
1.0 Introduction
Network functions virtualization (NFV) emerged in response to the problems that
network operators face when developing and maintaining their infrastructures
built with traditional hardware appliances. The growing demands for new services,
constantly increasing network traffic, and the need for rapid service delivery are
just some of the challenges that industry cannot overcome with the traditional
network architectures. Moreover, the technological advancements cause the
hardware life cycle to shorten. This leads to long-lasting procure-design-deploy
cycles that require unique human skills.

NFV is a network architecture concept designed by a group of telecommunications
industry representatives of the European Telecommunications Standards Institute
(ETSI). NFV primarily aims to leverage the existing technologies to virtualize
entire classes of network nodes that in turn may be connected to form compound
infrastructures. Designed with modularity, reliability, and scalability in mind, such
infrastructures are capable of running complex services.

The architecture of NFV consists of three blocks: virtualized network functions
(VNFs), NFV infrastructure (NFVI), and NFV management and orchestration
(MANO). One of the MANO components of the ETSI NFV model, virtualized
infrastructure manager (VIM), is responsible for managing and orchestrating
orchestrating the NFVI.

The NFVI consists of physical compute, storage, and networking components that
via its virtualization layer provides pool of virtual resources to run the VNFs. Intel
is uniquely positioned to speed up the NFV development. In the Open Platform
for NFV* (OPNFV*), an open-source implementation of the NFV specification,
OpenStack* has been selected to serve as the VIM.

This document is intended for network administrators and architects planning
to implement or optimize virtualized infrastructures, and should be treated as
a configuration guide complementary to the OpenStack Enhanced Platform
Awareness white paper available at https://networkbuilders.intel.com/docs/ice-
house-openstack-enhanced-platform-awareness.pdf. It explains how to configure
OpenStack to optimally use the capabilities of the underlying Intel® architecture-
based servers, and how to deliver improved performance and enhanced
predictability for virtualized applications.

Authors

Shivapriya Hiremath
Solution Software Engineer,

Intel Corporation

Vaidyanathan
Krishnamoorthy

Solution Software Engineer,
Intel Corporation

Andrew Duignan
Solution Software Engineer,

Intel Corporation

James Chapman
Solution Software Engineer,

Intel Corporation

Nikita Agarwal
Solution Software Engineer,

Intel Corporation

Tarek Radi
Lead Technical Program Manager,

Intel Corporation

Intel Corporation
Datacenter Network

Solutions Group

Configuration guide

Enabling Enhanced Platform
Awareness for Superior Packet
Processing in OpenStack*

https://networkbuilders.intel.com/docs/ice-house-openstack-enhanced-platform-awareness.pdf
https://networkbuilders.intel.com/docs/ice-house-openstack-enhanced-platform-awareness.pdf

2

Configuration Guide | Enabling Enhanced Platform Awareness for Superior Packet Processing in OpenStack*

Table of Contents
1.0 Introduction. .1

1.1 OpenStack3
1.2 Enhanced Platform Awareness . . 3

2.0 Configuration and Enablement . 4
2.1 Host CPU Feature Request . 4
2.2 Support for I/O PCIe* Passthrough. .4

2.3 Support for I/O Passthrough via SR-IOV. .5
2.4 NUMA Topology Awareness . 6
2.5 NUMA Locality of PCI Devices . 6
2.6 CPU Pinning . 6
2.7 CPU Threads Policies . 7
2.8 Huge Page Support . . . 7
2.9 Trusted Compute Pools . 7
2.10 Open vSwitch* Firewall Driver . 8
2.11 Support for OVS-DPDK Controlled by OpenStack Networking*. 8
2.12 Support for OVS-DPDK controlled by OpenDaylight* . . . 8
2.13 Telemetry Capture (via collectd) . . . 8

3.0 Intel® Technologies for Enhanced Platform Awareness .9
3.1 Intel® Hyper-Threading Technology. 9
3.2 Intel® Resource Director Technology: Cache Monitoring Technology and Cache Allocation Technology. 9
3.3 Intel® Advanced Encryption Standard New Instructions. 9
3.4 Intel® Advanced Vector Extensions . 9
3.5 Intel® Streaming SIMD Extensions 4.2 . 9
3.6 RDRAND . 9
3.7 Intel® Trusted Execution Technology .10
3.8 Intel® QuickAssist Technology .10

Appendix A: Summary of EPA Features . .11
Appendix B: References . 12
Appendix C: Abbreviations .13

KatieIreland
Sticky Note
Marked set by KatieIreland

3

1.1 OpenStack
OpenStack is a leading open-source software suite for
creating private and public clouds with code first released
in 2010 under the Apache* 2.0 license. Since then, it has
grown in popularity with an active community of users and
contributors.

OpenStack is used to manage pools of NFVI resources that
typically are based on standard, high-volume servers (SHVS)
and can be partitioned and provisioned on demand with a
command line interface (CLI), RESTful API, or a web interface.

The OpenStack Compute* service, Nova, is responsible
for managing all compute infrastructure in an OpenStack-
managed cloud. OpenStack supports multiple hypervisor
drivers, including QEMU*/KVM* (by means of libvirt*),
Xen*, and VMware vSphere* Hypervisor (VMware ESXi*).
OpenStack Compute contains the scheduling functionality
that is used to select which compute host runs a particular
workload. OpenStack Compute filters all available platforms
to a suitable subset based on the input requirements,
and then selects a platform from that subset based on a
weighting algorithm.

The OpenStack Networking* service (Neutron), is designed
as a scalable service that offers a variety of plug-in solutions
to help service providers with network management.
OpenStack Networking also offers a self-service interface to
customers so they can create their own networks based on
available network models such as a flat network, virtual LAN
(VLAN), or overlay networks such as virtual extensible LAN
(VxLAN) and Network Virtualization using Generic Routing
Encapsulation (NVGRE).

1.2 Enhanced Platform Awareness
From the NFV perspective, OpenStack does not require any
fore knowledge of the NFV applications or their functions;
however, OpenStack provides an advanced selection of
tuning capabilities that enable service providers to deploy
NFV solutions with the necessary performance and efficiency
characteristics.

Enhanced Platform Awareness (EPA) is a set of contributions
from Intel Corporation and others to OpenStack. EPA features
provide OpenStack a better view of the underlying hardware
and enable OpenStack to filter platforms with specific
capabilities that match the workload requirements, prior
to launching a virtual machine (VM). For example, EPA can
automatically launch a cryptographic workload on a platform
with a hardware-based cryptographic accelerator.

