
White Paper

Authors

Niall McDonnell
Principal Engineer

Gage Eads
Network Software Engineer

Introduction

As telecommunications traffic bandwidth demand continues to rise dramatically, and
more sophisticated processing of this traffic is required by service providers, network
functions are becoming more complex. This increased load means that Intel®
architecture based implementations, such as those found in a virtual network function,
typically require multiple processor cores, and new approaches are required to
optimize such deployments.

This paper is for customers of multi-core Intel® architecture products who use software
queuing structures extensively. Topics include traffic trends, along with the
requirements and limitations of software queuing strategies for load balancing and
traffic distribution.

Intel proudly introduces the Intel® Dynamic Load Balancer (Intel® DLB) solution. This
white paper discusses Intel DLB features, goals, advantages and future product
intercepts. Included is a summary of how Intel DLB is enabled with software and
aligned with Data Plane Development Kit (DPDK) and Network Function Virtualization
(NFV) readiness, providing insight on how DPDK customers can transition to Intel DLB.

Core-to-Core Communications in Software

The number of CPU cores on a modern processor has
increased to double figures, and commonplace
scenarios require cores to communicate with each
other. Software-managed queues (or rings) in shared
memory are a standard solution. See Figure 1. Queues
connect a producer/consumer pair so that the producer
inserts new elements at the tail of the ring, while the
consumer removes older elements from the head of the
ring. Each ring element typically references an event,
such as a network packet or some other construct. The
head and tail pointers are shared variables between
producer and consumer—the producer modifies the tail
only but must read the head to verify that the ring is not
full, while the consumer does the converse.

Communications Service Providers

Scalable Packet Processing Frameworks

Queue Management and
Load Balancing on Intel®
Architecture

Telecommunications traffic bandwidth demands continue to rise.
New approaches are needed to optimize deployments. Intel®
Architecture systems, such as those found in a virtual network
function, can transition to the Intel® Dynamic Load Balancer
(Intel® DLB) to meet the demand.

Table of Contents

Introduction .. 1

Intel® Dynamic Load Balancer (Intel® DLB) 4

Enabling Intel DLB ... 4

IPsec Router Example ... 6

Summary ... 7

https://www.dpdk.org/

Queue Management and Load Balancing on Intel® Architecture 2

Memory-based Queuing in Intel® Architecture Systems

Modifying a pointer involves getting an exclusive copy in local
core cache. The difficulty occurs when this has to be shared with
the queue partner. Modern CPU cores are extremely performant
when operating from their local cache, which can have read
latencies in the 3 ns to 7 ns range. But the latency to fetch (or
invalidate) the head/tail pointer from the local cache of a
different core is in the 50 ns range, and the CPUs are not
designed to handle this sort of latency without incurring stalls.

The latency issue affects pointers for both producer and
consumer—each must get a shared copy of a line the other is
modifying, and an exclusive copy of a line the other is reading.
The case where a single queue connects two entities in this
manner is referred to as single producer/single consumer
(SP/SC), and is generally manageable in software. Any
performance loss is typically mitigated using schemes to keep
local copies of the shared pointers. But these schemes also have
some drawbacks, including extra branching. Batching at either
end also reduces cost-per-event, but it increases latency.
Therefore, prefetching is not effective, since the queuing partner
can share and access data at any moment, unlike other
scenarios where latency is a known factor (for example, when
fetching blocks of data from high-latency storage).

The case where multiple producers are involved is referred to as
multi producer/single consumer (MP/SC). In this case, latency
implications are more severe. Individual producers must update
the tail pointer in an atomic manner to ensure consistency by
locking the corresponding cache line, which incurs a cycle cost.
Replacing a MP/SC queue with multiple SP/SC queues makes
things simpler for the producers, but the burden is simply

shifted to the consumer that must instead poll and manage
multiple queue heads.

Cases with multiple consumers (MP/MC) impose the same
locking requirements for the head pointer. These cases are even
more complex if task order must be maintained.

