bmra-profiles profile=$PROFILE 

https://github.com/intel/container-experience-kits/


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  96 

D.2.1 On-Premises Edge Configuration Profile Ansible Playbook Overview 
The Ansible playbook for the On-Premises Edge Configuration Profile allows you to provision a production-ready Kubernetes 
cluster. It also applies any additional requirements, such as host OS configuration or Network Adapter drivers and firmware 
updates. Every capability included in the On-Premises Edge Configuration Profile playbook can be disabled or enabled. Refer to the 
diagram and group and host variables tables below to see which Ansible roles are included and executed by default. 

The diagram shows the architecture of the Ansible playbooks and roles that are included in the On-Premises Edge Configuration 
Profile. 

 

Figure 15. On-Premises Edge Configuration Profile Ansible Playbook 

 

 Step 3 - Set Up On-Premises Edge Configuration Profile 
Review the optional Ansible group and host variables in this section and select options that match your desired configuration. 
1. Update the inventory.ini file with your environment details as described in Section 3.3.3. 
2. Create host_vars files for all worker nodes specified in the inventory. For example, if you have worker1, worker2 and worker3 in 

the kube-node group, execute: 
mv host_vars/node1.yml host_vars/worker1.yml 
cp host_vars/worker1.yml host_vars/worker2.yml 
cp host_vars/worker1.yml host_vars/worker3.yml 

3. Update group and host variables to match your desired configuration. Refer to the tables in Section D.3.1 and Section D.3.2. 
Note: Pay special attention to the variables in bold as these almost always need to be updated individually to match your 

environment details. Make sure that <worker_node_name>.yml files have been created for all worker nodes specified 
in your inventory file. 

vim group_vars/all.yml 
vim host_vars/<worker_node_name>.yml 

The complete set of configuration variables for the On-Premises Edge Configuration Profile along with their default values can be 
found in the examples/on_prem directory. 

Variables are grouped into two main categories: 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  97 

1. Group variables – they apply to both control and worker nodes and have cluster-wide impact. 
2. Host variables – their scope is limited to a single worker node. 

The tables below are a summary of group and host variables. For lists showing all configurable properties, see Section A.3 and 
Section A.4. All of the variables are important but pay special attention to variables in bold as they almost always need to be 
updated to match the target environment. 

D.3.1 On-Premises Edge Configuration Profile Group Variables 

Table 34. On-Premises Edge Configuration Profile – Group Variables 

COMPONENT VALUE  

Kubernetes true 

For the list of all 
configurable 
properties, see 
Section A.3 

nfd_enabled true 

cmk_enabled true 

native_cpu_manager_enabled false 

topology_manager_enabled true 

sriov_network_operator_enabled true 

sriov_net_dp_enabled false 

sgx_dp_enabled true 

gpu_dp_enabled false 

qat_dp_enabled true 

openssl_enabled true 

kmra_enabled true 

istio_enabled true 

tas_enabled true 

sst_pp_configuration_enabled false 

example_net_attach_defs. userspace_ovs_dpdk false 

   

D.3.2 On-Premises Edge Configuration Profile Host Variables27 

Table 35. On-Premises Edge Configuration Profile – Host Variables 

COMPONENT VALUE  

iommu_enabled true 

For the list of all 
configurable 
properties, see 
Section A.4 

sriov_cni_enabled false 

bond_cni_enabled false 

hugepages_enabled true 

isolcpus_enabled true 

dns_disable_stub_listener true 

install_dpdk true 

install_real_time_package false 

qat_devices [ ] 

   

 

 Step 4 - Deploy On-Premises Edge Configuration Profile Platform 
Note: You must download the Configuration Profile playbook as described in D.2 and configure it as described in D.3 before you 

complete this step.  

 
27 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  98 

In order to deploy the On-Premises Edge Configuration Profile playbook, change the working directory to where you have cloned or 
unarchived the BMRA Ansible Playbook source code (as described in Section 3.3.2) and execute the command below: 
ansible-playbook -i inventory.ini playbooks/${PROFILE}.yml 

 

 Step 5 - Validate On-Premises Edge Configuration Profile 
Validate the setup of your Kubernetes cluster. Refer to the tasks in Section 7 and run the validation processes according to the 
hardware and software components that you have installed.  

 

 
  



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix E 
BMRA Remote Central Office-Forwarding 

Configuration Profile Setup 
 
  



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  100 

 BMRA Remote CO-Forwarding Configuration Profile Setup 
This appendix contains a step-by-step description of how to set up your BMRA Remote CO-Forwarding Configuration Profile Flavor. 

To use the Remote CO-Forwarding Configuration Profile, perform the following steps: 
1. Choose your hardware, set it up, and configure the BIOS. Refer to E.1 for details.  

You also need to build your Kubernetes cluster. Figure 1 is an example.  
2. Download the Ansible playbook for your Configuration Profile. Refer to E.2 for details. 
3. Configure the optional Ansible parameters using the information in the Configuration Profile tables. Refer to E.3 for details. 
4. Deploy the platform. Refer to E.4 for details.  
5. Validate the setup of your Kubernetes cluster. Refer to the tasks in Section 7 and run the validation processes according to the 

hardware and software components that you have installed.  

Be aware of the definitions of terminology used in tables in this appendix. 

