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1 Introduction

Galois/Counter Mode (GCM) has two main components: encryption and authentication. Data
is encrypted via Advanced Encryption Standard (AES) block cipher and an authentication
tagis generated by applying a hash function (GHASH) to the ciphertext. There has been a
tremendous amount of effort on improving the GCM performance over the years, in many
fronts. Intel introduced and perfected the Intel® AES New Instructions (Intel® AES-NI),
whichincludes both AES and PCLMULQDQ family of instructions. AES and GHASH
components of GCM are highly parallelizable, and the current best implementations present
similar performance for both AES and GHASH. Latency of the GCM operation is on par with
the latency of the slower of these components. For example, assume GHASH latency is X
cyclesand AES latency is Y cycles, on an arbitrary length data. If X>Y, GCM latency is very
close to X, (if a parallel implementation technique, such as function stitching, is used).

In this paper, we introduce two novel techniques to improve the GHASH performance. These
techniques improve the latency of overall GHASH operation, and they can be utilized in any
setting for GCM implementation. For proof of concept, we utilized these techniques on
software implementations. Intel® Advanced Vector Extensions 512 (Intel AVX-512) allow
parallel computations of AES and GHASH components, and high throughputs can be
achievedin a single-buffer SIMD setting. We applied our techniques on this setting and
achieved close to ~40% improvement for 64 byte message size and ~10% improvement for
16,384 byte message size.

This document is part of the Network & Edge Platform.


https://networkbuilders.intel.com/intel-technologies/experience-kits
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1.1 Terminology

Tablel. Terminology

Abbreviation Description

AAD Additional Authenticated Data

AES Advanced Encryption Standard

GCM Galois/Counter Mode

GHASH Hash function over GF(2'2?8) used for constructing a Message Authentication Code (MAC) inthe AES-GCM
authenticated encryption cipher

SIMD Single Instruction/Multiple Data

TLS Transport Layer Security

VPN Virtual Private Network

QuIC Quick UDP Internet Connection

1.2 Reference Documentation

Table2. Reference Documents

Reference Source

3rd Gen Intel® Xeon® Scalable Processor -
Achieving 1 Tbps IPsec with Intel® Advanced
Vector Extensions 512 (Intel® AV X-512)
Technology Guide

Intel® Advanced Vector Extensions 512

Intel® AVX-512 - High Performance IPsec with
Intel® Xeon® Scalable Processor Technology
Guide

Intel® Multi-Buffer Crypto for IPsec Library

The Galois/Counter Mode of Operation (GCM)
(D. A.McGrew and J. Viega)

E. Ozturk and V. Gopal, "Enabling High-
Performance Galois-Counter-Mode on Intel®
Architecture Processors," 2012

V. Gopal, W. Feghali, J. Guilford, E. Ozturk, G.
Wolrich, M. Dixon, M. Locktyukhin and M.
Perminov, "Fast Cryptographic Computation on
Intel® Architecture Processors Via Function
Stitching," 2010

2 Overview
21 Carry-less Multiplication

GHASH is defined over arithmetic in GF(2), and the operation known commonly as “carry-less multiplication” is multiplication of
two polynomials with coefficients in GF(2) (Galois Field). In GF(2), every digit ai€$0,1% and operations are realized modulo 2.
Since there is no carry propagation, this operation is commonly known as “carry-less multiplication”.

Arithmetic in GF(2): As can be seen from the truth table below, multiplication of two digits in GF(2) can be realized with a simple
AND operation. Also, addition and subtraction of two digits in GF(2) can be realized with a simple XOR operation.

Table3. Arithmeticin GF(2)

a b a*b a+b a-b

0 (2] 0*0 mod 2 = 0 0+0 mod 2 = 0 0-0 mod 2 = 0
0 1 0*1 mod 2 = O O+1 mod 2 = 1 ©0-1mod 2 = 1
1 (] 1*9 mod 2 = © 1+0 mod 2 = 1 1-0mod 2 = 1
1 1 1*1 mod 2 = 1 1+1 mod 2 = © 1-1 mod 2 = 0