As the number of cores/die grows, the cross-core latencies
trend upwards relative to local cache latencies, and the
likelihood of lock contention increases. The actual impact a
software thread will see depends on the activity at the other end
of the queue and, possibly, cache occupancy. As such, software-
based queuing tends not to have very deterministic
performance especially if multiple producers/consumers are
involved.

Work Distribution

In many applications running on modern processors with a large
number of cores, workloads must be distributed across a
number of such cores. Consider packet processing as an
example in this regard. As traffic bandwidth increases at a
higher rate than compute availability, a good work distribution
scheme is essential to optimize the available compute
resources.

In packet processing, streams of incoming packets can exceed
the capacity of any single core. So they are divided between
available workers. Each packet stream contains individual flows,
whose number and bandwidth varies and rapidly changes.
Software must access and modify data structures unique to a
flow in order to process the packets common to that flow. It is
typically required that order should be maintained per flow
(though not between individual flows) on an end-to-end basis.

Software Queue Management Intel® Dynamic Load Balancer

Enqueue Logic

Device-managed
head and tail

pointers

Dequeue Logic / Load Balancer

Producer Producer

Shared head
and tail
pointers

Queues in
memory

Consumer Consumer

ProducerProducer

Enqueue
Software

Enqueue
Software

Dequeue
Software

Consumer Consumer Consumer Consumer

Dequeue
Software

Dequeue
Software

Figure 1. Work Distribution Before and After Intel DLB

Queue Management and Load Balancing on Intel® Architecture 3

There are two ways to split the workload:

• Pipelining breaks the processing flow into stages and places
distinct stages on separate cores in a daisy chain fashion.
Unfortunately, not all packets have the same processing flow,
and flows are not typically decomposed easily into stages of
equal size.

• Distribution/load balancing is a parallel approach where
packets are sprayed across multiple workers that may be
executing the same processing stage.

Many systems employ a hybrid approach whereby each packet
encounters multiple pipelined stages with distribution across
multiple workers at each individual stage.

Static Versus Dynamic Distribution

At this point it is useful to distinguish between static sharing
and dynamic load balancing:

• In static sharing, a producer of work may share work across
multiple consumers (i.e., workers) without regard to the state
or occupancy of the individual workers. For example, the
producer may statically assign individual flows to cores based
on some flow identifier. An example of this is the receive side
scaling (RSS) scheme employed by modern network interface
cards (NICs). Such schemes are simple to implement but have
several drawbacks:

– They cannot guarantee that worker cores are equally busy,
particularly if the number of significant flows is low.

– The largest flow that can be handled is limited to the
capacity of a single core.

– If packet compute time varies, it is difficult to prevent
packets getting stuck behind a burst of other traffic and
suffering significant latency penalties. Prioritization can
help but even high-priority traffic can get delayed behind
traffic of a similar level.

– The scheme is only as good as its least performant worker.
This can be difficult to predict. Some cores may be subject
to more interruptions than others or simply poorer caching
effects.

– It is necessary to keep all workers available in such
schemes. They cannot reliably sleep for long durations,
even with low traffic rates. The next arriving packet could
be destined for any worker, unless there is a moderately
complex work handoff scheme implemented.

• In dynamic load balancing, the producer attempts to
distribute work with regard to the state/occupancy of the
workers in an effort to ensure that they are approximately
equally busy and used to their fullest extent. High-bandwidth
flows are spread across multiple cores—but often, the
original flow order must be restored thereafter. While this
type of scheme overcomes many of the above drawbacks, it is
more complex to implement. For example, to optimize power
if traffic is below the provisioned rates, some cores can be
taken offline to low power states. See Power-Aware Load
Balancing on page 4.

As traffic bandwidth continues to increase, a good load
balancing system is an essential requirement for packet
processing.