TERM DESCRIPTION 

Hardware Taxonomy 
ENABLED Setting must be enabled in the BIOS (configured as Enabled, Yes, True, or similar value.) 
DISABLED Setting must be disabled in the BIOS (configured as Disabled, No, False, or any other value 

with this meaning.) 
OPTIONAL Setting can be either disabled or enabled, depending on user's workload. Setting does not 

affect the Configuration Profile or platform deployment. 
Software Taxonomy 
TRUE Feature is included and enabled by default. 
FALSE Feature is included but disabled by default - can be enabled and configured by user. 
N/A Feature is not included and cannot be enabled or configured. 
  

 

 Step 1 - Set Up Remote CO-Forwarding Configuration Profile Hardware 
The tables in this section list the Hardware BOM for the Remote CO-Forwarding Configuration Profile, including Control Node, 
Worker Node Base, and Worker Node Plus.  

We recommend that you set up at least one control node and one worker node. 

Table 36. Hardware Setup for Remote CO-Forwarding Configuration Profile – 2nd Generation and 3rd Generation Intel Xeon 
Scalable Processors 

NODE OPTIONS 

2ND GENERATION INTEL 
XEON SCALABLE 

PROCESSOR 

3RD GENERATION INTEL 
XEON SCALABLE 

PROCESSOR 

Control Node Options Controller_2ndGen_2 Controller_3rdGen_2 

Worker Node Options 
Worker_2ndGen_Base_3 

or 
Worker_2ndGen_Plus_2 

Worker_3rdGen_Base_3 
or 

Worker_3rdGen_Plus_2 

   

 Step 2 - Download Remote CO-Forwarding Configuration Profile Ansible Playbook 
This section contains step-by-step details for downloading the Remote CO-Forwarding Configuration Profile Ansible playbook. It 
also provides an overview of the Ansible playbook and lists the software that is automatically installed when the playbook is 
deployed. 

Download the Remote CO-Forwarding Configuration Profile Ansible playbook using the following steps: 
1. Log in to your Ansible host (the one that you will run these Ansible playbooks from). 
2. Clone the source code and change working directory: 

git clone https://github.com/intel/container-experience-kits/ 
cd container-experience-kits 
Check out the latest version of the playbooks using the tag from Table 22. For example: 
git checkout v21.09 

3. Export the environmental variable for Kubernetes Remote CO-Forwarding Configuration Profile deployment: 
export PROFILE=remote_fp 

4. Install requirements for render.py script: 
pip3 install -r profiles/requirements.txt 

https://github.com/intel/container-experience-kits/


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  101 

5. Generate example profiles and copy the example configuration files to the project root dir: 
make bmra-profiles profile=$PROFILE 

E.2.1 Remote CO-Forwarding Configuration Profile Ansible Playbook Overview 
The Ansible playbook for the Remote CO-Forwarding Configuration Profile allows you to provision a production-ready Kubernetes 
cluster. It also applies any additional requirements, such as host OS configuration or Network Adapter drivers and firmware 
updates. Every capability included in the Remote CO-Forwarding Configuration Profile playbook can be disabled or enabled. Refer 
to the diagram and group and host variables tables below to see which Ansible roles are included and executed by default. 

The diagram shows the architecture of the Ansible playbooks and roles that are included in the Remote CO-Forwarding 
Configuration Profile. 

 

Figure 16. Remote CO-Forwarding Configuration Profile Ansible Playbook 

 

 Step 3 - Set Up Remote CO-Forwarding Configuration Profile 
Review the optional Ansible group and host variables in this section and select options that match your desired configuration. 
1. Update the inventory.ini file with your environment details as described in Section 3.3.3. 
2. Create host_vars files for all worker nodes specified in the inventory. For example, if you have worker1, worker2, and worker3 in 

the kube-node group, execute: 
mv host_vars/node1.yml host_vars/worker1.yml 
cp host_vars/worker1.yml host_vars/worker2.yml 
cp host_vars/worker1.yml host_vars/worker3.yml 

3. Update group and host variables to match your desired configuration. Refer to the tables in Section E.3.1 and Section E.3.2. 
Note: Pay special attention to the variables in bold as these almost always need to be updated individually to match your 

environment details. Make sure that <worker_node_name>.yml files have been created for all worker nodes specified 
in your inventory file. 

vim group_vars/all.yml 
vim host_vars/<worker_node_name>.yml 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  102 

The complete set of configuration variables for the Remote CO-Forwarding Configuration Profile along with their default values can 
be found in examples/remote_fp directory. 

Variables are grouped into two main categories: 
1. Group variables – they apply to both control and worker nodes and have cluster-wide impact. 
2. Host variables – their scope is limited to a single worker node. 

The tables below are a summary of group and host variables. For lists showing all configurable properties, see Section A.3 and 
Section A.4. All of the variables are important but pay special attention to variables in bold as they almost always need to be 
updated to match the target environment. 

E.3.1 Remote CO-Forwarding Configuration Profile Group Variables 

Table 37. Remote CO-Forwarding Configuration Profile – Group Variables 

COMPONENT VALUE  

Kubernetes true 

For the list of all 
configurable 
properties, see 
Section A.3 

nfd_enabled true 

cmk_enabled true 

native_cpu_manager_enabled false 

topology_manager_enabled true 

sriov_network_operator_enabled true 

sriov_net_dp_enabled false 

sgx_dp_enabled true 

gpu_dp_enabled false 

qat_dp_enabled false 

openssl_enabled true 

kmra_enabled true 

istio_enabled true 

tas_enabled true 

sst_cp_configuration_enabled false 

example_net_attach_defs. userspace_ovs_dpdk false 

   

E.3.2 Remote CO-Forwarding Configuration Profile Host Variables28 

Table 38. Remote CO-Forwarding Configuration Profile – Host Variables 

COMPONENT VALUE  

iommu_enabled true 

For the list of all 
configurable 
properties, see 
Section A.4 

sriov_cni_enabled false 

bond_cni_enabled false 

userspace_cni_enabled false 

hugepages_enabled true 

isolcpus_enabled true 

dns_disable_stub_listener true 

install_dpdk true 

install_ddp_packages true 

install_real_time_package false 

qat_devices [ ] 

   

 
28 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  103 

 

 Step 4 - Deploy Remote CO-Forwarding Configuration Profile Platform 
Note: You must download the Configuration Profile playbook as described in E.2 and configure it as described in E.3 before you 

complete this step. 