64-bit multiplication operation in GF(2) can be defined as:
GFMUL64(X,Y)=X*Y


https://networkbuilders.intel.com/solutionslibrary/3rd-generation-intel-xeon-scalable-processor-achieving-1-tbps-ipsec-with-intel-advanced-vector-extensions-512-technology-guide
https://networkbuilders.intel.com/solutionslibrary/3rd-generation-intel-xeon-scalable-processor-achieving-1-tbps-ipsec-with-intel-advanced-vector-extensions-512-technology-guide
https://networkbuilders.intel.com/solutionslibrary/3rd-generation-intel-xeon-scalable-processor-achieving-1-tbps-ipsec-with-intel-advanced-vector-extensions-512-technology-guide
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-high-performance-ipsec-with-4th-gen-intel-xeon-scalable-processor-technology-guide
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-high-performance-ipsec-with-4th-gen-intel-xeon-scalable-processor-technology-guide
https://github.com/intel/intel-ipsec-mb
https://www.intel.cn/content/dam/www/public/us/en/documents/software-support/enabling-high-performance-gcm.pdf
https://www.intel.cn/content/dam/www/public/us/en/documents/software-support/enabling-high-performance-gcm.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-ia-cryptographic-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-ia-cryptographic-paper.pdf
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Where, X and Y are 64-bit numbers representing degree-63 polynomials in GF(2) and the result is a 127-bit number representing
adegree-126 polynomial in GF(2). The GFMUL64 (X, Y) function is utilized in Intel® architectures, via the PCLMULQDQ family of
instructions.

Inputs: X,Y
Output: Z=GFMUL64(X,Y)
Z=0

for i from © to 63:
Z=2~((X<<1i)&(Y[i]))

22 Technology Description
221 Optimized Multiplication in GF(2'%8)

In this section, we introduce one of our novel techniques to improve overall GHASH performance. With this technique, the
performance of multiplication in GF(2'28) is improved, which directly affects the overall GHASH performance.

The main building block of GHASH is multiplication in the field GF(2'?8), which is defined by the polynomial: P(x) =
x128+x7+x2+x+1. The RES = A*B mod P operation can be defined as follows:

Table4. GHASH Algorithm

Inputs: | A,BeGF(2!%)
P(X)=x1B+x7+x2+x+1.

Output: RES=A*B mod P

Step 1: Compute C=A*B

Step 2: Compute RES=C mod P

This operation is depicted in Eigure 1. All polynomials in GF(2'28) are represented as 128-bit integers. For a proof-of-concept
implementation, we will present a software implementation. Therefore, every integer is represented with 64-bit digits. For
example, C[1:0] represents two least significant digits and C[3:2] represents two most significant digits of the 256-bit integer
C. It should be noted that in GF(2), the addition operation is realized with a simple XOR operation.

A

Step 1: Calculate
C=A*B B

Reduction

\ 4

Step 2: Reduce C

v
RES=A*B mod P

Figurel. Simple Multiply-Reduce Algorithm

There are many well-known methods for Steps 1and 2 of this multiplication operation. Karatsuba can be utilized for Step 1and
reduction techniques (Barrett, folding, shift-reduce, etc.) can be utilized for Step 2. A software-friendly version of the multiply-
reduce routine can be defined as follows:
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Table5. Software Friendly GHASH Algorithm

Inputs: | A,BeGF(2'%8)
Q(x)=x"+x*x+1 (=x'% mod P)

Output: | RES=A*B mod P

Step 1: | Compute C=A*B

C=GFMUL64(A[@],B[0])+
GFMUL64(A[©],B[1])*x5%+
GFMUL64(A[1],B[0])*x5%+
GFMUL64(A[1],B[1])*x28

Step 2: | Compute RES=C mod P
Folding step 1:
C=C[3]*x¥2+C[2:0]
Y=C mod P
=GFMUL64(C[3],Q)*x%*+C[2:0]
Folding step 2:
Y=Y[2]*x*28+Y[1:0]
RES=Y mod P
=GFMUL64(Y[2],Q)+Y[1:0]

This algorithm is depicted in Eigure 2.

A[1] A[0]

B[1] B[0]

Step 1: Calculate
C=A*B A[0] * B[O]

A[O] * B[1]

A[1] * B[O]

A[1] * B[1]

Cl3] C[2:0]

Folding with Q

Step 2: Reduce C Y[2] Y[1:0]

Folding with Q

RES=A*B mod P

Figure 2. Software Friendly Multiply-Reduce Routine with Folding Approach
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As can be seenin Figure 2, multiplication (Step 1) part of the operation can be realized with fourindependent 64-bit multiply
operations, which can be realized via four PCLMULQDQ instructions. Reduction (Step 2) consists of two serial operations. To
remove one of the serial steps, we modify the multiplication operation entirely with a precomputation step.