For workloads requiring particular CPU or I/O capabilities,
EPA helps OpenStack VMs to run on the optimal platforms.
EPA can benefit VM performance and operation, such as
for software-defined networking (SDN) and NFV. EPA also
enables cloud service providers to offer premium, revenue-
generating services based on specific hardware features.

The list of features supported by EPA is presented in
Appendix A: Summary of EPA Features, while Figure 1 shows
which OpenStack release first supported the particular EPA
feature.

Figure 1. The history of EPA features in OpenStack.

Havana Juno Kilo Mitaka Newton

Support of CMT

CPU threads policies, Open vSwitch firewall
driver, Telemetry capture (via collected),

Integration with OVS-DPDK controlled by
OpenDaylight, OVF Meta-Data Import

Huge page support, CPU pinning, NUMA locality of PCI* devices,
Integration with OVS-DPDK via separate agent, trusted compute

pools and support of Intel® Platform Trust Technology: Intel® TXT,
TPM, Boot Guard

NUMA topology awareness

Host CPU feature request, Support for I/O PCIe* passthrough, Support for I/O passthrough via SR-IOV

4

2.0 Configuration and Enablement
This section describes the instructions needed to enable
various EPA features available in OpenStack. Make sure
you are able to run the commands in the controller’s CLI.
Depending on the OpenStack variant installed, you may
have to source the appropriate OpenStack RC credential
file. For more information, visit http://docs.openstack.org/
user-guide/common/cli-set-environment-variables-using-
openstack-rc.html.

2.1 Host CPU Feature Request
In the OpenStack Icehouse release, a change was made to the
OpenStack Compute libvirt driver in order to expose all of the
CPU instruction set extensions to the nova-scheduler. This
correlated with an associated change in the libvirt to make
this data available by means of libvirt API. These changes
enabled the creation of OpenStack Nova flavors that contain
specific feature requests by adding these to the flavor as the
extra_specs parameter.

�# nova flavor-key <flavorname> set
capabilities:cpu_info:features=<feature
name, for example aes>

During scheduling, the compute_capabilities_filter in
the OpenStack Compute service compares the requirements
on the host CPU as specified by the flavor’s extra_specs
parameter with a database of hosts and their respective CPU
features. To enable the CPU feature request, configure the
libvirt to expose the host CPU features to the guest by setting
the following parameter in the /etc/nova/nova.conf file.

[libvirt]
�cpu_mode=host-model or host-passthrough
or custom or none

• �The host-model causes libvirt to identify the named CPU
model that most closely matches the host CPU from the
libvirt’s list of standard CPU names defined in the/usr/
share/libvirt/cpu_map.xml file and then to request
additional CPU flags to complete the match. This option
should keep the VM's functionality and best possible
performance that still maintains acceptable reliability and
compatibility if the guest is migrated to another host with
slightly different CPUs.

• �The host-passthrough causes libvirt to instruct
the kernel-based virtual machine (KVM) to pass through
the host CPU with no modifications. Comparing to the
host-model, every detail of the host CPU is matched
instead of matching just feature flags. This gives absolutely
the best performance and can be important to applications
that check low-level CPU details. The guest can only be
migrated to the host with an exactly matching CPU.

• �The custom option allows the use of a named CPU model.

• �The none option provides the hypervisor with the default
configuration.

2.2 Support for I/O PCIe* Passthrough
OpenStack includes the support for full device passthrough
and Single Root I/O Virtualization (SR-IOV) for non-
networking devices and networking devices not managed by
OpenStack Neutron. These features enable the allocation of
physical functions (PFs) or virtual functions (VFs) to the VM
from Peripheral Component Interconnect Express* (PCIe*)
devices.

The following steps show how to configure the Peripheral
Component Interconnect* (PCI*) passthrough support in the
OpenStack by updating the nova.conf files on compute and
controller nodes.

On the compute node:

1. �Configure pci_passthrough_whitelist with the details
of PCI devices available to VMs in nova.conf, for example,

�pci_passthrough_whitelist =[{ "vendor_
id":"8086","product_id":"1520", “device_
type”:”NIC”}]

This defines that the platform’s PCI devices with the vendor_
id as 0x8086 and the product_id as 0x1520 will be
assignable to the instances.

On the controller node:

2. �Configure an alias for the PCI passthrough device in
nova.conf, for example,

�pci_alias={"vendor_id":"8086", "product_
id":"1520", "name":"a1", “device_
type”:”NIC”}

This defines the pci_alias named a1 for PCI devices with
the vendor_id as 0x8086 and the product_id as 0x1520.

3. �Enable PCI devices filter for the scheduler in nova.conf,
for example,

scheduler_driver=nova.scheduler.filter_
scheduler.FilterScheduler
scheduler_available_filters=nova.
scheduler.filters.all_filters
scheduler_available_filters=nova.
scheduler.filters.pci_passthrough_filter.
PciPassthroughFilter
�scheduler_default_filters=RamFilter,Comput
eFilter,AvailabilityZoneFilter,ComputeCapa
bilitiesFilter,ImagePropertiesFilter,PciPa
ssthroughFilter

The steps below show how to use PCI passthrough in VMs.

1. �Create and configure a flavor that requires PCI devices, for
example,

�# nova flavor-key m1.large set "pci_
passthrough:alias"="a1:2"

This updates a flavor that requires two PCI devices, each with
the vendor_id as 0x8086 and the product_id as 0x1520.

2. Create a key pair in OpenStack.

nova keypair-add sshkey

http://docs.openstack.org/user-guide/common/cli-set-environment-variables-using-openstack-rc.html
http://docs.openstack.org/user-guide/common/cli-set-environment-variables-using-openstack-rc.html
http://docs.openstack.org/user-guide/common/cli-set-environment-variables-using-openstack-rc.html

5

3. Create a VM, for example,

�# nova boot --image new1 --key_name
sshkey --flavor m1.large 123

This command creates a VM with the PCI device attached.
The VM image contains the driver for the assigned PCI
devices, and sshkey is the name of the key pair created
in Step 2.

Go to https://wiki.openstack.org/wiki/Pci_passthrough for
more information on PCI passthrough.

2.3 Support for I/O Passthrough via SR-IOV
This section describes the steps required to use the SR-IOV
extensions for NICs. To enable I/O passthrough, prepare the
system with the following steps.

1. �To check whether Input-Output Memory Management Unit
(IOMMU) is supported, run the following command. The
output should show IOMMU entries.

dmesg | grep -e IOMMU

Note: IOMMU can be enabled/disabled through a BIOS
setting, under Advanced→Processor.

2. �Enable Intel® Virtualization Technology for Directed I/O in
BIOS.