In order to deploy the Remote CO-Forwarding Configuration Profile playbook, change the working directory to where you have 
cloned or unarchived the BMRA Ansible Playbook source code (as described in Section 3.3.2) and execute the command below: 
ansible-playbook -i inventory.ini playbooks/${PROFILE}.yml 

 

 Step 5 - Validate Remote-CO Forwarding Configuration Profile 
Validate the setup of your Kubernetes cluster. Refer to the tasks in Section 7 and run the validation processes according to the 
hardware and software components that you have installed.  
  



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  104 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix F 
BMRA Regional Data Center 
Configuration Profile Setup 

 
  



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  105 

 BMRA Regional Data Center Configuration Profile Setup 
This appendix contains a step-by-step description of how to set up your BMRA Regional Data Center Configuration Profile Flavor. 

To use the Regional Data Center Configuration Profile, perform the following steps: 
1. Choose your hardware, set it up, and configure the BIOS. Refer to F.1 for details. 

You also need to build your Kubernetes cluster. Figure 1 is an example. 
2. Download the Ansible playbook for your Configuration Profile. Refer to F.2 for details. 
3. Configure the optional Ansible parameters using the information in the Configuration Profile tables. Refer to F.3 for details. 
4. Deploy the platform. Refer to F.4 for details. 
5. Validate the setup of your Kubernetes cluster. Refer to the tasks in Section 7 and run the validation processes according to the 

hardware and software components that you have installed. 

Be aware of the definitions of terminology used in tables in this appendix. 

TERM DESCRIPTION 

Hardware Taxonomy 
ENABLED Setting must be enabled in the BIOS (configured as Enabled, Yes, True, or similar value.) 
DISABLED Setting must be disabled in the BIOS (configured as Disabled, No, False, or any other value 

with this meaning.) 
OPTIONAL Setting can be either disabled or enabled, depending on user's workload. Setting does not 

affect the Configuration Profile or platform deployment. 
Software Taxonomy 
TRUE Feature is included and enabled by default. 
FALSE Feature is included but disabled by default - can be enabled and configured by user. 
N/A Feature is not included and cannot be enabled or configured. 
  

 

 Step 1 - Set Up Regional Data Center Configuration Profile Hardware 
The tables in this section list the Hardware BOM for the Regional Data Center Configuration Profile, including Control Node, Worker 
Node Base, and Worker Node Plus.  

We recommend that you set up at least one control node and one worker node. 

Table 39. Hardware Setup for Regional Data Center Configuration Profile – 2nd Generation and 3rd Generation Intel Xeon 
Scalable Processors 

NODE OPTIONS 

2ND GENERATION INTEL 
XEON SCALABLE 

PROCESSOR 

3RD GENERATION INTEL 
XEON SCALABLE 

PROCESSOR 

Control Node Options N/A* Controller_3rdGen_3 

Worker Node Options N/A* Worker_3rdGen_Plus_3 

*Configuration Profile only tested with 3rd Generation Intel Xeon Scalable processor 

   

 Step 2 - Download Regional Data Center Configuration Profile Ansible Playbook 
This section contains step-by-step details for downloading the Regional Data Center Configuration Profile Ansible playbook. It also 
provides an overview of the Ansible playbook and lists the software that is automatically installed when the playbook is deployed. 

Download the Regional Data Center Configuration Profile Ansible playbook using the following steps: 
1. Log in to your Ansible host (the one that you will run these Ansible playbooks from). 
2. Clone the source code and change working directory: 

git clone https://github.com/intel/container-experience-kits/ 
cd container-experience-kits 
Check out the latest version of the playbooks using the tag from Table 22. For example: 
git checkout v21.09 

3. Export the environmental variable for Kubernetes BMRA Regional Data Center deployment: 
export PROFILE=regional_dc 

4. Install requirements for render.py script: 
pip3 install -r profiles/requirements.txt 

5. Generate example profiles and copy the example configuration files to the project root dir: 
make bmra-profiles profile=$PROFILE 

https://github.com/intel/container-experience-kits/


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  106 

F.2.1 Regional Data Center Configuration Profile Ansible Playbook Overview 
The Ansible playbook for the Regional Data Center Configuration Profile allows you to provision a production-ready Kubernetes 
cluster. It also applies any additional requirements, such as host OS configuration or Network Adapter drivers and firmware 
updates. Every capability included in the Regional Data Center Configuration Profile playbook can be disabled or enabled. Refer to 
the diagram and group and host vars tables below to see which Ansible roles are included and executed by default. 

The diagram shows the architecture of the Ansible playbooks and roles that are included in the Regional Data Center Configuration 
Profile. 