Types of Load Balancing

In a packet-processing flow context, there are three types of
distributions.
1. Unordered distribution sprays the packets across multiple

worker cores. Software alone is not assumed to preserve

the flow order when packets from the same flow go to

different workers. Furthermore, multiple packets from the

same flow may be outstanding on different workers

simultaneously. This may require expensive

synchronization mechanisms in the software. This type of

processing is really only useful if there is no requirement to

preserve order within a flow.

2. Ordered distribution is similar to unordered, except that the

system provides a means of restoring the original flow

order. Synchronization mechanisms may still be required in

the software. This type of processing is useful if the

bandwidth of individual flows approaches or exceeds the

capability of individual cores. For use cases where the

application is stateless, ordered distribution can achieve the

best load balancing and performance.

3. Atomic distribution ensures that packets from a given flow

can only be outstanding on a single core at a given time. It

dynamically pins flows to cores, migrating flows between

cores to load balance when required. This preserves flow

order and allows the processing software to operate in a

lock-free manner. As such, this type of distribution is highly

desirable in modern packet processing equipment.

Implementations of the atomic and ordered distribution
schemes require close cooperation between the producer and
the workers/consumers. In schemes implemented in software,
this sort of communication is implemented using multiple
queuing structures and becomes subject to the performance
limitations and non-determinism described above.

Current Performance of Load Balancing in Software

DPDK is an open source community based on software libraries
originally developed by Intel. DPDK libraries include
performance-optimized implementations of software queue
management and work distribution. These libraries substantially
reduce the cost of operations and successfully enable Intel®
architecture customers. But with increased cores, the burden of
software queue management increases accordingly. And since
throughput rates increase faster than available compute, the
cycles/packet budget shrinks. Because of these two factors,
queue management is once again becoming a relatively
expensive and performance-limiting operation.

On current CPUs, the performance of atomic load balancing is in
the region of 15 M to 30 M decisions per second. Packet
reordering cost is similarly expensive. CPU instructions-per-
cycle improvements and batching (if the application allows) can
lift this performance. But the basic limitation of cross-core
latency will continue to increase with the number of cores/CPU.

Packet throughput expected from a system is increasing far
more rapidly than core count; therefore, dedicating cores for
load balancing is not sustainable. The performance impact is
not limited to the cores doing the distribution work. All worker
cores incur queue management costs in communicating with
the distributor software and this can substantially affect worker
performance.

Queue Management and Load Balancing on Intel® Architecture 4

Intel® Dynamic Load Balancer (Intel® DLB)

Introduction

The Intel DLB is a hardware managed system of queues and
arbiters connecting producers and consumers. It is a PCI device
in the CPU package. Intel DLP interacts with software running on
cores and potentially other devices. Intel DLB implements the
load balancing features outlined earlier, including the following:

• Lock-free multi-producer/multi-consumer operation.

• Multiple priorities for varying traffic types.

• Various distribution schemes.

Data-plane software communicates with Intel DLB using
standard (PCI) memory mapped interfaces in a simple, low
cycle-cost way that is enabled with DPDK.

Intel DLB supports virtualization using industry-standard
techniques, and is exposed as part of the Virtual Network
Function Infrastructure on an Intel® architecture platform. Intel
DLB further allows finer grained isolation between individual
applications if necessary.

Basic Intel DLB Operation

Intel DLB operates with the concept of resources, of which there
are several kinds:

• Ports are memory mappable areas that enqueue to, or
dequeue from, Intel DLB.

• Queue IDs (QIDs) are internal queues within the Intel DLB
itself. A QID is a logical destination for a stream of packets
that may be distributed across a number of workers according
to each packet’s load-balanced scheduling type. A QID
maintains atomic and ordered distribution packets in order, at
least on a per-flow and per-priority basis. The application
specifies the QID it wishes to send a packet to at enqueue
time.

Driver software allocates these resources to applications/VMs,
which can in turn allocate to their individual threads as
necessary. Properly configured, Intel DLB prevents cross
application interference by discarding illegal traffic and ensuring
each application cannot consume traffic to which it should not
have access.

Performance

The rate at which Intel DLB distributes work determines overall
system performance. The goal is to achieve a richer feature set
and significantly greater performance than could be offered by
software solutions.