3. �Enable IOMMU on the host kernel by adding the following
parameter to the Grand Unified Bootloader (GRUB) boot
parameters in the /etc/default/grub file.

	� GRUB_CMDLINE_LINUX=”intel_iommu=on
iommu=pt”

4. �Update GRUB with the following command and then
reboot the server.

grub2-mkconfig –o /boot/grub2/grub.cfg

5. �On the host, ensure that device drivers for the NICs are
configured to enable the NIC VFs.

6. �Install the necessary packages: yajl-devel, device-
mapper-devel, libpciaccess-devel, libnl-devel,
dbus-devel, numactl-devel, python-devel,
including libvirt and libvirt-python.

7. �Modify the /etc/libvirt/qemu.conf file by adding
/dev/vfio/vfio to the cgroup_device_acl list, for
example:

�cgroup_device_acl = ["/dev/null", "/dev/
full", "/dev/zero", "/dev/random", "/dev/
urandom", "/dev/ptmx", "/dev/kvm", "/dev/
kqemu", "/dev/rtc", "/dev/hpet", "/dev/net/
tun", "/dev/vfio/vfio"]

8. �Enable the SR-IOV VF for a network interface. The
following example enables two VFs for the interface p1p1.

�# echo 2 > /sys/class/net/p1p1/device/
sriov_numvfs

To check that VFs are enabled, execute the following
command.

lspci -nn | grep 82599

The output of this command should show one PF and two
VFs instantiated. The user can use either the PCI device’s VF
or PF for SR-IOV. In this case we use a PF. This means that all
the associated VFs will be made available to VMs.

9. �A recommended practice is to create a host aggregate for
the platforms that have additional tuning for NFV.

nova aggregate-create nfv-aggregate
�# nova aggregate-set-metadata nfv-
aggregate nfv=true

10. �Update the flavor to enable the nfv-aggregate
metadata (nfv=true).

�# nova flavor-key <flavor-name> set
aggregate_instance_extra_specs:nfv=true

11. �In the OpenStack Compute configuration file, nova.conf,
the white list needs to be configured to enable the VF
identifiers to be shared with the nova-scheduler, and
the PciPassthroughFilter needs to be enabled.

Note: The PCI alias is not required when managing the
SR-IOV networking device with OpenStack Networking.

pci_passthrough_whitelist={“address”:”0000
:08:00.0”,”physical_network”:“physnetNFV”}
�scheduler_default_filters = <default
list>,PciPassthroughFilter

OpenStack Networking requires that the SR-IOV modular
layer 2 (ML2) mechanism driver is used and the VF vendor
and device IDs are set up. To enable the usage of SR-IOV ML2
mechanism driver, configure the /etc/neutron/plugins/
ml2/ml2_conf.ini file, for example:

[ml2]
tenant_network_types = vlan
type_drivers = vlan
mechanism_drivers =
openvswitch,sriovnicswitch
[ml2_type_vlan]
network_vlan_ranges = physnetNFV:50:100

To set the VF vendor and device ID, configure the /etc/
neutron/plugins/ml2/ml2_conf_sriov.ini file, for
example:

[ml2_sriov]
supported_pci_vendor_devs = 8086:10fb
agent_required = False
[sriov_nic]

	� physical_device_mappings =
physnetNFV:eth1

12. �To apply the configuration, restart the neutron-server.

systemctl restart neutron-server

13. �With the OpenStack Networking application programming
interface (API), the tenant must create a port with a virtual
NIC type (vnic-type) as direct. This means that the VF
will be allocated directly to the VM.

�# neutron net-create –provider:physical_
network=physnetNFV -provider:network_
type=vlan

https://wiki.openstack.org/wiki/Pci_passthrough

6

14. �Create a network called NFV-network.

neutron subnet-create NFV-network
<CIDR> –name <Subnet_Name> –
allocationpool=< start_ip>, end=<end_ip>
�# neutron port-create NFVnetwork
--binding:vnic-type direct

15. �Create a VM. The port ID that is returned from the
neutron port-create command must be added to the
nova boot command.

Note: During the boot process, OpenStack Compute will
check the validity of this port ID with OpenStack Networking.

�# nova boot --flavor <flavorname> --image
<image> --nic port-id=<from port-create
command> <vm name>

Go to https://wiki.openstack.org/wiki/SR-IOV-Passthrough-
For-Networking-Mitaka-Ethernet for more information on
SR-IOV passthrough for OpenStack Networking.

2.4 NUMA Topology Awareness
Awareness of NUMA topology in the platform was added
in the OpenStack Juno release with the ‘Virt driver guest
NUMA node placement and topology’ extension. This
feature allows the tenant to specify its desired guest NUMA
configuration. The nova-scheduler was extended with the
NUMATopologyFilter to help match guest NUMA topology
requests with the available NUMA topologies of the hosts.

�scheduler_default_filters = <default
list>, NUMATopologyFilter

Tenants can specify their request by means of an OpenStack
Compute’s flavor-based mechanism. An example of such a
command is:

�# nova flavor-key <flavor-name> set
hw:numa_mempolicy=strict hw:numa_
nodes=2 hw:numa_cpus.0=0,1,2,3 hw:numa_
cpus.1=4,5,6,7 hw:numa_mem.0=1024 hw:numa_
mem.1=1024

Tenants also have the option to specify their guest NUMA
topology request by means of an image-property-based
mechanism. An example of such a command is:

�# glance image-update image_id –property
hw_numa_mempolicy=strict –property
hw_numa_cpus.0=0,1,2,3 –property hw_
numa_cpus.1=4,5,6,7 –property hw_numa_
mem.0=1024 –property hw_numa_mem.1=1024

These commands result in OpenStack configuring the guest
virtual CPUs 0, 1, 2, and 3 to be mapped to socket 0 (also
known as cell 0 in libvirt terminology) and virtual CPUs 4, 5,
6, and 7 to be mapped to socket 1.

2.5 NUMA Locality of PCI Devices
The OpenStack Kilo release enables I/O-aware NUMA
scheduling. To use this capability with PCIe passthrough, the
flavor must be updated to request the particular PCIe device.

	� # nova flavor-key <flavorname> set “pci_
passthrough:alias”=”niantic:1”

In this example, the alias is the same as was configured
in section 2.2 Support for I/O PCIe* Passthrough, and
the number 1 represents the number of VFs that must be
allocated. PciPassthroughFilter finds hosts with the
requested PCIe devices. If the I/O device is a network device
and the vnic-type set with the neutron port-create
command is direct or macvtap, the physical_network
setting that was used with the neutron net-create
command is also taken into account by the scheduler
to identify the suitable set of hosts. Next, the
NUMATopologyFilter filter selects the NUMA node
and checks whether the NIC is locally attached.