 

 

Figure 17. Regional Data Center Configuration Profile Ansible Playbook 

 

 Step 3 - Set Up Regional Data Center Configuration Profile 
Review the optional Ansible group and host variables in this section and select options that match your desired configuration. 
1. Update the inventory.ini file with your environment details as described in Section 3.3.3. 
2. Create host_vars files for all worker nodes specified in the inventory. For example, if you have worker1, worker2, and worker3 in 

the kube-node group, execute: 
mv host_vars/node1.yml host_vars/worker1.yml 
cp host_vars/worker1.yml host_vars/worker2.yml 
cp host_vars/worker1.yml host_vars/worker3.yml 

3. Update group and host variables to match your desired configuration. Refer to the tables in Section F.3.1 and Section F.3.2. 
Note: Pay special attention to the variables in bold as these almost always need to be updated individually to match your 

environment details. Make sure that <worker_node_name>.yml files have been created for all worker nodes specified 
in your inventory file. 

vim group_vars/all.yml 
vim host_vars/<worker_node_name>.yml 

The complete set of configuration variables for the Regional Data Center Configuration Profile along with their default values can be 
found in examples/regional_dc directory. 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  107 

Variables are grouped into two main categories: 
1. Group variables – they apply to both control and worker nodes and have cluster-wide impact. 
2. Host variables – their scope is limited to a single worker node. 

The tables below are a summary of group and host variables. For lists showing all configurable properties, see Section A.3 and 
Section A.4. All of the variables are important but pay special attention to variables in bold as they almost always need to be 
updated to match the target environment. 

F.3.1 Regional Data Center Configuration Profile Group Variables 

Table 40. Regional Data Center Configuration Profile – Group Variables 

COMPONENT VALUE  

Kubernetes true 

For the list of all 
configurable 
properties, see 
Section A.3 

nfd_enabled true 

native_cpu_manager_enabled false 

topology_manager_enabled true 

sriov_network_operator_enabled false 

sriov_net_dp_enabled false 

gpu_dp_enabled true 

Istio_enabled true 

tas_enabled true 

example_net_attach_defs. sriov_net_dp false 

   

F.3.2 Regional Data Center Configuration Profile Host Variables29 

Table 41. Regional Data Center Configuration Profile – Host Variables 

COMPONENT VALUE  

iommu_enabled false 

For the list of all 
configurable 
properties, see 
Section A.4 

sriov_cni_enabled false 

hugepages_enabled false 

isolcpus_enabled false 

dns_disable_stub_listener true 

install_dpdk false  

   

 

 Step 4 - Deploy Regional Data Center Configuration Profile Platform 
Note: You must download the Configuration Profile playbook as described in F.2 and configure it as described in F.3 before you 

complete this step. 

In order to deploy the Regional Data Center Configuration Profile playbook, change the working directory to where you have cloned 
or unarchived the BMRA Ansible Playbook source code (as described in Section 3.3.2) and execute the command below: 
ansible-playbook -i inventory.ini playbooks/${PROFILE}.yml 

 

 Step 5 - Validate Regional Data Center Configuration Profile 
Validate the setup of your Kubernetes cluster. Refer to the tasks in Section 7 and run the validation processes according to the 
hardware and software components that you have installed.  
  

 
29 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part 4: 

Appendix G 
BMRA 21.09 Release Notes 

 
  



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  109 

 BMRA Release Notes 
This appendix lists the notable changes from the previous releases, including new features, bug fixes, and known issues.30 

 

 BMRA 21.09 New Features 
The following new features were updated or added in this release: 

• Support for Istio service mesh operator, Envoy, and control plane 
• Support for Telegraf telemetry collection 
• Support Intel Telemetry Insight Reports 
• Support for additional container runtime: CRI-O 
• Updated default network plugin: Calico 
• Support Intel® Speed Select Technology - Performance Profile (Intel® SST-PP) 
• Support for rendering profile config files from template 
• Updated Intel® Ethernet 700 and 800 Network Adapter drivers 
• Updated Intel® Software Guard Extensions (Intel® SGX) Software Development Kit (SDK) 
• Updated Data Plane Development Kit (DPDK) and Open vSwitch (OVS) DPDK for use of AVX-512 instruction sets 
• Updated Prometheus, Grafana, and Node Exporter telemetry packages 
• Updated Node Feature Discovery (NFD) 
• Updated Multus container network interface (CNI) 
• Updated OpenSSL toolkit 
• Updated Intel® QuickAssist Technology Engine for OpenSSL (Intel® QAT Engine for OpenSSL) 
• Updated Intel® Multi-Buffer Crypto for IPSec (intel-ipsec-mb) 

 

 BMRA 21.09 Bug Fixes 
The following bug fixes were completed in the BMRA 21.09 release: 

• Fixed inventory groups for inclusive terminology 
• Fixed kubelet –cpu-cfs-quota to eliminate performance throttling 
• Fixed QAT driver VF binding issue on RHEL 8.4 
• Fixed inadvertent Intel SST-CP frequency throttling with proportional settings 

 

 BMRA 21.08 New Features 
The following new features were updated or added in this release: 

• Updated Intel® Ethernet 700 and 800 Network Adapter drivers  
• Updated Intel® Ethernet 800 Dynamic Device Personalization (DDP) profiles  
• Updated Intel device plugins (Intel QAT, Intel® Software Guard Extensions (Intel® SGX), Intel® Server GPU) 
• Support additional operating system versions: RHEL 8.4 and Ubuntu 21.04 
• Support additional container runtime: containerd 
• Support Kubernetes version 1.21 
• Updated Kubernetes features: Node Feature Discovery (NFD), Telemetry Aware Scheduling (TAS), and SR-IOV device plugin 

(DP) 
• Support Kubernetes Operators for: Intel® device plugin operator (Intel SGX, Intel Server GPU) and SR-IOV network 
• Support Intel® QuickAssist Technology Engine for OpenSSL (Intel® QAT Engine for OpenSSL)  
• Support containerized Intel® SGX Key Management Service (KMS) including integration of Key Management Reference 

