
 1

White Paper
Intel Corporation

Closed Loop Automation - Telemetry Aware Scheduler for
Service Healing and Platform Resilience

Authors
John Browne

Emma Collins

Krzysztof Kepka

Sunku Ranganath

Jabir Kanhira Kadavathu

Swati Sehgal

Killian Muldoon

Michal Kobylinski

1 Introduction
Closed loop automation is the process of continually monitoring real-time network
conditions, workload requirements, and resource capabilities and availability to
determine the optimum workload placement for faster and more efficient delivery of
services. Service Providers are adopting Closed Loop Automation as a strategic priority
to address their business objectives [1.]. One such objective is to ensure customer Service
Level Agreements (SLAs) are met to provide an optimum Quality of Experience (QoE),
which is delivered according to operator defined policies. Network Services rely on the
infrastructure they run on and so this is a crucial place to start with when trying to ensure
an optimal QoE.

This document provides an overview of a platform resiliency prototype that showcases
the integration of key Closed Loop Automation components, leveraging a mix of
solutions provided by Intel and the open source community.

Traditional Telecom Services Assurance is an Operations Support System (OSS) function
carried out offline [1.] without automated processes and methods for self-optimization of
the network. This paper outlines ‘near real-time’ automation at a granular platform level.
This allows an orchestration system to detect and respond to an issue before a customer
is impacted, including integration with Management and Network Orchestration (MANO),
using platform telemetry, and analytics. Closed loop solutions integrate components that
include platform, telemetry, analytics processing, MANO and polices to create automated
processes.

The Intel platform has a wealth of features and resources that provide a rich set of data
and control points that can be used for configuration, reporting, monitoring and
managing workloads in a network infrastructure. This data can be used as part of a
Closed Loop Solution to provide granular insights into the behavior of the system. When
these metrics provide actionable alerts, the configuration controls can be used to
provide platform resiliency support and ensure minimal unplanned operational
downtime.

By collecting Intel® Architecture specific feature telemetry, this prototype will provide
host insights to a new Kubernetes* (K8s*) scheduling extension, called Telemetry Aware
Scheduling (TAS), to trigger corrective healing actions on a workload and influence
workload placement decisions, depending on the reliability of the underlying
infrastructure. By gaining these insights into the health of the platform, the services they
are running on, and having the control to be able to remediate against faults and errors
in an automated way, this prototype provides the methodology to reduce risk of
unplanned outages and enable scheduled downtime for maintenance, therefore
maximizing service availability.

Along with the video showing this use case in action included in the release, this
document is part of the Network Transformation Experience Kit, which is available at:
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-
kits

https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits

White Paper | Closed Loop Automation - Telemetry Aware Scheduler for Service Healing and Platform Resilience

 2

Table of Contents

3.2.1 Host Health Indicator Calculation Logic ... 5

Figures
Figure 1. ETSI NFV Architecture + Analytics Component (Including view of scope of this document) ... 4
Figure 2. Streaming analytics with Kafka and KSQL ... 5
Figure 3. Host Health Indicator Sample Threshold Decision Matrix .. 6
Figure 4. Topology of a Kubernetes system integrated with Telemetry Aware Scheduling ... 7
Figure 5. High level Prototype Architecture .. 8

Tables
Table 1. Terminology ... 3
Table 2. Reference Document ... 3

White Paper | Closed Loop Automation - Telemetry Aware Scheduler for Service Healing and Platform Resilience

 3

2 Document Overview
This document describes the components of a closed loop solution for automating a “platform resiliency” use case. Details are
provided on the wealth of Intel® Architecture specific platform features that can play a crucial role in many automated use cases.
Combined with solutions for telemetry analysis and orchestrated techniques for intelligent workload placement, the following
sections will outline the potential building blocks that can be used to implement their own closed loop solution on an Intel®
Architecture platform.

2.1 Intended Audience
This white paper is intended for Service Providers, Telecom Equipment Manufacturers (TEMs), Network Monitoring and
Management solution providers or those planning to deploy closed loop automation solutions running on Intel® Xeon® Processors.