The following operation constitutes the main building block of GHASH where multiplication in GF(2'28) is denoted as *:
Xi=Xi1 @ C)+H

In the context of GHASH, one of the inputs of this multiplication in GF(2'?8) routine is always a variant of H, which is
precomputed and stored before the GHASH operation is realized. We utilize this property in order to optimize the latency of
GHASH operation.

First, we define a precomputed value K:
K=B[1]*Q

K is a value that is generated from the B input of the Multiplication in GF(2'28). K can be precomputed with the precomputed H
table and the B input of the multiplication in GF(2'?8) routine can always be selected as the input from the H table.

K (K[1:0]) is utilized in the multiplication operation instead of B[1]:
A[1]*B[1]*x™28=A[1]*B[1]*Q mod P=A[1]*K
=GFMUL64(A[1], K[@]) + GFMUL64(A[1], K[1])*x*

Step 10of the algorithm is modified as follows:

Table 6. Improved GHASH Algorithm Step 1

Step 1: Compute C=A*B

Y=GFMUL64(A[0],B[0])+
GFMUL64(A[0@],B[1])*x5%+
GFMUL64(A[1],B[@])*x5%+
GFMUL64(A[1],K[@])+
GFMUL64(A[1],K[1])*x5

With this approach, multiply-reduce routine is optimized by removing a folding step from reduction. This is depicted in Eigure 3.
As can be seenin the figure, instead of the A[1]*B[1] 64-bit multiplication operation, we realize two 64-bit multiplication
operations.
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A[1] A[0]

B[1] B[O]

A[0] * B[0]

A[0] * B[1]

A[1] * B[O]

Folding with Q

A 4
N

RES=A*B mod P

Figure 3. Optimized Multiply-Reduce Routine

Step 10of the algorithm can be optimized with a slight modification. Since:
GFMUL64(A[1],B[0])*x5*+GFMUL64(A[1],K[@])*X54=GFMUL64(A[1], (K[@]+B[08])) *x54
We modify K as follows:

K=B[1]*Q+B[@]*x%*

Step 10of the algorithm is further modified as follows:

Table7. Optimized GHASH Algorithm Step 1

Step 1: Compute C=A*B

Y=GFMUL64(A[@],B[0])+
GFMUL64 (A[@],B[1])*x5+
GFMUL64(A[1],K[@])+
GFMUL64 (A[1],K[1])*x®4

Our final optimized algorithm is detailed below and is detailed in Eigure 4.
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Table8. Optimized GHASH Algorithm

Inputs: | A,BeGF(21%8)

Input: Precomputed
K=B[1]*Q+B[@]*x%*
Input: Q(x)=x"+x%+x+1(=x'?® mod P)

Output: | RES=A*B mod P

Step 1: | Compute Y

Y=GFMUL64 (A[@],B[0])+
GFMUL64(A[@],B[1])*x5%+
GFMUL64(A[1],K[0])+
GFMUL64 (A[1],K[1])*x5*

Step 2: | Compute RES=Y mod P
Folding step:
Y=Y[2]*x128+Y[1:0]
RES=Y mod P
=GFMUL64(Y[2],Q)+Y[1:0]

Al1] Al0]
B[1] B[O]
X
A[0]*B[0]
A[0]*B[1]
] A[1] * B[O]
A[1] * B[1]
A[1]*K[O]
A[1]*K[1]
B T T T
Y[2] Y[1:0]
A 4
Folding with Q
» YA
+
RES=A*B mod P

Figure 4. Further Optimized Multiply-Reduce Routine
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222 Bit-Reflected Multiplication in GF(2'28)

GHASH operation is defined over bit-reflected operands. GCM standard specifies that all operands are bit-reflected for GHASH
computations. For software implementations, bit-reflection operation can be expensive. There are well-known methods that
allow the use of PCLMULQDQ instructions without any bit-reflection operations. PCLMULQDQ instruction can be utilized with
some extra precomputation steps to eliminate bit-reflection. Here, we first analyze the core multiplication operation.