Application (KMRA) version 1.2.1 
• Updated Collectd, Prometheus, and Grafana components 
• Support for DPDK 21.05 and OVS 2.15 
• Support Ansible Cluster Removal Playbook for cluster teardown and redeployment 

 

 BMRA 21.08 Bug Fixes 
The following bug fixes were completed in the BMRA 21.08 release: 

 
30 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

http://www.intel.com/PerformanceIndex


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  110 

• Fixed cluster recovery errors on reboot 
• Fixed TAS demo policy failure 
• Fixed deployment failure with Intel® Turbo Boost Technology disabled 
• Fixed SGX DP pod crashes 
• Fixed mismatch in available Intel QAT resources 
• Fixed deployment failure with missing Intel QAT configuration 
• Fixed kernel header mismatch for compiled kernel modules 
• Fixed package installation dependencies 
• Fixed isolcpu generation for configurations with HT disabled 
• Fixed DPDK installation failures 
• Fixed DNS file permission issues 
• Fixed IP dependency in inventory file 

 

 BMRA 21.03 New Features 
The following new features were updated or added in this release:  

• Kubernetes version update to 1.19.x  
• Kubernetes feature/plugin updates (NFD, TAS, SR-IOV-DP)  
• CentOS 8.3 support  
• RHEL 8.3 support  
• CentOS 7.9 support  
• 3rd Generation Intel® Xeon® Scalable processor support  
• Intel® Software Guard Extensions device plugin  
• Intel® SGX Key Management Services  
• Intel® QuickAssist Technology Drivers and Services  
• Intel® Speed Select Technology – Core Power (Intel® SST-CP)  
• Intel® Server Graphics 1 card support  
• Updated Intel® Ethernet 700 & 800 Network Adapter Drivers and DDP profiles  
• New Regional Data Center Configuration Profile for Visual Compute Media workloads using Intel® Server Graphics 1  
• Additional Collectd plugins (unixsock, network)  
• Additional Grafana dashboards (cpu, disk, intel, ipmi, netlink, ovs, power, numa, hugepages, ethstats)  
• Multiple DPDK version options with custom patch support  
• Multiple SR-IOV driver assignments per PF 

 

 BMRA 21.03 Bug Fixes 
The following bug fixes were completed in the BMRA 21.03 release:  

• Fixed Intel® Network Adapter driver compilation on RHEL 
• Fixed Comms DDP profiles not loading at OS boot time  
• Cleaned up Ansible warnings occurring during playbook runtime  
• Forced DPDK bindings for active devices defined in host_vars  
• Fixed CMK installation failure across multiple worker nodes  
• Fixed certificate handling causing Prometheus pod failures 

 

 BMRA 2.1 New Features 
No new features were added. 

 

 BMRA 2.1 Bug Fixes 
The following bug fixes were completed in the BMRA 2.1 release: 
• Intel® Ice driver fails to load on Ubuntu 18.04 
• Updated Intel Network Adapter drivers to resolve driver compilation issues 
• Increased driver download timeouts 
• Removed duplicate collectd install in remote_fp profile 
• Added missing NFD role to remote_fp profile 
• Fixed CMK container template to include cmk binary 



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  111 

• Cleaned up data plane interface and IOMMU terminology 
• Defaulted data plane interface examples as empty lists 
• Updated Intel Network Adapter DDP profile URL 
• Updated Intel Network Adapter FW package URL 
• Fixed data plane interface selection on DDP profile loading 
• Updated Helm stable repo URL 
• Fixed DPDK vfio-pci binding for Ubuntu 18.04 and 20.04 
• Updated default DPDK version to fix compilation on CentOS/RHEL 8 
• Fixed PowerTools repository names for CentOS 8 

 

 BMRA 2.0 New Features 
The following new features were added in this release: 
• Ubuntu 20.04 support 
• CentOS 8.2 support 
• Red Hat Enterprise Linux 8.2 support 
• Intel® Speed Select Technology - Base Frequency (Intel® SST-BF) and Intel® Speed Select Technology – Core Power (Intel® SST-

CP) support 
• Intel® Software Guard Extensions (Intel® SGX) support 
• Intel® Ethernet Controller E810 Series Adapter Support 
• FW Update Support for Intel® E710 and E810 Series Adapters 
• Location-based Configuration Profiles 
• Kubernetes version update 
• Kubernetes feature/plugin updates (CMK, Multus, QAT, TAS, SR-IOV, and the like) 
• Intel® Dynamic Device Personalization (DDP) support for E710 and E810 Series Adapters 
• CentOS 7.6 RT kernel installation 
• Introduction of Telemetry components (collectd, Prometheus, node-exporter, Grafana) 
• Kubernetes Pod Security Policies and a more secure container registry 

 

 BMRA 2.0 Bug Fixes 
The following bug fixes were completed in the BMRA 2.0 release: 
• Fixed deployment issues with Ubuntu 18.04 nodes 
• Updated CMK to v1.5.1 to address pod restarting issues 
• Fixed SR-IOV VF bindings with 710 Network Adapters 
• General network driver installation fixes 
• Fixed connection issues between pods on different nodes 

 

 Known Issues 
Issue:  

Occasionally the sriov-network-device-plugin does not detect new or updated VF resources. 

Detail: 

There is a known issue with sriov-network-device-plugin where the service fails to detect new or updated VF resources if not available 
when the service creates its ConfigMap and loads the daemonset.  See https://github.com/k8snetworkplumbingwg/sriov-network-
device-plugin/issues/276. 