2.2 Terminology

Table 1. Terminology

ABBREVIATION DESCRIPTION

BMC Baseboard Management Controller

CLA Closed Loop Automation

CSP Communication Service Provider

IPMI Intelligent Platform Management Interface

KSQL Kafka* Structured Query Language

KPI Key Performance Indicators

LLC Last Level Cache

MANO Management and Network Orchestration

MCA Machine Check Architecture

NFVI Network Function Virtualization Infrastructure

NFVO Network Functions Virtualization Orchestrator

OSS Operating Support System

QoE Quality of Experience

OPNFV* Open Platform for Network Functions Virtualization*

PMU Performance Monitoring Unit

RAS Reliability, Availability and Serviceability

RDT Intel® Resource Director Technology

SLA Service Level Agreements

TAS Telemetry Aware Scheduling

TEM Telecoms Equipment Manufacturer

VNF Virtual Network Function

VNFM Virtual Network Function Manager

2.3 Reference Document

Table 2. Reference Document

Ref Num. REFERENCE SOURCE

1. NFV Service Assurance – In Need of Big Data,
Small Data or Both?

https://www.lightreading.com/analytics/big-data/nfv-service-assurance---in-
need-of-big-data-small-data-or-both/a/d-id/739614

https://www.lightreading.com/analytics/big-data/nfv-service-assurance---in-need-of-big-data-small-data-or-both/a/d-id/739614
https://www.lightreading.com/analytics/big-data/nfv-service-assurance---in-need-of-big-data-small-data-or-both/a/d-id/739614

White Paper | Closed Loop Automation - Telemetry Aware Scheduler for Service Healing and Platform Resilience

 4

3 Components of the Intel® Closed Loop Automation Solution
This section includes the ETSI NFV Architecture diagram and the scope of this prototype relative to this architecture superimposed
over it (refer to Figure 1). There is a Virtual Network Function (VNF) running in a Network Function Virtualization Infrastructure
(NFVI) and interacting with the VIM layers. The blue layer details the configuration specific to this document and build. An analytics
function has been added also to show its inclusion as part of a closed loop solution.

Figure 1. ETSI NFV Architecture + Analytics Component (Including view of scope of this document)

3.1 Intel® Architecture Platform Telemetry
Intel platform features have been instrumented to provide fine grained insights into the performance and health of a platform, as
well as other KPI’s. This prototype uses collectd* plugins that have been specifically written to retrieve stats and events from these
particular Intel Platform Features. collectd, being the data collection mechanism of choice, is an open source daemon that has a
pluggable architecture. It uses the concept of south bound plugins, which will read metrics from a platform feature, and north
bound plugins, which will make this information available in various formats, so that it can be consumed as necessary (such as
through monitoring or analytics solutions). The frequency of metrics gathering from the platform and/or processes is fully
configurable, ranging from seconds to minutes, depending on the granularity required.

Metrics from the following features, currently available on most Intel platforms, are the inputs into the Streaming Analytics
component that can be used to make a decision as to platform health and provide a “Host Health Indicator”. See Section 3.4 for
more details on the “Host Health Indicator calculation”.

Intel server platforms provide a rich and growing set of data and control points that fall under the umbrella term of Intel’s
Infrastructure Management Technologies. These features can be used for configuration, reporting, monitoring and managing
workloads and data:
• Intel® Resource Director Technology provides the ability to view and control shared resources like the Last Level Cache (LLC)

and Memory Bandwidth being used by an application, virtual machine or container running on the platform. For more
information, refer to Intel® Resource Director Technology (Intel® RDT)’s resource on Unlocking System Performance In Dynamic
Environments.

• The Performance Monitoring Unit provides performance counters through hardware registers that count hardware events such
as instructions executed, cache-misses suffered, or branches mispredicted. This information can be used for profiling
applications that run on Intel CPU’s.