Power-Aware Load Balancing

Intel DLB can rapidly vary the number of workers processing
traffic dynamically according to traffic levels. Workers that are
not in use can enter low-power states or can be made available
for other tasks.

Enabling Intel DLB

Discovery and Enumeration

Within a running system, the Intel DLB instances, both physical
function (PF) and virtual function (VF), are owned and controlled
by a kernel driver. All device discovery and enumeration is
handled by the kernel infrastructure for PCI devices. The kernel
driver makes Intel DLB resources, such as ports, QIDs and
credits available to applications in user space as they are
requested by those applications.

DPDK Eventdev

DPDK offers a number of work distribution and load balancing
schemes that can be used by applications. In many cases
significant benefits can be realized by switching from using
these existing schemes to using Intel DLB.

For data plane use, Intel DLB is enabled in DPDK as an instance
of a class of a work/event scheduling device called an eventdev.
This library was originally released in DPDK 17.05. The eventdev
infrastructure is similar to that of the ethdev and cryptodev
device types, in that a high-level API provides a common
interface layer supported by individual drivers underneath it.
Packets, or other events such as timer expiration, are enqueued
by the application software to the eventdev device, which
performs appropriate scheduling and prioritization. The
scheduled events are retrieved by software when it calls the
eventdev dequeue function. For the Intel DLB driver, each event
to be scheduled corresponds to a queue entry (QE) inside the
hardware.

Note
Intel DLB is not the only device supported under the

eventdev device type. Ahead of the Intel DLB being

generally available, multiple software implementations

of an eventdev have been released, allowing

applications to be developed and deployed on

hardware without an Intel DLB. Those applications can

then be transparently accelerated without any

application code changes when deployed on a

platform with an Intel DLB available.

For more details on the eventdev library, refer to the Event
Device Library section of the DPDK programmer’s guide1.

Queue Management and Load Balancing on Intel® Architecture 5

Transitioning from Software Load Balancing to Intel DLB

DPDK includes the following main components:

• A software eventdev poll-mode driver (PMD) that mirrors the
features of Intel DLB.

• A generic API for configuring and interfacing to an eventdev,
with implementations for both the Intel DLB and software
eventdev PMDs.

Prior to introducing eventdev in 2017, DPDK supported
software load balancing through its packet distributor library2.
This library dedicates one core to distribute packets to all other
cores, which receive packets from the distributor and operate
on them. Converting an application using the DPDK packet
distributor to using eventdev does not involve significant
reworking of the application packet handling code, as the basic
principles of dynamic scheduling remain the same in both cases.
To use Intel DLB, the initial setup code in the application
configures the Intel DLB/eventdev queues and ports. But
thereafter, the common runtime APIs, such as
rte_distributor_get_pkt(), can be converted directly into
equivalent eventdev APIs. After this is done, the application can
be further changed, as needed, to take advantage of additional
Intel DLB features.

DPDK eventdev Userspace API Overview

The eventdev device class was introduced in DPDK 17.05 after
months of discussion and development by many stakeholders,
including Intel. Although minor changes in the APIs may occur
as contributors submit new drivers, the eventdev API is not
expected to change significantly. eventdev drivers are already

present, including a software implementation from Intel. This
allows application development to be done using the eventdev
API, the major functions of which are shown in Figure 2. Certain
aspects of Intel DLB behavior, such as the credit scheme, may
not be visible in the API as they are specific to the device.

The following APIs query event management sources.

rte_event_dev_count() // Get number of event
 devices available
rte_event_dev_info_get() // Get device
 parameters

The following APIs configure queues and ports.

rte_event_dev_configure() // Configure an event
 device
rte_event_queue_setup() // Allocate/configure a
 queue
rte_event_port_setup() // Allocate/configure a
 port
rte_event_port_link() // Map a queue to a
 port

The following APIs send or receive events.

rte_event_enqueue_burst() // Burst enqueue
rte_event_dequeue_burst() // Burst dequeue

For more detailed information on the eventdev API, refer to the
eventdev API documentation3.