Workaround: 

Delete the sriov-device-plugin-pod and resources will be present when pod is automatically restarted. 

 

Issue:  

Intel® Speed Select tool errors on 3rd Generation Intel® Xeon® Scalable processor servers with RHEL 8.2. 

Detail: 

The currently distributed RHEL 8.2 kernels are not compiled with CONFIG_INTEL_SPEED_SELECT_INTERFACE enabled. 

https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin/issues/276
https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin/issues/276


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  112 

Workaround: 

Upgrade to RHEL 8.3. 

The RHEL 8.2 default kernel can be recompiled with this setting (check your vendor support before proceeding). Alternatively, the 
Intel SST-BF feature is available on selected 2nd Generation Intel® Xeon® Scalable processor SKUs 
(https://access.redhat.com/articles/4481221) and both the Intel SST-BF and Intel SST-CP features are available on select 3rd 
Generation Intel® Xeon® Scalable processor SKUs with other supported OSes. 

 

Issue: 

KMRA PCCS pod fails to load on Ubuntu 20.04. 

Detail: 

The PCCS container requires kernel 5.4.0-65 or greater. 

Workaround: 

Update your Ubuntu 20.04 release to Ubuntu 20.04.2 or newer. 

 

Issue: 

Collectd pod fails to start on Ubuntu 18.04 inbox kernel. 

Detail: 
intel_rapl: driver does not support CPU family 6 model 106 

The Intel RAPL power capping driver in the 18.04 inbox kernel does not support 3rd Generation Intel® Xeon® Scalable processors. 

Workaround: 

Use update_kernel in Ansible group_vars or install a more recent OS with a newer kernel. 

 

Issue: 

Collectd plugin fails to start. 

Detail: 

On some platforms the collectd pod fails to start due to various plugin incompatibilities. 

Workaround: 
Disable problematic collectd plugins by adding to the exclude_collectd_plugins list in the Ansible host_vars configuration file. 

 
  

https://access.redhat.com/articles/4481221


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  113 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part 5: 

Appendix H 
Workloads and Application Examples 

 
  



Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  114 

 Workloads and Application Examples 
This appendix provides examples of how to provision and deploy example applications or workloads. 
 

 Enabling Key Management NGINX Applications 
To set up KMRA infrastructure and run the Key Management workload, follow the steps below. KMRA currently supports Ubuntu 
20.04, SGX version 2.12, and DCAP 1.9. 

The BMRA infrastructure sets up KMRA distributed HSM key server and compute nodes with SGX. A private key is securely 
provisioned to Intel Crypto-api-toolkit on the compute node and imported into a token named kmra_token. The provisioned key is 
named nginx_hsm_priv and the pin is 1234. When configuring a workload to use a private key from Intel Crypto-api-toolkit, the 
workload (in this demo the workload is NGINX) is configured with a URI for the private key.  

The URI used in this demo is engine:pkcs11:pkcs11:token=kmra_token;object=nginx_hsm_priv;pin-value=1234 

The Key Management NGINX application below sets up NGINX workload and configures it with OpenSSL. A custom version of 
OpenSSL is installed on the compute node and configured with the libp11 interface and pkcs11 engine. The pkcs11 engine is an 
interface to Intel Crypto-api-Toolkit with SGX, and it uses the URI configured in the NGINX workload to use the private key. A 
certificate is generated and signed inside the Intel Crypto-api-Toolkit enclave and stored on the compute node. A link to the 
certificate is added to the NGINX configuration. The last step of the workload setup is a test using opens s_time to verify the number 
of TLS connections that NGINX is able to establish using the private keys from Intel SGX enclave. 

1. Download KMRA source code. 
a. Go to https://01.org/key-management-reference-application-kmra and download Key Management Reference 

Application (KMRA) v1.2.1 source code package. 
b. Create KMRA folder in root directory of BMRA. 
c. Untar and place contents into KMRA directory. 

2. Run BMRA Configuration Profile full_nfv with some variable changes in group_vars/all. 
a. Kubernetes option must be set to false. 
b. Proxy settings must be changed accordingly. 
c. Set kmra_use_custom_package_versions to true. 

3. Go to KMRA folder created in step 1 and run the NGINX workload Ansible script. 
a. Go to KMRA/ansible/sgx_infra_setup. 
b. Update inventory file with correct key server and compute node hosts. 
c. Run Ansible scripts using the following command: 

ansible-playbook -i inventory provision_ctk_token_and_start_nginx.yml 

 
 

 
  

https://01.org/key-management-reference-application-kmra
https://01.org/sites/default/files/downloads/kmaas-kmrarelease1.1.tar.gz
https://01.org/sites/default/files/downloads/kmaas-kmrarelease1.1.tar.gz
http://01.org/sites/default/files/downloads/kmaas-kmrarelease1.1.tar.gz


Reference Architecture | Container Bare Metal for 2nd Generation and 3rd Generation Intel® Xeon® Scalable Processor 

  115 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex. 

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.  See backup for 
configuration details.  No product or component can be absolutely secure. 

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular 
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. 

Intel technologies may require enabled hardware, software or service activation. 

Intel does not control or audit third-party data.  You should consult other sources to evaluate accuracy. 

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.  
Current characterized errata are available on request. 

© Intel Corporation.  Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.  Other names and brands may 
be claimed as the property of others. 