• Intel® Run Sure Technologies, including Reliability, Availability and Serviceability (RAS) features, provide advanced reliability
and system resiliency for workloads. They provide the capability to auto-detect and correct transient hardware errors, and
advanced CPU and memory disk monitoring and recovery features (which includes the detection and reporting of potentially
service impacting faults).

• Intelligent Platform Management Interface (IPMI) collects sensor data from the Baseboard Management Controller (BMC) of a
platform which includes data from the internal physical variables such as temperature, humidity, power-supply voltage and fan
speeds.

Analytics

In Scope

Telemetry

Legend

NFV: Network
Function

Virtualization

NFVM: NFV
Manager

NFVO: NFV

Orchestration

https://collectd.org/
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-run-sure-technology.html

White Paper | Closed Loop Automation - Telemetry Aware Scheduler for Service Healing and Platform Resilience

 5

All of these features have an associated collectd* plugin that can be found as part of collectd or Barometer, the Open Platform for
Network Functions Virtualization* (OPNFV*) telemetry project.

FEATURE COLLECTD INFORMATION BAROMETER INFORMATION

Intel® RDT https://collectd.org/wiki/index.php/Plugin:IntelRDT https://wiki.opnfv.org/display/fastpath/Intel_RDT

PMU https://collectd.org/wiki/index.php/Plugin:Intel_PMU https://wiki.opnfv.org/display/fastpath/PMU

RAS https://collectd.org/wiki/index.php/Plugin:mcelog https://wiki.opnfv.org/display/fastpath/Memory+RAS

IPMI https://collectd.org/wiki/index.php/Plugin:IPMI https://wiki.opnfv.org/display/fastpath/IPMI

3.2 Telemetry Analysis
A truly autonomous network and infrastructure require a level of intelligence and synthesis with capability to enforce the decisions
taken. This requires the right level of telemetry to be consumed at node level for real time closed loops, Virtual Network Function
Manager (VNFM) level for near-real time closed loops and at the Network Functions Virtualization Orchestrator (NFVO) level for
overall processing. The platform metrics and application metrics need to be correlated and tailored for specific sets of use cases
based on the workload. Analytics play an important role in data visualization, modeling, trending, capacity optimization that are not
often easy to correlate without an intelligent agent. The choice of the algorithm or the extent of intelligence would differ heavily
based on the use case being chosen to be automated in a closed loop.

Apache Kafka* open source framework provides a distributed streaming platform that helps build near real-time data pipelines to
perform stream processing enabling anomaly detection on streaming data before being consumed by a time series database.
Kafka’s streams library and Kafka Structured Query Language (KSQL*) provides the necessary constructs to build necessary queries
on top of streaming data to identify and alert the state of the deployment. This prototype uses KSQL queries built on collectd Kafka
topic from each of the nodes, run the queries to calculate ‘Host Health Indicator’, as detailed in Section 3.2.1, and indicates the red
or yellow state as a new Kafka topic to be fed in to Prometheus*.

A custom Kafka to Prometheus Bridge has been implemented to export the data from Kafka topic format to a format that
Prometheus can understand. Kubernetes TAS would then take corrective action based on the host health indicator, as detailed in
Figure 2.

Figure 2. Streaming analytics with Kafka and KSQL

3.2.1 Host Health Indicator Calculation Logic
Figure 3 gives an overview of the approach the telemetry analysis framework took to calculating the individual host health
indicators based on the metrics and events coming from the platform. Each measured metric is compared against expected nominal
threshold ranges for that metric and an alert is generated when the value is outside the expected range. The ranges can be normal
(green), minor (yellow), and critical (red). Each group of metrics can trigger a status change independently.

https://collectd.org/
https://wiki.opnfv.org/display/fastpath/Barometer+Home
https://collectd.org/wiki/index.php/Plugin:IntelRDT
https://wiki.opnfv.org/display/fastpath/Intel_RDT
https://collectd.org/wiki/index.php/Plugin:Intel_PMU
https://wiki.opnfv.org/display/fastpath/PMU
https://collectd.org/wiki/index.php/Plugin:mcelog
https://wiki.opnfv.org/display/fastpath/Memory+RAS
https://collectd.org/wiki/index.php/Plugin:IPMI
https://wiki.opnfv.org/display/fastpath/IPMI

White Paper | Closed Loop Automation - Telemetry Aware Scheduler for Service Healing and Platform Resilience

 6

The following figure is an example of mapping the prototype Host Health Indications to the ITU perceived severities, defined in
https://tools.ietf.org/html/rfc3877. The values for the Host Health Indicator are used as examples for the prototype, many other
mappings and alternate ranges and values for the host health indications can be used.