2.6 CPU Pinning
By default virtual CPUs (vCPUs) are not pinned to physical
CPUs (pCPUs), meaning that application can utilize any host
CPU core that has been assigned to it by the virt driver.
This approach ensures the optimal performance of the
system that is heavily loaded at the possible expense of the
performance of individual instances.

Applications that require real-time or near real-time behavior
must avoid resource contention that can be mitigated by
dedicating a pool of physical cores to them. This functionality
is known as CPU pinning, or more precisely, pinning guest’s
vCPUs to pCPUs, and ensures that only the selected
application will be executed on this pool of cores, and no
other processes will be scheduled on that pool.

OpenStack Kilo release adds a capability to pin guest vCPUs
to the specific pCPUs on the host that will further allow
for execution of entire VMs on the dedicated pCPUs. In
OpenStack, CPU pinning can be enabled by specifying the
hw:cpu_policy property of the extra_specs parameter
in the OpenStack Compute’s flavor. The default CPU policy is
shared denoting that guest vCPUs can freely float across the
physical cores on the host. A dedicated CPU policy enables
pinning of guest vCPUs to pCPUs, and provides the option to
select one of the selected vCPU thread policies, described in
the next section.

hw:cpu_policy=shared|dedicated

When using dedicated CPU policy, isolate CPUs from the
host operating system (OS) on the platform to prevent the
guest and the host from contending for resources on the
same cores. To prevent the host from using specific cores,
use the isolcpus setting in GRUB command line. To avoid
contention on execution units from shared CPU siblings, such
as between pCPU 0 and pCPU 4, isolate sibling CPUs from
the host. Based on the CPU numbering, if it is necessary to
dedicate an entire execution unit from each socket to the
host, then a possible isolation strategy would be to allocate
pCPUs 0, 4, 8, and 12 to the host, and to isolate the other
pCPUs.

Edit the /etc/default/grub file to isolate specific CPU cores
from OS, for example:

	� GRUB_CMDLINE_LINUX=”isolcpus= 1, 2, 3, 5,
6, 7, 9, 10, 11, 13, 14, 15”

https://wiki.openstack.org/wiki/SR-IOV-Passthrough-For-Networking-Mitaka-Ethernet
https://wiki.openstack.org/wiki/SR-IOV-Passthrough-For-Networking-Mitaka-Ethernet

7

2.7 CPU Threads Policies
This functionality is complementary to OpenStack’s CPU
pinning and has been introduced to OpenStack Mitaka
release with four CPU thread policies defined. Each CPU
thread policy configures the mapping of guest vCPUs to
physical CPUs (pCPUs) on the host in the context of a system
enabled with simultaneous multi-threading (SMT).

An SMT-enabled, Intel architecture-based platform has two
CPU hardware threads that can execute simultaneously on
each core execution unit. To the kernel, this appears to be
twice as many cores in the system as are actually available.

�hw:cpu_threads_policy=avoid|separate|isol
ate|prefer

The hw:cpu_threads_policy controls how the scheduler
(virt driver) is placing guests on CPU threads. It only applies
if the scheduler policy is set to dedicated. The following
policies have been defined for OpenStack Mitaka release:

• avoid: the scheduler will not place the guest on a host which
has hyper-threaded cores enabled with Intel® Hyper-
Threading Technology.

• separate: if the host has hyper-threaded cores, each vCPU
will be placed on a different core; thus, no two vCPUs will be
placed on thread siblings.

• isolate: if the host has hyper-threaded cores, each vCPU
will be placed on a different core and no vCPUs from other
guests will be placed on the same core; thus, one thread
sibling is guaranteed to always be unused.

• prefer: if the host has hyper-threaded cores, vCPU will be
placed on the thread sibling.

Go to https://networkbuilders.intel.com/docs/CPU_Pinning_
With_Openstack_nova.pdf for more information on CPU
pinning and CPU thread policies.

2.8 Huge Page Support
The OpenStack Kilo release supports huge page capabilities
on hosts. To leverage huge pages, the host OS must be
configured to define the huge page size and the number of
huge pages to be created. As shown in the following example,
the default huge page size setting is 2 MB, with eight 1 GB
pages allocated.

1. To set huge pages, edit the /etc/default/grub file.

�GRUB_CMDLINE_LINUX=”default_
hugepagesz=2MB hugepagesz=1G hugepages=8”

2. Update GRUB.

grub2-mkconfig –o /boot/grub2/grub.cfg

3. �In addition, libvirt on the host must be configured to allow
the use of huge pages. In the /etc/libvirt/qemu.conf
file, add the hugetlbfs mount point, for example, /mnt/
huge, to the cgroup_device_acl list.

cgroup_device_acl = [
 "/dev/null", "/dev/full", "/dev/zero",
 "/dev/random", "/dev/urandom",
 "/dev/ptmx", "/dev/kvm", "/dev/kqemu",
 "/dev/rtc", "/dev/hpet","/dev/net/tun",
 "/mnt/huge"
]

4. �Restart libvirt to apply the changes. Mount hugetlbfs and
allocate space with the following command.

�# mount –t hugetlbfs –o
mode=0777,pagesize=1G,size=16G none /mnt/
huge

The nova-scheduler has been updated to track and
allocate these huge pages to guest operating systems. The
flavor definition should contain the page size that is required
for the VM. The following example shows a request for 1 GB
page size.

�# nova flavor-key <flavor name> set
hw:mem_page_size=1048576

2.9 Trusted Compute Pools
To improve security, cloud subscribers may want their
workloads to be executed on verified compute platforms. In
OpenStack, it is possible to designate groups of trusted hosts
to form pools of trusted computes.

The trusted hosts are supported with hardware-based
security features, such as Intel® Trusted Execution
Technology (Intel® TXT), and 3rd party attestation servers.
Attestation servers are offered, for example, by Open
Cloud Integrity Technology (Open CIT) and perform host
verification activities.

With the use of trusted compute pools, subscribers are
ensured that their workloads will run on trusted compute
nodes, and OpenStack cloud providers will offer secure
stacks that will allow only the verified software to be run.

Perform the following steps to configure the OpenStack
Compute to be used in trusted compute pools.