 1021/DN/WIT/PDF 632290-007US 

http://www.intel.com/PerformanceIndex

	1 Introduction
	1.1 About this Document
	1.2 Terminology
	1.3 Taxonomy
	1.4 Reference Documents

	2 Reference Architecture Overview
	2.1 Architecture Delivered
	2.2 Reference Architecture Configuration Profiles
	2.3 Use Cases by Network Location
	2.4 Configuration Profile Installation Playbooks
	2.5 Hardware Components
	2.6 Software Capabilities
	2.6.1 Kubernetes Features
	2.6.2 Platform System Features
	2.6.3 Observability


	Part 2:
	3 Reference Architecture Deployment – Ansible Playbooks
	3.1 Reference Architecture Installation Prerequisites
	3.1.1 Hardware BOM Selection and Setup for Control and Worker Nodes
	3.1.2 BIOS Selection for Control and Worker Nodes
	3.1.3 Operating System Selection for Control and Worker Nodes
	3.1.4 Network Interface Requirements for Control and Worker Nodes
	3.1.5 Software Prerequisites for Ansible Host, Control Nodes, and Worker Nodes

	3.2 Ansible Playbook Review
	3.2.1 Ansible Playbooks Building Blocks
	3.2.2 Ansible Playbook Phases

	3.3 Deployment using Ansible Playbook
	3.3.1 Prepare Target Servers
	3.3.2 Get Ansible Playbook and Prepare Configuration Templates
	3.3.3 Update Ansible Inventory File
	3.3.4 Update Ansible Host and Group Variables
	3.3.5 Run Ansible Cluster Deployment Playbook
	3.3.6 Run Ansible Cluster Removal Playbook


	4 Software Capabilities Review
	4.1 Container Runtimes
	4.1.1 Docker
	4.1.2 Containerd
	4.1.3 CRI-O

	4.2 Kubernetes Plugins
	4.2.1 Multus CNI
	4.2.2 SR-IOV Network Device Plugin
	4.2.3 SR-IOV CNI
	4.2.4 Userspace CNI
	4.2.5 Bond CNI
	4.2.6 Intel® QuickAssist Device Plugin
	4.2.7 Intel® Software Guard Extensions (Intel® SGX) Device Plugin

	4.3 Kubernetes Features
	4.3.1 Node Feature Discovery
	4.3.2 Topology Manager
	4.3.3 Kubernetes Native CPU Manager
	4.3.4 CPU Manager for Kubernetes (CMK)
	4.3.5 Telemetry Aware Scheduling

	4.4 Istio Service Mesh
	4.4.1 Istio Deployment Example

	4.5 Operators
	4.5.1 SR-IOV Network Operator
	4.5.2 Intel Device Plugins Operator

	4.6 Dynamic Device Personalization (DDP)
	4.6.1 DDP on Intel Ethernet 700 Series Network Adapters
	4.6.2 DDP on Intel® Ethernet 800 Series Network Adapters
	4.6.2.1 Kubernetes Support for DDP in Intel Ethernet 800-Series Network Adapters


	4.7 Intel® Speed Select Technology
	4.7.1 Intel Speed Select Technology – Base Frequency
	4.7.2 Intel Speed Select Technology – Core Power
	4.7.3 Intel Speed Select Technology – Turbo Frequency (Intel SST-TF)
	4.7.4 Intel Speed Select Technology – Performance Profile (Intel SST-PP)

	4.8 Security
	4.8.1 Cluster Security
	4.8.2 Intel® Security Libraries for Data Center (Intel® SecL – DC)
	4.8.3 Intel® Software Guard Extensions
	4.8.4 OpenSSL and QAT Engine

	4.9 Security - Key Management Reference Application with Intel® SGX
	4.10 Intel® Server GPU
	4.11 Observability
	4.11.1 Observability Components Overview
	4.11.1.1 Telegraf
	4.11.1.2 collectd
	4.11.1.3 Node Exporter
	4.11.1.4 Prometheus
	4.11.1.5 Grafana
	4.11.1.6 Prometheus Adapter

	4.11.2 Platform Telemetry Security
	4.11.2.1 Data at Rest Security
	4.11.2.2 Data in Transit Security



	5 Reference Architecture Hardware Components and BIOS
	5.1 Hardware Component List for Control Node
	5.2 Hardware Component List for Worker Node Base
	5.3 Hardware Component List for Worker Node Plus
	5.4 Hardware BOMs for all Configuration Profiles
	5.5 Platform BIOS

	6 Reference Architecture Software Components
	7 Post Deployment Verification Guidelines
	7.1 Check the Kubernetes Cluster
	7.2 Check Intel Speed Select Technology – Base Frequency (Intel SST-BF) Configuration on 2nd Generation Intel Xeon Scalable Processor
	7.3 Check Intel Speed Select Technology on 3rd Generation Intel Xeon Scalable Processor
	7.3.1 Check Intel Speed Select Technology - Base Frequency (Intel SST-BF) Configuration
	7.3.2 Check Intel Speed Select Technology – Core Power (Intel SST-CP)

	7.4 Check Intel Speed Select Technology – Performance Profile (Intel SST-PP) with Intel Speed Select Technology – Turbo Frequency (Intel SST-TF) on 3rd Generation Intel Xeon Scalable Processors
	7.5 Check DDP Profiles
	7.5.1 Check DDP Profiles in Intel® Ethernet 700 Series Network Adapters
	7.5.2 Check DDP Profiles in Intel® Ethernet 800 Series Network Adapters
	7.5.3 Check SR-IOV Resources

	7.6 Check Node Feature Discovery
	7.7 Check CPU Manager for Kubernetes
	7.8 Check Topology Manager
	7.8.1 Change Topology Manager Policy: Redeploy Kubernetes Playbook
	7.8.2 Change Topology Manager Policy: Manually Update Kubelet Flags