Figure 3. Host Health Indicator Sample Threshold Decision Matrix

3.3 Automated Action – Telemetry Aware Scheduling
Automated action can be carried out in the VNFM, NFVO or VIM depending on the type of automated action required and the
appropriate MANO layer. In the prototype, corrective actions are taken within the VIM. In an NFV deployment, the Service
Orchestrator and the VNFM will receive insights from analytics and take consequential actions in line with the responsibilities of
each layer of MANO (VIM, VNFM, NFVO), since re-deployments will require knowledge of the local service, VNF life cycle, and the
end to end service.

The generic Kubernetes Scheduler ignores platform and other telemetry when making placement decisions. TAS is a Kubernetes
scheduling extension that takes telemetry into account, enabling automated actions and intelligent placement of workloads to be
made based on cluster/platform metrics and the Service Level Agreements of individual workloads.

TAS enforces a rule-based, user defined telemetry policy on the cluster to influence up front pod placement and control pod
distribution later in the lifecycle. This policy is implemented as a Kubernetes Custom Resource Definition and can be treated as if it
were part of the native Kubernetes API by its creators and consumers.

https://tools.ietf.org/html/rfc3877

White Paper | Closed Loop Automation - Telemetry Aware Scheduler for Service Healing and Platform Resilience

 7

The TAS telemetry policy takes the form:

Three scheduling strategies are named in the policy. The first, “scheduleonmetric”, prioritizes nodes based on the metric passed to
it. The second, “dontschedule”, excludes nodes which break the declared ruleset from the list of candidate nodes. The third,
“deschedule”, removes a pod from a node violating the attached ruleset.

The telemetry data used for policy enforcement are consumed from the Prometheus database through the Kubernetes Custom
Metrics API. Metrics can be compared with “Greater Than”, “Equals” and “Less Than” operators.

TAS is deployed as a single pod and sits beside the generic scheduler on the Kubernetes Master. When a pod request with a
telemetry policy is created a list of candidate nodes based on default scheduling rules are sent to TAS. TAS then uses the pod’s
policy definition combined with up to date platform metrics to find the optimal node for pod placement.

Figure 4. Topology of a Kubernetes system integrated with Telemetry Aware Scheduling

apiVersion: telemetry.ie/v1
kind: TelemetryPolicy
metadata:
 name: health-policy
 namespace: default
spec:
 strategies:
 scheduleonmetric:
 rules:
 - metricname: health_metric
 operator: GreaterThan
 dontschedule:
 rules:
 - metricname: health_metric
 operator: Equals
 target: 1
 - metricname: health_metric
 operator: Equals
 target: 2
 deschedule:
 rules:
 - metricname: health_metric
 operator: Equals
 target: 2

White Paper | Closed Loop Automation - Telemetry Aware Scheduler for Service Healing and Platform Resilience

 8

Once a workload is placed TAS continues to monitor metrics specified in the telemetry policy to ensure compliance and trigger
redistribution of workloads if required. The “deschedule” policy allows workloads to be descheduled in case of violation and
subsequently be placed on a non-violating node.

The above policy, for example, will not schedule affected workloads on any node which has a health metric of 2 or 1. If a node’s
health metric reaches 2 TAS will run it’s critical deschedule policy, removing that workload from the node altogether and causing it
to be placed on a non-violating node.

3.4 Error Injection
Intel® Run Sure technology provides set of resilient system and resilient memory technologies that are designed to reduce
frequency of downtime while reducing the cost of downtime. Resilient memory technologies provided as part of Intel® Run Sure
technologies ensure data integrity by recovering from memory fatal errors and reduces the service cost.