1. �Enable scheduling support for trusted compute pools and
specify the connection details for the attestation service by
adding the following lines to the /etc/nova/nova.conf file:

[DEFAULT]
compute_scheduler_driver=nova.scheduler.
filter_scheduler.FilterScheduler
scheduler_available_filters=nova.scheduler
.filters.all_filters
scheduler_default_filters=Availability
ZoneFilter,RamFilter,
ComputeFilter,TrustedFilter

[trusted_computing]
attestation_server = <IP of the
attestation service>
attestation_port = <HTTPS port for the
attestation service>
attestation_server_ca_file = <certificate
file used to verify the identity of the
attestation server>
attestation_api_url = <attestation
service’s URL path>
attestation_auth_blob = i-am-openstack

2. Restart the nova-compute and nova-scheduler services.

Perform the following steps to specify the trusted flavor.

1. Set the requested flavor as trusted.

�# nova flavor-key <flavor_name> set
trust:trusted_host=trusted

https://networkbuilders.intel.com/docs/CPU_Pinning_With_Openstack_nova.pdf
https://networkbuilders.intel.com/docs/CPU_Pinning_With_Openstack_nova.pdf

8

2. Request the instance to be executed on a trusted host by
specifying a trusted flavor when booting the instance.

�# nova boot --flavor <flavor_name> --key-
name <keypair_name> --image <image_id>
<new_instance_name>

More information on trusted compute pools can be found at
http://docs.openstack.org/admin-guide/compute-security.
html and https://software.intel.com/sites/default/files/
managed/2f/7f/Config_Guide_for_Trusted_Compute_Pools_
in_RHEL_OpenStack_Platform.pdf.

2.10 Open vSwitch* Firewall Driver
The Open vSwitch* (OvS*) firewall driver is fully integrated
with the Data Plane Development Kit-accelerated OvS (OVS-
DPDK). Rather than leveraging the Linux bridge and iptables,
it natively implements security groups as flows in the OvS.
Thus, it creates a pure OvS model that is not dependent on
functionality from the underlying platform. This firewall
driver uses the same public API to talk to the OpenStack
Networking agent as the existing Linux bridge firewall
implementation.

To use firewall driver in combination with OVS-DPDK,
download the networking-ovs-dpdk project.

�# git clone https://github.com/stackforge/
networking-ovs-dpdk.git

Also, you may want to install this project as a pip package.

pip install networking-ovs-dpdk

To enable the firewall driver, add the following section to
your devstack/local.conf file. Alternatively, if DevStack*
is not used to deploy your OpenStack cloud, modify the
/etc/neutron/plugins/ml2/ml2_conf.ini file
accordingly.

[[post-config|/etc/neutron/plugins/ml2/
ml2_conf.ini]]
[securitygroup]
#firewall_driver = neutron.agent.linux.
iptables_firewall
�firewall_driver = networking_ovs_dpdk.
agent.ovs_dpdk_firewall.OVSFirewallDriver

More information on the OvS firewall driver can be found at
https://software.intel.com/en-us/articles/implementing-an-
openstack-security-group-firewall-driver-using-ovs-learn-
actions and https://github.com/openstack/neutron/blob/
master/doc/source/devref/openvswitch_firewall.rst.

2.11 Support for OVS-DPDK Controlled by OpenStack
Networking*
OpenStack’s networking-as-a-service project, OpenStack
Networking (Neutron), is able to use the functionality of a
distributed, virtual, multilayer switch by using networking-
ovs-dpdk. It represents a collection of deployment scripts
that enable OVS-DPDK-based deployments.

The project started by providing a custom, out-of-tree
implementation of a Data Plane Development Kit (DPDK)-
enabled version of the OvS agent and ML2 driver along with
DevStack-based deployment scripts. These applications
allow users to attach DPDK-backed vHost-user ports to
their instances, which can provide up to a 10x performance
improvement over the standard OvS ports.

More details about OVS-DPDK and how it can be enabled in
OpenStack can be found at https://01.org/openstack/blogs/
stephenfin/2016/enabling-ovs-dpdk-openstack.

2.12 Support for OVS-DPDK controlled by
OpenDaylight*
OpenDaylight* is software-defined network (SDN) controller
that lets the user programmably manage OpenFlow*-capable
switches. OpenStack can use OpenDaylight as its network
management provider through the ML2 north-bound plug-in.
OpenDaylight manages the network flows for the OpenStack
compute nodes via the Open vSwitch database (OVSDB) and
the OpenFlow south-bound plug-ins.

More information on the setup of OpenStack with OVS-DPDK
controlled by OpenDaylight can be found at https://github.
com/openstack/networking-ovs-dpdk/blob/master/doc/
source/getstarted/devstack/ubuntu.rst.

2.13 Telemetry Capture (via collectd)
collectd is a highly-scalable, system statistics collection
service, written in C. It has many metrics already available,
such as CPU utilization, FS-Cache, IRQ handling, and network
interface and routing statistics. It has a plug-in-based
architecture, which means that only chosen measurements
may be enabled, making the process very lightweight to run.

OpenStack is written in Python, and collectd provides
language bindings through its Python plug-in. A collectd
plug-in was developed in Python to interact with the
OpenStack Telemetry* service (Ceilometer).

This plug-in makes the metrics from collectd available to
the OpenStack Telemetry service. This means that all the
previously available metrics from collectd can be made
available to the OpenStack Telemetry, and plug-ins such
as interface, cpu, and cpufreq can be used to get vital
statistics about network load and CPU usage. This data can
then be used for scheduling, for example, or as a diagnostic
tool, for identifying performance bottlenecks.

In addition, these statistics can be used by any agent in the
OpenStack cloud, and some logic or intelligence can be
applied to make more informed decisions for automatic
provisioning of resources. For example, additional statistics
could be used to identify potential faults in a system and
evacuate all workloads to ensure continuous service.

More information on how to install and use collectd can be
found at: https://collectd.org/wiki/index.php/First_steps.  

http://docs.openstack.org/admin-guide/compute-security.html
http://docs.openstack.org/admin-guide/compute-security.html
https://software.intel.com/sites/default/files/managed/2f/7f/Config_Guide_for_Trusted_Compute_Pools_in_RHEL_OpenStack_Platform.pdf
https://software.intel.com/sites/default/files/managed/2f/7f/Config_Guide_for_Trusted_Compute_Pools_in_RHEL_OpenStack_Platform.pdf
https://software.intel.com/sites/default/files/managed/2f/7f/Config_Guide_for_Trusted_Compute_Pools_in_RHEL_OpenStack_Platform.pdf
https://software.intel.com/en-us/articles/implementing-an-openstack-security-group-firewall-driver-using-ovs-learn-actions
https://software.intel.com/en-us/articles/implementing-an-openstack-security-group-firewall-driver-using-ovs-learn-actions
https://software.intel.com/en-us/articles/implementing-an-openstack-security-group-firewall-driver-using-ovs-learn-actions
https://github.com/openstack/neutron/blob/master/doc/source/devref/openvswitch_firewall.rst
https://github.com/openstack/neutron/blob/master/doc/source/devref/openvswitch_firewall.rst
https://01.org/openstack/blogs/stephenfin/2016/enabling-ovs-dpdk-openstack
https://01.org/openstack/blogs/stephenfin/2016/enabling-ovs-dpdk-openstack
https://github.com/openstack/networking-ovs-dpdk/blob/master/doc/source/getstarted/devstack/ubuntu.rst
https://github.com/openstack/networking-ovs-dpdk/blob/master/doc/source/getstarted/devstack/ubuntu.rst
https://github.com/openstack/networking-ovs-dpdk/blob/master/doc/source/getstarted/devstack/ubuntu.rst
https://github.com/stackforge/
https://collectd.org/wiki/index.php/First_steps

9

3.0 Intel® Technologies for Enhanced
Platform Awareness
Following section presents an overview of technologies and
platform capabilities supported by OpenStack through the
EPA features.