We define a bit-reflection function:
bitreflect;(X)=X’

where input X is treated as an i-bit value and bit-reflected. We have already defined the GFMUL64 (X, Y)=X*Y operation as the basic
building block of PCLMULQDQ family of instructions. As stated, for GHASH, we utilize bit-reflected inputs.

Assume:
X’ = bitreflectes(X)
Y’ = bitreflectes(Y)
Then:
GFMUL64(X’,Y’) = bitreflecti,s(Z<<1)

where:
Z = GFMUL64(X, Y)

We construct our 128-bit multiplier, named GFMUL128, using this building block, to realize RES* = bitreflectis(A*B mod P)
operation. This operation is realized with the following algorithm, which is depicted in Eigure 5.

Table9. BitReflected GHASH Algorithm

Inputs: A’=bitreflectizs(A)
B’=bitreflecti,s(B)
Q’=bitreflectss(Q>>1) (Q=x*?% mod

P)
Output: RES’=A’*B’ mod P’
Step 1: Compute C’=A’*B’

where
C’=bitreflect;,g(C<<1)

C’=GFMUL64(A’[0],B°[0])+
GFMUL64 (A’ [@],B” [1])*x5%+
GFMUL64 (A’ [1],B’ [0])*x5%+

GFMUL64 (A’ [1],B” [1])*x128

Step 2: Compute RES=C mod P
Folding step 1:
Y=GFMUL64(C’[0],Q’ )+
C’[0]*x%4+C° [3:1]

Folding step 2:
RES’=GFMUL64(Y[0],Q’ )+
Y[0]*x%4+Y[2:1]

10



Technology Guide | Advanced Encryption Standard Galois Counter Mode — Optimized GHASH Function

| ~m | a0 |

| B'[1] | B’[0] |

| A’[0] * B'[0]
| A’[0] * B'[1]

| A’[1] * B'[0] |

A’[1] * B’[1]

C'[3:1]

c'[0] |

Folding with Q’

| X —

Y[2:1] | Y[0] |

| Folding with Q’ |

z oo

+

|nymmmunnmmmwm|

Figure 5. Software Friendly Multiply-Reduce Routine on Bit-Reflected Operands with Folding Approach

We can further optimize this algorithm with our pre-computation method. Optimized algorithm working on bit-reflected data is

detailed as follows:

Table10. Optimized Bit Reflected GHASH Algorithm

Inputs:

A’=bitreflectizs(A)
B’=bitreflecti,s(B)
Q’=bitreflectss(Q>>1) (Q=x*?% mod P)
K’ =bitreflectiss(K)

Output:

RES’=A’*B’ mod P’

Step 1:

Compute Y
Y=GFMUL64 (A’ [0],K’[0])+
GFMUL64(A’[0],K’ [1])*x5+
GFMUL64(A’[1],B’[0])+
GFMUL64(A’[1],B’[1])*x5

Step 2:

Compute RES=C mod P
Folding:
RES’=GFMUL64(Y[0]1,Q’ )+
Y[@]*x84+Y[2:1]
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This optimized bit-reflected algorithm is depicted in Eigure 6.

A’[1] A’[0]
B’[1] B’[0]
X
....... A"[(i].*‘BI'['O.]. T .:

- A"[(;] *B’[1] -

A’[1] * B’[0]

A’[1] * B’[1]

A’[0] * K’[0]

A’[0] * K’[1]

+
Y[2:1] Y[0]
Folding with Q’
Z <
Y[0]
+
RES’=bitreflect128(A*B mod P)

Figure 6. Software Friendly Multiply-Reduce Optimized Routine on Bit-Reflected Operands with Folding Approach

3 Parallel GHASH

We propose another novel method to furtherimprove the performance of GHASH implementations. The GHASH algorithm is
defined in The Galois/Counter Mode of Operation (GCM)'. The following operation constitutes the main building block of
GHASH:

Xi=Xi1 B C)xH

where multiplication in GF(2'?8) is denoted as *. As an example, assume GCMis defined over a packet with O Bytes of Additional
Authentication Data (AAD) (m=0) and 12x16 Bytes of ciphertext (n=12). GHASH is defined as follows:

X = Xi-1 ® C) «H i=12,..,12
L {(Xlz ® (len(A)||len(C))) * H i=13

This is depicted in Eigure 7.