Linux’s* mcelog is a daemon for handling and reporting hardware errors. It is able to use trends in corrected error reports to
implement specific error prevention algorithms. Errors will be usually reported to the operating system using the standard x86
Machine Check Architecture (MCA) registers. Uncorrected memory errors – that is data corruption – are reported using a machine
check exception and handled directly by the kernel (for example, by killing the affected process or shutting down the system down).

Corrected errors are polled by a timer or interrupt handler and reported to the mcelog daemon. The mcelog daemon decodes the
error and does accounting and other book keeping.
To stress the server with memory faults and simulate an unhealthy state of host, mce-inject and stress-ng tools are used as below:
1. mce-inject allows to inject machine check errors on the software level into a running Linux kernel. This tool is intended to

test the machine check handling code. The injection only happens on the software level and does not simulate full machine
check handling on the platform level. This tool is useful specifically for Intel RAS.
https://git.kernel.org/pub/scm/utils/cpu/mce/mce-inject.git/

2. Stress-ng will stress a host in various selectable ways. It can introduce thermal overruns, high memory bandwidth, L2 cache
misses, etc. This tool is useful for specific to Intel® Resource Director Technology (RDT)/Performance Monitoring Unit (PMU).
https://wiki.ubuntu.com/Kernel/Reference/stress-ng

4 Closed Loop Automation – Platform Resiliency Use Case Description

Figure 5. High level Prototype Architecture

https://pdfs.semanticscholar.org/f696/1c7cb9d4cb36b5bd7af64d354d428acec846.pdf
https://git.kernel.org/pub/scm/utils/cpu/mce/mce-inject.git/
https://wiki.ubuntu.com/Kernel/Reference/stress-ng

White Paper | Closed Loop Automation - Telemetry Aware Scheduler for Service Healing and Platform Resilience

 9

4.1 Method of Operation
The stress-ng application is used in this prototype both as application under test scheduled by Kubernetes* and a noisy neighbor
scheduled by the user on an isolated set of CPU cores.
1. Using three nodes in the cluster to showcase the functionality, Node 1 and 2 have collectd* running, collecting metrics from

the platform. Refer to Section 3.1 for further details. A standard workload is running without issue on Node 1 when various
platform errors can be injected to mimic “critical” network infrastructure issues.

2. The Streaming analytics solution aggregates metrics from all nodes and processes the data as outlined in Section 3.2. The
errors injected in Step 1 will be picked up through the metrics and once analyzed, will provide a “Critical” Host Health indicator
to Prometheus*.

3. Kubernetes Telemetry aware scheduler picks up this indicator from Prometheus and takes immediate remedial action to move
the workload from Node 1 to Node 2 to ensure the service can continue with minimum disruption.

Refer to Section 4.2 for all possible “Reliability Aware” placement scenarios used in this prototype.

4.2 Reliability Aware Placement Scenarios
The “Host Health Indicators” provided to the Telemetry Aware Scheduling in this prototype determine the workload placement
decisions the scheduler will take.
There are three reliability aware placement scenarios configured here (Refer to Section 3.4 to understand how each indicator is
calculated):
1. Red Scenario: A platform will provide a “Red” host health indicator to the Telemetry Aware Scheduling if it has been deemed to

be in a “critical” state. Once TAS receives this critical indicator it will deschedule workloads linked to the specific policy on that
node and schedule on a “healthy” node.
a. Users can trigger a red scenario by using the stress-ng tool (with specified options) pinned to 4 isolated cores.
b. One way is to use a few workers exercising the CPU by sequentially working through all the different CPU stress methods

combined with workers continuously calling sync to commit buffer cache to disk simultaneously calling mmap/munmap
and writing to the allocated memory.
For example:

• stress-ng --cpu 4 --io 10 --vm 40 --vm-bytes 1024M -t 90s --taskset 1-4
• stress-ng --cpu 4 --io 10 --vm 50 --vm-bytes 1024M -t 90s --taskset 1-4