3.1 Intel® Hyper-Threading Technology
The Intel® Xeon® processors that are used in the servers
support Intel® Hyper-Threading Technology (Intel® HT
Technology). Intel HT Technology enables CPU resources to
be used more efficiently, because multiple threads can be run
on each core.

Intel HT Technology is enabled in the BIOS settings and
is supported by most Linux* flavors. As a performance
feature, Intel HT Technology also increases CPU throughput,
improving overall performance on threaded software,
and providing headroom for future business growth and
new solution capabilities. Refer to sections 2.6 and 2.7 for
more details on setting the appropriate thread policy in the
OpenStack.

More information on the Intel® Hyper-Threading Technology
can be found at http://www.intel.com/content/www/us/
en/architecture-and-technology/hyper-threading/hyper-
threading-technology.html.

3.2 Intel® Resource Director Technology: Cache
Monitoring Technology and Cache Allocation
Technology
The Cache Monitoring Technology (CMT) feature allows
the OS, hypervisor, or virtual machine monitor (VMM) to
determine the cache usage of applications running on the
platform. CMT can be used to do the following:

• Detect if the platform supports CMT monitoring capabilities
via CPUID

• Have the OS or VMM assign the resource monitoring ID
(RMID) for each application or VM scheduled to run on a core

• Monitor cache occupancy and memory bandwidth on a
per-RMID basis

• Allow the OS or VMM to read shared last-level cache (LLC)
occupancy and memory bandwidth for a given RMID at any
time

The Cache Allocation Technology (CAT) feature allows an
OS, hypervisor, or VMM to control the allocation of a CPU’s
shared LLC. Once CAT is configured, the processor allows
access to portions of the cache according to the established
class of service (CLOS). The processor obeys the CLOS rules
when it runs an application thread or application process.

The following stock keeping units (SKUs) of Intel Xeon
processors support both CAT and CMT:

• Intel® Xeon® processor E5-2658 v3

• Intel® Xeon® processor E5-2658A v3

• Intel® Xeon® processor E5-2648L v3

• Intel® Xeon® processor E5-2628L v3

• Intel® Xeon® processor E5-2618L v3

• Intel® Xeon® processor E5-2608L v3

• All SKUs of the Intel® Xeon® processor D product family

• �All SKUs of the Intel® Xeon® processor E5-2600 v4
product family

Go to https://www.intel.com/content/www/us/en/architecture-
and-technology/resource-director-technology.html to read
more on CAT and CMT as the subset of Intel® Resource
Director Technology.

3.3 Intel® Advanced Encryption Standard New
Instructions
Intel® Advanced Encryption Standard New Instructions is
an instruction set that enables improved speed encryption/
decryption of workloads using the Advanced Encryption
Standard (AES). This feature was added to 4th Generation Intel®
Core™ processor family and Intel® Xeon® processor family that
base on the Intel® microarchitecture code name Westmere.

Go to https://software.intel.com/en-us/articles/intel-
advanced-encryption-standard-instructions-aes-ni to read
more on Intel AES-NI.

3.4 Intel® Advanced Vector Extensions
Intel® Advanced Vector Extensions (Intel® AVX) is a set of single
instruction, multiple data (SIMD) instructions introduced in the
Intel® microarchitecture code name Sandy Bridge.

Intel® Advanced Vector Extensions 2 (Intel® AVX2) expands
most vector interger Streaming SIMD Extensions (SSE) and
Intel AVX instructions to 256 bits. Intel® AVX2 support was first
added to 4th generation Intel® Core™ processor family for
client systems and Intel® Xeon® v3 processor family for server
systems (formerly code-named Haswell).

Go to https://software.intel.com/en-us/articles/how-intel-
avx2-improves-performance-on-server-applications to read
more on Intel AVX and Intel AVX2.

3.5 Intel® Streaming SIMD Extensions 4.2
Intel® Streaming SIMD Extensions 4.2 (Intel® SSE4.2) is an
extension to the Intel® SSE instructions set that enables SIMD
parallelization. This feature was added to the Intel® Xeon®
processor family that base on the Intel® microarchitecture
code name Nehalem.

Go to http://www.intel.com/content/www/us/en/support/
processors/000005779.html to read more on Intel SSE4.2.

3.6 RDRAND
RDRAND is an instruction for returning random numbers. This
was introduced to 3rd generation Intel® Core™ processor family
for client systems and Intel® Xeon® processor family for server
systems that base on the Intel® microarchitecture code name
Ivy Bridge.

Go to https://software.intel.com/en-us/blogs/2011/06/22/
find-out-about-intels-new-rdrand-instruction to read more on
RDRAND.

http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
https://software.intel.com/en-us/articles/how-intel-avx2-improves-performance-on-server-applications
https://software.intel.com/en-us/articles/how-intel-avx2-improves-performance-on-server-applications
http://www.intel.com/content/www/us/en/support/processors/000005779.html
http://www.intel.com/content/www/us/en/support/processors/000005779.html
https://software.intel.com/en-us/blogs/2011/06/22/find-out-about-intels-new-rdrand-instruction
https://software.intel.com/en-us/blogs/2011/06/22/find-out-about-intels-new-rdrand-instruction

10

3.7 Intel® Trusted Execution Technology
Intel® Trusted Execution Technology (Intel® TXT) is a
combination of hardware and software, aimed at helping
secure the execution of sensitive workloads. In contrast to
solutions that protect the OS, Intel TXT builds a chain of
trust from the system firmware, all the way to the server or
hypervisor to help prevent attacks on the system firmware or
BIOS, master boot record, boot loader, OS, and hypervisor.