https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
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C1

Cc2

C3

c4

C5

Ccé6

c7

c8

Cc9

C10

Cl1

C12

Len(A) ||
len(C)

l

X0

-4

l
(=)

XOR

X12

—» m

X2

l
(=)

l
(=)

l
(=)

X9

X10

mul

U -]

|

aul

ul

aul

aul

aul

=l

aul

aul

l
(=)

X13

Figure7. Example GHASH Computation on 12 Blocks of Ciphertext

The equation for X12 result can be written as:
12
Xip = Xo* H'? + z Cox HB3 ™
i=1
GHASH is a serial operation. It is not suitable for software implementations. There are well-known methods to parallelize

GHASH computation. Using Horner’s method, and some precomputed values, the GHASH computation can be optimized as
follows:

Xlz=X0*H12+C1*H12+C2*H11+C3*H10+C4*H9+C5*Hs+C6*H7+C7*H6+C8*H5+C9*H4+C10*H3+C11*H2+C12
* H1

=(((Xg+ Cy*HY)Y + Cy+H3+ C3x H2 4+ Co x HY) + C5) * H* + Cg * H3 + C;, * H? + Cg x H* + Co) * H* + Cyo * H® + C11 * H? + Cyy
1

* H

The H?, H3 and H* values can be precomputed and used in the GHASH computation. Note that this is only an example. More
parallelization can be achieved with more precomputed data over real workloads.

Four multiplication operations can runin parallel. A ZMM register can hold four 128-bit blocks, and with a single execution, four
parallel GHASH operations can be realized.

In a SIMD setting, four multiplications can be parallelized very efficiently. However, after each of these four multiplications,
there is an XOR step. All 128-bit sections of the ZMM registers need to be XORed together(see Figure 8).
| Len(A) || |
len(C)

C10

Figure 8. Parallelized GHASH computation

This can be eliminated with the following optimization (see Figure 9):
Xip =

(((Xo +C0) « H +C5) + H* +Cy) + H* +

((Cy x H* + C) x H* + Cyp) x H® +

((C3xH*+ C;)  H* + Cy1) x H* +

((C4 *H4 + Cg) *H4 + Clz) *Hl
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Len(a) ||
len(C)

Figure 9. Further Optimized Parallel GHASH Computation

4 GHASH GF(2'28) Multiplication Example Code

Table 3 shows an example source code for a single block GHASH multiply and reduce operations. One column includes the
baseline version without the optimization. The second column shows the new version code with the optimization. The
schoolbook multiply part is identical in both cases but all steps that occur afterwards are hugely simplified in the optimized case.

The new version needs only ten instructions to produce the result while the baseline version needs 18 instructions.

TableT1.

Example code for GHASH multiply and reduce

Baseline version New version

Input:

xmmO - output result /input block

Input:

xmmO - output result /input block

xmml - Q’ xmml - Q’
xmm7 - K’
Output: Output:
xmmO xmmO

Instruction summary:

Instruction summary:

= 7 x vpclmulgdg = 5 x vpclmulgdg

- 6 x vpxor - 4 x vpxor

- 5 x vpslldg / vpsrldg - 1x vpshufd
vpclmulgdg xmm2, xmmO, xmml, O0x11 vpclmulgdg xmm5, xmmO, xmm7, 0xO
vpclmulgdg xmm3, xmmO, xmml, 0x00 vpclmulgdg xmm4, xmmO, xmm7, 0x10
vpclmulgdg xmm4, xmm0O, xmml, 0x01 vpclmulgdg xmm3, xmm0O, xmml, Ox1
vpclmulgdg xmm0O, xmm0O, xmml, 0x10 vpclmulgdg xmm2, xmmO, xmml, O0x11
VPpXOr xmm0, xmm0O, xmmé VPpXOr xmm5, xmm5, xmm3
vpsrldg xmm4, xmmO, 0x8 vVpXOor xmm2, xmm2, xmmé
vpslldg xmmO, xmmO, O0x8 vpclmulgdg xmm0O, xmm5, [rel P], 0x10
VPpXOr xmm2, xmm2, xmmé vpshufd xmm3, xmm5, Ox4e
VPpXOr xmm0, xmmO, xmm3 VPpXOr xmmO, xmm0O, xmm2
vmovdga xmm4, [rel P] vVpXOor xmm0O, xmmO, xmm3
vpclmulgdg xmm3, xmm4, xmm0O, 0xO01