Photo

DPDK Application

DPDK

EAL ring mbuf

ethdev eventdev

ixgbe i40e sw Intel® Dynamic Load Balancer

Kernel

Intel® Dynamic
Load Balancer

NIC
Device

NIC
Device

System calls to
kernel driver for
resource allocation
and configuration.

Direct writes to HW
for packet
enqueue/dequeue.

eventdev API calls
for device discovery,
configuration and
packet enqueue/
dequeue.

Figure 2. DPDK Application with Intel DLB

Queue Management and Load Balancing on Intel® Architecture 6

Intel DLB Usage without DPDK

To support applications that do not wish to use DPDK, Intel DLB
can also be enabled through a stand-alone client library named
libdlb. While either eventdev or libdlb can be used to write Intel
DLB-based applications, they differ in two key ways:
1. libdlb is independent of DPDK. This makes it appropriate

for applications that can benefit from Intel DLB hardware

but do not want to use the full DPDK framework. However,

this means libdlb can only run on systems that have Intel

DLB hardware; whereas eventdev applications are portable

to a wide range of systems through the use of software-

based event schedulers. libdlb could be extended with a

software implementation in the future.

2. The libdlb API is tailored specifically to Intel DLB. It lacks

the eventdev abstractions that are necessary to support a

range of hardware and software event schedulers. Fewer

abstractions generally leads to improved performance. This

library also exposes a few Intel DLB concepts that do not

exist in the eventdev API.

Optimizing Software Costs

An important aspect of any device like Intel DLB is the cost to
software of interacting with the device. For dataplane software
there are a few aspects to look at. The Intel DLB design, in
conjunction with new ISA technologies, minimizes these costs
resulting in a very efficient system.

IPsec Router Example

An IPsec router can be implemented using Intel DLB. Gateways
are becoming increasingly complex but for simplicity this
example considers VPN termination and clear text routing.
Furthermore, only one traffic direction is considered, as shown
in Figure 3.

The NIC can identify and filter IPsec packets and some may be
capable of performing the decryption/authentication steps in
advance of the packet reaching software. Otherwise, this step is
performed in software or by using a look-aside accelerator. This
example assumes that software (such as AES-NI) is used for the
cryptographic operations.

One important parameter is the number and bandwidth of the
IPsec tunnels. There are at least two possibilities here:

• In an enterprise application, the gateway may be terminating
large numbers of VPNs of comparatively low bandwidth. The
number of active tunnels is considered to be high and it may
be feasible to use the NIC RSS scheme for initial per flow
distribution, though it is still possible that some flows may
have burst behavior which could cause load balancing issues.

• In a wireless edge application, the inverse is typically the case.
The device is expected to terminate a comparatively small
number of high bandwidth tunnels. RSS is not going to be
very effective in this scenario.

Current Implementations

Several options are available in current Intel® architecture
platforms. For the enterprise, RSS distribution is considered
because there is no obvious need to incur the cost of core-to-
core communications. Therefore, a run-to-completion model is
assumed, where all processing for a given packet is executed on
a single core.

There is no core-to-core communications penalty here and
almost no locking is required in software, as long as there is no
interdependency between IPsec tunnels. A possible exception is
the NIC Tx stage, where a lock could be required for insertion
into a Tx queue if such had to be shared.

This model has been successfully deployed, though it has
drawbacks:

• RSS can still give imperfect distribution. Therefore,
performance must be guard-banded, which limits overall
guaranteed performance.

• More sophisticated gateways may require more advanced
schemes. For example, it may be required to atomically
process VPN traffic in both directions, which is not possible
using this setup.

• It is not trivial to group disparate inner tunnels together for
atomic processing such as may be required for traffic shaping.

The wireless use case is more difficult to address; RSS may be
insufficient and the higher bandwidth tunnels may overwhelm a
single core. This could necessitate splitting the processing
pipeline across multiple cores in an SP/SC manner. But this will
typically create considerable inequality in core utilization.