OpenStack Grizzly and newer versions provide a
TrustedFilter to scheduler’s filter that uses Intel TXT
to schedule workloads requiring trusted execution only to
trusted compute resources.

Go to http://docs.openstack.org/admin-guide/compute-
security.html to read more on how to take advantage of Intel
TXT for creating a trusted computed pool and make use of it
in OpenStack.

3.8 Intel® QuickAssist Technology
Intel QuickAssist Technology provides security and
compression acceleration capabilities used to improve
performance and efficiency across the data center. Server,
networking, big data, and storage applications use the Intel
QuickAssist Technology to offload servers from handling
compute-intensive operations, such as:

• �Symmetric cryptography functions including cipher
operations and authentication operations

• �Public key functions including RSA, Diffie-Hellman, and
elliptic curve cryptography

• �Compression and decompression functions including
Deflate algorithm

Ultimately, the Intel QuickAssist Technology helps users
to ensure applications are fast, secure, and available,
and enables the demands of ever-increasing amounts of
data, especially data with the need for encryption and
compression, to be met.

The instructions on enabling the Intel QuickAssist
Technology in the OpenStack are similar to the steps listed in
section 2.2 Support for I/O PCIe* Passthrough.

More information on Intel QuickAssist Technology can
be found at http://www.intel.com/content/www/us/en/
embedded/technology/quickassist/overview.html.

http://docs.openstack.org/admin-guide/compute-security.html
http://docs.openstack.org/admin-guide/compute-security.html
http://www.intel.com/content/www/us/en/embedded/technology/quickassist/overview.html
http://www.intel.com/content/www/us/en/embedded/technology/quickassist/overview.html

11

Appendix A: Summary of EPA Features

EPA FEATURE DESCRIPTION
RELATED PLATFORM
CAPABILITIES

SUPPORTED
BY NFVI

VNF / VNF
MANAGER SUPPORT
REQUIREMENT

Host CPU Feature
Request

Exposes all of the CPU instruction set extensions
to the nova-scheduler OpenStack service.

Exposure of these CPU capabilities to the guest
OS improves VNF performance in specific areas,
for example, encryption/decryption.

Intel® AES-NI

Intel® AVX2

Intel® SSE4.2

RDRAND

Yes

Based on the VNF
requirement, VM
must be created with
the host CPU feature
request.

Support for I/O PCIe
Passthrough

Provides I/O functionality to the guest OS and
improves I/O performance bypassing the host OS.

Value: Supports full device passthrough for non-
networking devices and networking devices not
managed by OpenStack Networking*.

Enhanced platform
PCI/PCIe devices
such as NICs,
cryptography
accelerators based
on Intel® QuickAssist
Technology, and so
on.

Yes

The guest OS must
include the PCI PF
driver for the I/O
passthrough device.
Additionally, the VNF
descriptor must be
updated for the VNF
manager.

Support for I/O
Passthrough via
SR-IOV

Passthrough of virtualized hardware functions to
the guest OS, and thus improving performance
and scalability of I/O.

Value: Allows an I/O device to be shared by
multiple VMs without losing runtime performance.

SR-IOV Yes

The guest OS must
include the PCI device
VF driver for the I/O
passthrough device.
Additionally, the VNF
descriptor must be
updated for the VNF
manager.

NUMA Topology
Awareness

Allows the use of particular CPU cores, memory,
and I/O devices assigned to a specific NUMA
node.
Value: Increases the effective utilization of
compute resources and decreases latency
by avoiding cross-node memory accesses
by the guests.

NUMA architecture
of the host Yes

VM must be created
with the feature
request based on the
VNF requirement.
VNF exposes the
requirement through
the descriptor.

NUMA Locality of
PCI Devices

CPU Pinning

Allows the vCPUs used by a guest to be tied to
the pCPUs on the host.

Value: Improves the performance of the guest by
preventing resource contention with other guest
instances and host processes.

Intel® HT Technology Yes

VM must be created
with the specific CPU
pinned. VNF exposes
the requirement
through the descriptor.

CPU Threads
Policies

Controls the allocation of CPU thread siblings to
vCPUs to ensure the best performance of VM.
Value: Improves VM performance by enabling
service providers to decide how guest vCPUs will
utilize the physical CPU cores.

Yes

VM must be created
with the specific CPU
pinned. VNF exposes
the requirement
through the descriptor.

Huge Page Support

Supports memory pages greater than the default
size (usually 4 KB).

Value: Improves the performance of translation
look-aside buffer lookup. The overhead for paging
in and out is effectively eliminated providing a
significant boost in performance.

Yes

If the VNF uses the
DPDK, huge pages
need to be configured
for best performance.

Support for CMT
and CAT

Ability to monitor how much LLC resources a VNF
needs via CMT.

Enables deterministic behavior of VMs and
platform services such as virtual switch via CAT

CAT and CMT Not yet
enabled
(on the
roadmap)

Not yet enabled (on
the roadmap)

Trusted Compute
Pools

Supports security hardening by designating
OpenStack compute pools to use hardware-based
security features, such as Intel® TXT.

Value: Provides the ability for cloud subscribers
to request services run only on verified compute
nodes.

Yes, If Intel
TXT and
TPM are
enabled in
BIOS

Open CIT client
installed

Intel, TXT, trusted
platform module
(TPM)

Intel® HT Technology

12

Appendix A: Summary of EPA Features

EPA FEATURE DESCRIPTION
RELATED PLATFORM
CAPABILITIES

SUPPORTED
BY NFVI

VNF / VNF
MANAGER SUPPORT
REQUIREMENT

OvS Firewall Driver
OS-agnostic firewall, fully integrated with OvS.
Outperforms the stock iptables firewall used with
a “vanilla” OvS.

Yes N/A

Support for OVS-
DPDK Controlled
by OpenStack
Networking

Allows hosts with OVS-DPDK to be controlled and
configured by setting datapath type for bridges
and creating vHost-user ports instead of tap or
veth interfaces.

Value: Accelerated performance and low-latency
virtual switch.

DPDK Yes Yes

Support for OVS-
DPDK controlled by
OpenDaylight*

Allows OpenDaylight to manage OVS-DPDK and
define the OpenFlow rules.

Value: OpenDaylight controller can be used to
control flows in the network.

DPDK Yes Yes

Telemetry Capture
(via collectd)

Integration of OpenStack telemetry services with
highly scalable monitoring system that collects
statistics about the underlying hardware.

Value: Enables more informed decisions for
automatic provisioning of resources to be made.