c1 2 c3 E ) c7 c8 o c10 11 c12
) 4 b4
A B
¥0 XOR 1 T »{ XOR 1 T »{ xOR
O 4 O k. " xor
+ rs § _— - A . 4—p| xOR a
®| . -
R C LG,
Y h 4
“—JL———“—J;——4¥—“—*(EE) “—~————~—J———~——J—*(%E) x12
XOR
A 4 A 4 h Y Y h 4 h 4 k. A 4 h 4 A 4
mul »| mul »| mul P@ D|mu| » mul »{ mul »{ mul » mul »{ mul » mul | |~ mul » mul
. r
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vpslldg xmm3, xmm3, 0x8
vVpXOor xmm0O, xmmO, xmm3
vpclmulgdg xmm3, xmm4, xmm0O, 0x00
vpsrldg xmm3, xmm3, 0x4

vpclmulgdg xmmO, xmm4, xmmO, 0x10

vpslldg xmm0O, xmm0O, Ox4

vVpXOr xmm0, xmm0O, xmm3

VPpXOr xmm0, xmm0, xmm2
5 Performance Results

The performance measurement was done for encrypt direction and message sizes of 16384, 2048, 512, 256,128 and 64 bytes.
All measurements also included 12 bytes of Additional Authenticated Data (AAD), which is common for IPsec and TLS cases.

The comparison was done on Linux systems using Intel® Multi-Buffer Crypto for IPsec Library? and its performance tool. Two
software versions have been tested:

- baseline-vl.3version(git checkout vl.3)
- new-commitabd348a(git checkout abd348aa85c29ed9b25bc0835897ff9ccf2838b3)

“SAFE_OPTIONS=n" compilation option was used: make -j SAFE OPTIONS=n
Example command line for AES-GCM-128 and AES-GCM-256 16384 bytes message benchmark:

- baseline version (v1.3)

env LD LIBRARY PATH=$PWD/lib ./perf/ipsec perf --arch avx512 --aead-algo aes-gcm-128 --job-
size 16384 --job-iter 500000 --no-time-box --cipher-dir encrypt

env LD LIBRARY PATH=$PWD/lib ./perf/ipsec perf --arch avx512 --aead-algo aes-gcm-256 --job-
size 16384 --job-iter 500000 --no-time-box --cipher-dir encrypt

- new version (commitabd348a)

env LD LIBRARY PATH=$PWD/lib ./perf/imb-perf --arch avx512 --aead-algo aes-gcm-128 --job-
size 16384 --job-iter 500000 --no-time-box --cipher-dir encrypt

env LD LIBRARY PATH=$PWD/lib ./perf/imb-perf --arch avx512 --aead-algo aes-gcm-256 --job-
size 16384 --job-iter 500000 --no-time-box --cipher-dir encrypt

Note that the default size in the performance tool is the 12 bytes AAD size selection.

Table 4 and Table 5 present performance improvement ratio between baseline implementation of AES-GCM for the 3rd and 4th
Gen Intel® Xeon® Scalable processors.

The improvement ratio above value 1.00 means improvement of the new version vs the baseline, value below 1.00 would indicate
that the new version is less efficient than the baseline one.

Improvement ratio = baseline [cycles] / new [cycles]

Table12. AES-GCM-128 Improvement Ratios

Message Size [bytes]
Processor
16384 | 2048 256 | 128
114

112 | 1.26

3rd Gen Intel® Xeon ® Scalable Processor 1.09 1.05 116

4th Gen Intel® Xeon ® Scalable Processor 1.10 1.07 | 1.08 | 124 | 1.22 | 143



https://github.com/intel/intel-ipsec-mb
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Table13. AES-GCM-256 Improvement Ratios

Message Size [bytes]
Processor
16384 | 2048 5 256 | 128

12
3rd Gen Intel® Xeon ® Scalable Processor 1.07 1.11 116 116 | 1.22 116

4th Gen Intel® Xeon ® Scalable Processor 1.00 1.02 | 1.09 | 126 | 1.23 | 138

The new version proves to be better than the baseline across all tested message sizes. For both, AES-GCM-128 and AES-GCM-
256, improvement is most visible for small message sizes where reduction is performed three times in short succession one
after another (GHASH of AAD, GHASH of the cipher text and GHASH of extra block with lengths). The improvement ratio
decreases as the message size increases.