The second way is to use stress-ng with a few workers that perform various matrix operations on floating point values,
where matrix size is setup on 8192.
For example:

• stress-ng --matrix 10 --matrix-size 8192 -t 90s --taskset 1-4
• stress-ng --matrix 200 --matrix-size 8192 -t 90s --taskset 1-4

c. On a Kafka stack, users can define the “RED” scenario using ksql queries with proper threshold conditions. Once the
streaming data hits the threshold conditions, Users can define a correlated ksql query as Host health Indicator. The
following are example queries that we used for Intel RAS plugin with mcelog errors:

 ksql > create stream mcelog as select * from collectd_stream where plugin =
'mcelog' and \
 type_instance = 'corrected_memory_errors' and plugin_instance =
'SOCKET_0_CHANNEL_0_DIMM_any';

 ksql > create stream HOST_HEALTH_DB as select host,type,type_instance,case
when `VALUES`[0]='0' and \
 `VALUES`[0]<'0.1' then 'Green' when `VALUES`[0]>'0.1' and `VALUES`[0]<'0.3'
then 'Yellow' else 'Red' \
 end as HH_Status from mcelog;

 ksql > create stream Host_Health_Status as select host,case
when hh_status='Green' then 0 when \
 hh_status='Yellow' then 1 else 2 end as Status from
Host_Health_DB;

 ksql > create table HostHealth_Indicator as select host,MAX(Status) from
Host_Health_Status \
 window tumbling (size 10 seconds) group by host;

Note: This scenario is not intended for production environment.

White Paper | Closed Loop Automation - Telemetry Aware Scheduler for Service Healing and Platform Resilience

 10

2. Amber/Yellow Scenario: An amber indicator will identify that a minor fault has been found on the node. All workloads can

continue to work as normal, but the scheduler will not schedule any further workloads with this policy on this node until
planned maintenance can occur to return the node to a “healthy” status. TAS will place new workloads with this policy on an
alternative “healthy” node.
a. Yellow scenario user can be triggered by running stress-ng tool with workers that perform random wide spread memory

read and writes to thrash the CPU. Stress-ng is pinned to 4 cores (isolated).
Example:
• stress-ng --cache 400 --cache-flush -t 90s --taskset 1-4
• stress-ng --cache 500 --cache-flush -t 90s --taskset 1-4
• stress-ng --cache 600 --cache-flush -t 90s --taskset 1-4

b. Refer to the queries mentioned above for “RED” scenario that provides the threshold condition for Amber/Yellow scenario
as well.

3. Green Scenario: A green indicator identifies all the healthy nodes that TAS can use to make a workload placement.

5 Conclusion
We show how rich platform telemetry, combined with analytics and MANO components are used for closed loop automation of a
set of resiliency and service healing actions. Closed loops can occur at the VIM layer, as shown with Kubernetes*, using the same
components, actions can also be taken further up the MANO stack in the VNFM or NFVO layers, with the decisions informed by
platform telemetry and analytics insights. The paper shows how platform telemetry can be used to respond and close the loop to
maximize service uptime and customer QoE by proactively responding to advance insight from the platform.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-
infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact
your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized
errata are available on request. No product or component can be absolutely secure.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting
www.intel.com/design/literature.htm.

Intel, Xeon, and the Intel logo, are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

© 2019 Intel Corporation 1019/DN/PTI/PDF 341450-001US

http://www.intel.com/design/literature.htm

	1 Introduction
	2 Document Overview
	2.1 Intended Audience
	2.2 Terminology
	2.3 Reference Document

	3 Components of the Intel® Closed Loop Automation Solution
	3.1 Intel® Architecture Platform Telemetry
	3.2 Telemetry Analysis
	3.2.1 Host Health Indicator Calculation Logic

	3.3 Automated Action – Telemetry Aware Scheduling
	3.4 Error Injection

	4 Closed Loop Automation – Platform Resiliency Use Case Description
	4.1 Method of Operation
	4.2 Reliability Aware Placement Scenarios

	5 Conclusion