Yes N/A

REFERENCE SOURCE

Enhanced Platform Awareness for
PCIe* Devices https://wiki.openstack.org/wiki/Enhanced-platform-awareness-pcie

EPA training videos

https://builders.intel.com/university/networkbuilders/course/openstack-enhanced-
platform-awareness-101
https://builders.intel.com/university/networkbuilders/course/openstack-enhanced-
platform-awareness-102

Open Cloud Integrity Technology https://01.org/opencit

OVS-DPDK
https://github.com/openstack/networking-ovs-dpdk/blob/master/doc/source/
getstarted/devstack/ubuntu.rst
https://01.org/openstack/blogs/stephenfin/2016/enabling-ovs-dpdk-openstack

Intel® Xeon® processor D-1500 Family https://www.intel.com/content/www/us/en/embedded/products/broadwell-
de/overview.html

Intel® Xeon® processor E5-2600 v3
product family http://ark.intel.com/products/family/78583/Intel-Xeon-Processor-E5-v3-Family#@All

Intel® Xeon® processor E5-2600 v4
product family http://ark.intel.com/products/family/91287/Intel-Xeon-Processor-E5-v4-Family#@All

SR-IOV Configuration Guide http://www.intel.com/content/dam/www/public/us/en/documents/technology-
briefs/xl710-sr-iov-config-guide-gbe-linux-brief.pdf

Appendix B: References

https://builders.intel.com/university/networkbuilders/course/openstack-enhanced-platform-awareness-101
https://builders.intel.com/university/networkbuilders/course/openstack-enhanced-platform-awareness-101
https://builders.intel.com/university/networkbuilders/course/openstack-enhanced-platform-awareness-102
https://builders.intel.com/university/networkbuilders/course/openstack-enhanced-platform-awareness-102
https://github.com/openstack/networking-ovs-dpdk/blob/master/doc/source/getstarted/devstack/ubuntu.rst
https://github.com/openstack/networking-ovs-dpdk/blob/master/doc/source/getstarted/devstack/ubuntu.rst
https://www.intel.com/content/www/us/en/embedded/products/broadwell-de/overview.html
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/xl710-sr-iov-config-guide-gbe-linux-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/xl710-sr-iov-config-guide-gbe-linux-brief.pdf
https://wiki.openstack.org/wiki/Enhanced-platform-awareness-pcie
https://01.org/opencit
https://01.org/openstack/blogs/stephenfin/2016/enabling-ovs-dpdk-openstack
http://ark.intel.com/products/family/78583/Intel-Xeon-Processor-E5-v3-Family#@All
http://ark.intel.com/products/family/91287/Intel-Xeon-Processor-E5-v4-Family#@All

13

ABBREVIATION DESCRIPTION

Intel® AES-NI Intel® Advanced Encryption Standard
New Instructions

API Application Programming Interface

Intel® AVX Intel® Advanced Vector Extensions

BIOS Basic I/O System

CAT Cache Allocation Technology

CLI Command Line Interface

CMT Cache Monitoring Technology

CLOS Class of Service

CPU Central Processing Unit

DPDK Data Plane Development Kit

EPA Enhanced Platform Awareness

ETSI European Telecommunications
Standards Institute

GRUB Grand Unified Bootloader

Intel® HT
Technology Intel® Hyper-Threading Technology

I/O Input/Output

IOMMU Input-Output Memory Management Unit

LAN Local Area Network

LLC Last-Level Cache

MANO Management and Orchestration

ML2 Modular Layer 2

NFV Network Functions Virtualization

NFVI NFV Infrastructure

NIC Network Interface Card

ABBREVIATION DESCRIPTION

NUMA Non-Uniform Memory Access

Open CIT Open Cloud Integrity Technology

OPNFV Open Platform for NFV

OS Operating System

OvS Open vSwitch

OVSDB Open vSwitch database

OVS-DPDK DPDK-Accelerated Open vSwitch

PCI Peripheral Component Interconnect

PCIe PCI Express

pCPU Physical CPU

PF Physical Function

SHVS Standard, High-Volume Servers

SIMD Single Instruction, Multiple Data

SKU Stock Keeping Unit

SR-IOV Single Root I/O Virtualization

Intel® SSE4.2 Intel® Streaming SIMD Extensions 4.2

TPM Trusted Platform Module

Intel® TXT Intel® Trusted Execution Technology

vCPU Virtual CPU

VF Virtual Function

VIM Virtualized Infrastructure Manager

VLAN Virtual LAN

VM Virtual Machine

VNF Virtualized Network Function

VxLAN Virtual eXtensible LAN

Appendix C: Abbreviations

Configuration Guide | Enabling Enhanced Platform Awareness for Superior Packet Processing in OpenStack*

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive,
royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are
available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer or retailer. Tests document performance of components on
a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider
your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.
All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. Results have been estimated or simulated using
internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual
performance.
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.
No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty
arising from course of performance, course of dealing, or usage in trade.
Intel does not control or audit third-party websites, software, data or other information referenced in this document. You should contact such third parties to confirm whether the referenced
data is accurate.
No endorsement, sponsorship by, or association between, Intel and any third parties is expressed nor should be inferred from references to third parties and their products and services
in this document.
Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents
and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.
Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others. © 2017 Intel Corporation. 0817/MH/ICMCSW/PDF002 335372-001US

http://www.intel.com/performance

	1.0 Introduction
	1.1 OpenStack
	1.2 Enhanced Platform Awareness

	2.0 Configuration and Enablement
	2.1 Host CPU Feature Request
	2.2 Support for I/O PCIe* Passthrough
	2.3 Support for I/O Passthrough via SR-IOV
	2.4 NUMA Topology Awareness
	2.5 NUMA Locality of PCI Devices
	2.6 CPU Pinning
	2.7 CPU Threads Policies

	2.8 Huge Page Support
	2.9 Trusted Compute Pools
	2.10 Open vSwitch* Firewall Driver
	2.11 Support for OVS-DPDK Controlled by OpenStack Networking*
	2.12 Support for OVS-DPDK controlled by OpenDaylight*
	2.13 Telemetry Capture (via collectd)

	3.0 Intel® Technologies for Enhanced Platform Awareness
	3.1 Intel® Hyper-Threading Technology
	3.2 Intel® Resource Director Technology: Cache Monitoring Technology and Cache Allocation Technology

	3.3 Intel® Advanced Encryption Standard New Instructions
	3.4 Intel® Advanced Vector Extensions
	3.5 Intel® Streaming SIMD Extensions 4.2
	3.6 RDRAND
	3.7 Intel® Trusted Execution Technology
	3.8 Intel® QuickAssist Technology
	Appendix A: Summary of EPA Features
	Appendix A: Summary of EPA Features
	Appendix B: References
	Appendix C: Abbreviations