New AES-GCM implementation on 4th Gen Intel® Xeon® Scalable processor benefits higher performance gains than oniits
predecessor, the 3rd Gen Intel® Xeon® Scalable processor.

6 Benefits

We introduce two independent techniques to optimize the GHASH operation. The multiply-reduce optimization reduces the
number of processor instructions required for the reduction operation without adding any complexity to the multiply operation.
It benefits from the fact that one of the inputs to the multiply operation is always a precomputed value. It is a generic
optimization that can be applied to any GHASH implementation. Parallel GHASH optimization also reduces the number of
processor instructions, but only for a specific implementations case. SIMD implementations of GHASH benefit from this
optimization technique.

Combined together, these optimizations drive significant improvement in efficiency of AES-GCM implementations on the 4th
and 3rd Gen Intel® Xeon® Scalable processors, particularly for smaller packet sizes.

Another minor benefit of the optimized GHASH is that, in practical implementation, it frees a number of SIMD registers
comparing to the baseline implementation. These registers can be used for some other data needed for the implementation.

Itis worth noting that the techniques described here to optimize the GHASH function can be extended to other Galois Field
multiplication applications and can be generalized for all GHASH implementations (hardware and software).

7 Summary

The optimization drives better performance and efficiency of AES-GCM cipher suite, which is the industry leading cipher suite
used in secure network transport solutions like TLS, VPN or QUIC. The 2021 TLS Telemetry Report from F5 Lab analyzed top
million sites and AES-GCM constituted 94% of the selected cipher suites in the top million sites.

This optimization improves performance and efficiency of this important cipher suite significantly on Intel® processors,
especially for the harder-to-optimize case of small message sizes.


https://www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report
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Appendix A System Configurations

Table14. Software Configuration

3rd Gen Intel® Xeon® Scalable Processor 4th Gen Intel® Xeon® Scalable Processor

Time Thu May 18 01:52:15 PM UTC 2023 Thu18 May 202312:23:02PMUTC
Manufacturer Inspur Intel
CPU Model Intel® Xeon® Gold 6348 CPU @ 2.60GHz Intel® Xeon® Gold 6454S
Sockets 2 2
Cores per Socket 28 32
Hyperthreading Enabled Enabled
CPUs n2 128
Disabled Enabled
Note: disabled in tests with
“echo 1 > /sys/devices/system/cpu/intel pstate/no_turbo
Intel Turbo Boost command
Base Frequency 2.6GHz 2.2GHz
All-core Maximum
Frequency 3.4GHz 2.8GHz
Maximum Frequency 2.6GHz 3.4GHz
NUMA Nodes 4 2
Prefetchers L2 HW, L2 Adj., DCU HW, DCU IP L2 HW, L2 Adj., DCU HW, DCU IP
PPINs 831e2adc802b22bb,831c3ddc5650c09b 2294094a73af0a74,229408ce073cf107

Installed Memory

256GB (16x16GB DDR4 3200 MT/s [3200 MT/s])

16GB (1x16GB DDR5 4800 MT/s [4800 MT/s]);
32GB (1x32GB DDR5 4800 MT/s [4800 MT/s])

Hugepagesize 2048 kB 2048 kB
Transparent Huge Pages madyvise madyvise
Automatic NUMA
Balancing Enabled Enabled
1x Intel Corporation, 2x Ethernet Controller ES10-C
NIC 2x Ethernet Controller 10G X550T for QSFP
Disk 1x447.1GINTEL SSDSCKKB48 1x149.1G WDC_WD1600JS-00N
BIOS 05.01.01 EGSDCRBI1.86B.0081.D18.2205301332
Microcode 0xd000389 0xaa000060
oS Ubuntu22.04.2LTS Ubuntu20.045LTS
Kernel 5.15.0-72-generic 5.14.0-051400-generic
TDP 235 watts 270 watts
Power & Perf Policy Performance Performance
Frequency Governor powersave powersave
Frequency Driver intel_pstate intel_pstate
Max C-State 9 9
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Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex.
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purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies may require enabled hardware, software or service activation.
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