Intel DLB Based Implementation

In a system with Intel DLB, a number of options are available. In
the simplest case, the NIC RSS scheme can be replaced by an
ingress core running the poll mode driver to fetch Rx
descriptors and then submitting the packets to Intel DLB for
atomic load-balancing. The workers can then resubmit to Intel
DLB for a direct processing stage to a dedicated Tx core.

The advantage of this over the software-only scheme is higher
guaranteed performance due to better load balancing
compared to RSS.

If the bandwidth of a single large IPsec tunnel could overwhelm
a core, ordered distribution may be necessary. This typically
results in a more complex approach with multiple passes
through Intel DLB for each packet. The worker cores can be
broken into one or more groups that may be active at differing
stages on the pipeline.

In the example above, the first ordered stage allows a high
bandwidth IPsec tunnel to be load-balanced across multiple
cores. These packets are put back in their original order by Intel
DLB on resubmission to the following stage. Subsequent stages
are atomic, as it is assumed that locks are to be avoided, with
the same direct stage to Intel DLB at the end.

This example shows how additional stages, with each stage
essentially a QID, can be added for flow creation (setup of new
table entries), traffic shaping, or other more complex features. In
NFVs that provide more complex functions than routing, this is
the expected usage.

Queue Management and Load Balancing on Intel® Architecture 7

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may
cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more complete information visit www.intel.com/benchmarks.

Performance results are based on testing as of date disclosed in the system configuration and may not reflect all publicly available security updates. See configuration disclosure for details.
No product or component can be absolutely secure.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
micro-architecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets
covered by this notice.

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.

*Other names and brands may be claimed as the property of others.

© 2020 Intel Corporation. Printed in USA. 0520/NM/WAND/PDF ♲ Please Recycle 343247-001US

Summary

The Intel DLB is a decapsulation new device on Intel platforms. It offers new mechanisms for core-to-core communication with built-
in load balancing capability. Advantages expected for packet processing applications using Intel DLB are as follows:

• Much higher load-balancing performance than existing software schemes

• Cost to worker cores lower than in software schemes

• Lock free multi-producer to single-consumer optimization

• Better determinism

• Built in priority

• Built in performance monitoring

• Better flexibility and granularity

Intel DLB can be enabled under DPDK APIs. DPDK customers should see a pain-free transition to new hardware from the software
eventdev PMD.

1 https://doc.dpdk.org/guides/prog_guide/eventdev.html
2 https://doc.dpdk.org/guides/prog_guide/packet_distrib_lib.html
3 https://doc.dpdk.org/api/rte__eventdev_8h.html

Detect IPsec
Security

Association (SA)
Lookup

Anti-Replay
Check

Decryption
Authentication

Anti-Replay
Window Update

Decapsulation,
Inner Flow

Routing Transmit

Figure 3. IPsec Router Pipeline

http://www.intel.com/benchmarks
https://doc.dpdk.org/guides/prog_guide/eventdev.html
https://doc.dpdk.org/guides/prog_guide/packet_distrib_lib.html
https://doc.dpdk.org/api/rte__eventdev_8h.html

	Introduction
	Core-to-Core Communications in Software
	Memory-based Queuing in Intel® Architecture Systems
	Work Distribution
	Static Versus Dynamic Distribution
	Types of Load Balancing
	Current Performance of Load Balancing in Software

	Intel® Dynamic Load Balancer (Intel® DLB)
	Introduction
	Basic Intel DLB Operation
	Performance
	Power-Aware Load Balancing

	Enabling Intel DLB
	Discovery and Enumeration
	DPDK Eventdev
	Transitioning from Software Load Balancing to Intel DLB
	DPDK eventdev Userspace API Overview
	Intel DLB Usage without DPDK
	Optimizing Software Costs

	IPsec Router Example
	Current Implementations
	Intel DLB Based Implementation

	Summary