	7.9 Check Intel Device Plugins for Kubernetes
	7.9.1 Check SR-IOV Network Device Plugin
	7.9.2 Check QAT Device Plugin
	7.9.3 Check SGX Device Plugin

	7.10 Check Networking Features (After Installation)
	7.10.1 Check Multus CNI Plugin
	7.10.2 Check SR-IOV CNI Plugin
	7.10.3 Check Userspace CNI Plugin
	7.10.4 Check Bond CNI Plugin

	7.11 Check Grafana Telemetry Visualization
	7.12 Check Telemetry Aware Scheduler
	7.12.1 Check Dontschedule Policy
	7.12.2 Check Deschedule Policy

	7.13 Check Key Management Infrastructure with Intel SGX
	7.14 Check Intel® Server GPU Device and Driver
	7.15 Check Intel QAT Engine with OpenSSL

	8 Conclusion – Automation Eases Reference Application Deployment
	Part 3:
	Appendix A BMRA Setup for All Configuration Profile Options
	A.1 Set Up an Ansible Host
	A.1.1 CentOS Linux or RHEL Version 8 or Version 7 as Ansible Host
	A.1.2 Ubuntu 20.04 LTS as Ansible Host

	A.2 Set Up the Control and Worker Nodes - BIOS Prerequisites
	A.3 Configuration Dictionary - Group Variables
	A.4 Configuration Dictionary - Host Variables

	Appendix B BMRA Basic Configuration Profile Setup
	B.1 Step 1 - Set Up Basic Configuration Profile Hardware
	B.2 Step 2 - Download Basic Configuration Profile Ansible Playbook
	B.2.1 Basic Configuration Profile Ansible Playbook Overview

	B.3 Step 3 - Set Up Basic Configuration Profile
	B.3.1 Basic Configuration Profile Group Variables
	B.3.2 Basic Configuration Profile Host Variables

	B.4 Step 4 - Deploy Basic Configuration Profile Platform
	B.5 Step 5 - Validate Basic Configuration Profile 

	Appendix C BMRA Full Configuration Profile Setup
	C.1 Step 1 - Set Up Full Configuration Profile Hardware 
	C.2 Step 2 - Download Full Configuration Profile Ansible Playbook
	C.2.1 Full Configuration Profile Ansible Playbook Overview

	C.3 Step 3 - Set Up Full Configuration Profile
	C.3.1 Full Configuration Profile Group Variables
	C.3.2 Full Configuration Profile Host Variables

	C.4 Step 4 - Deploy Full Configuration Profile Platform
	C.5 Step 5 - Validate Full Configuration Profile

	Appendix D BMRA On-Premises Edge Configuration Profile Setup
	D.1 Step 1 - Set Up On-Premises Edge Configuration Profile Hardware
	D.2 Step 2 - Download On-Premises Edge Configuration Profile Ansible Playbook
	D.2.1 On-Premises Edge Configuration Profile Ansible Playbook Overview

	D.3 Step 3 - Set Up On-Premises Edge Configuration Profile
	D.3.1 On-Premises Edge Configuration Profile Group Variables
	D.3.2 On-Premises Edge Configuration Profile Host Variables

	D.4 Step 4 - Deploy On-Premises Edge Configuration Profile Platform
	D.5 Step 5 - Validate On-Premises Edge Configuration Profile

	Appendix E BMRA Remote CO-Forwarding Configuration Profile Setup
	E.1 Step 1 - Set Up Remote CO-Forwarding Configuration Profile Hardware
	E.2 Step 2 - Download Remote CO-Forwarding Configuration Profile Ansible Playbook
	E.2.1 Remote CO-Forwarding Configuration Profile Ansible Playbook Overview

	E.3 Step 3 - Set Up Remote CO-Forwarding Configuration Profile
	E.3.1 Remote CO-Forwarding Configuration Profile Group Variables
	E.3.2 Remote CO-Forwarding Configuration Profile Host Variables

	E.4 Step 4 - Deploy Remote CO-Forwarding Configuration Profile Platform
	E.5 Step 5 - Validate Remote-CO Forwarding Configuration Profile

	Appendix F BMRA Regional Data Center Configuration Profile Setup
	F.1 Step 1 - Set Up Regional Data Center Configuration Profile Hardware
	F.2 Step 2 - Download Regional Data Center Configuration Profile Ansible Playbook
	F.2.1 Regional Data Center Configuration Profile Ansible Playbook Overview

	F.3 Step 3 - Set Up Regional Data Center Configuration Profile
	F.3.1 Regional Data Center Configuration Profile Group Variables
	F.3.2 Regional Data Center Configuration Profile Host Variables

	F.4 Step 4 - Deploy Regional Data Center Configuration Profile Platform
	F.5 Step 5 - Validate Regional Data Center Configuration Profile

	Part 4:
	Appendix G BMRA Release Notes
	G.1 BMRA 21.09 New Features
	G.2 BMRA 21.09 Bug Fixes
	G.3 BMRA 21.08 New Features
	G.4 BMRA 21.08 Bug Fixes
	G.5 BMRA 21.03 New Features
	G.6 BMRA 21.03 Bug Fixes
	G.7 BMRA 2.1 New Features
	G.8 BMRA 2.1 Bug Fixes
	G.9 BMRA 2.0 New Features
	G.10 BMRA 2.0 Bug Fixes
	G.11 Known Issues

	Part 5:
	Appendix H Workloads and Application Examples
	H.1 Enabling Key Management NGINX Applications


