
White PaPer

5G L2 SW Architecture
Best Practice on IA

Background
5G is the next technological revolution. Transformed 5G networks are designed to

support a broad range of devices and use cases, with faster speeds, less latency,

and more capacity. However, 5G is confronted with many challenges, first of which

is TTI (Transmission Time Interval) decreasing from 1ms to 0.125ms while data

rate boosting by 10 folds. This demands sharply improved processing capacity of

base station, and rigorous real-time performance of software stack. In this context,

the architecture design of L2 packet processing, and its implementation and

optimization on x86 server platform are vital to fulfilling the 5G throughput and

real-time performance target.

Huge throughput demand of 5G brings a great challenge to optimizing locking/

unlocking overhead, and translation lookaside buffer (TLB) miss when multiple

tasks/threads get, split or release memory. For MAC/RLC packet processing, Intel

adopts DPDK Mempool to buffer management, where the memory is mapped

into hugepage. The IA-friendly BBUpooling is also adopted as the framework of

FlexRAN L2+ reference library. In this regard, Intel® FlexRAN reference architecture

is a solution Intel has offered for the base station.

Intel® FlexRAN reference architecture is an off-the-shelf general-purpose x86 server

system, also a virtualized platform containing components of Intel processors,

I/O and FPGAs. This reference architecture enables the highest level of flexibility

with the programmable on board features, memory and I/O. The FlexRAN scales

from small to large capacities with the same set of components running different

applications or functions, ranging from the RAN to core network and data centre

including edge computing and media, enabling economics of scale.

Authors

Ziyi Li
Fan He

Peng Huang
Minjun Li

Leifeng Ruan
Yao Dong

Table of Contents

Background ...1

Buffer Management under
Hugepage ...2

System Architecture3
BBUpooling Framework.......................................3

5G L2+ Reference Design4

Optimization Method4
Intel® C++ Compiler (ICC)4

Intel® VTune™ Amplifier5

Supported Configuration5

Summary..6

Intel® FlexRAN reference architecture in the 5GNR

2

Buffer Management under Hugepage
High performance buffer management is the key

performance indicator for packet processing, especially

for NR with high throughput and packet rate. FlexRAN L2+

reference library applies Intel Hugepage to reduce high

TLB miss. Enabling hugepage makes it possible for the

operating system to support memory pages greater than the

default (usually 4 KB). Along with the increase of program

application size and memory used by application, it will

greatly increase the frequency of using TLB, which leads to

TLB miss. Using very large page sizes can improve system

performance by reducing the amount of system resources

required to access memory. Hugepage sizes vary from 2 MB

to 1 GB, depending on the operating system and hardware

architecture. Intel uses hugepage to reduce the operating

system maintenance of page states, and increase Translation

Lookaside Buffer (TLB) hit ratio.

Intel® FlexRAN L2+ reference library adopts DPDK Mempool

and mbuf as the base of buffer management, where Hugepage

is also applied. This chapter focus on zero-copy based 5GNR

MAC/RLC packet processing application on DPDK Mempool.

The workflow at the transmission side of 5GNR MAC/RLC

packet processing is described in the following six steps:

Step 1: Get blocks from Mempool for "SDU" when receiving

packets from the upper layer, and use rte_th_rx_burst()/

rte_pktmbuf_allocate(); the element size is the sum of MAC

header maximum length, RLC header maximum length, and

packet length.

Step 2: Use rte_pktmbuf_chain() to put all packets in an

array, wait for the transmission grant from MAC, and pre-add

RLC headers according to packet length, etc.

Step 3: After receiving the transmission grant from MAC

scheduler, use rte_pktmbuf_chain() to concatenate packets

into MAC PDU.

Step 4: If segmentation is needed, use rte_pktmbuf_clone()

and rte_pktmbuf_attach() to split the packet into two

segments; the second segment will be stored in the original

buffer, and needs to be sent out within the current slot,

and allocated into the clone buffer. DPDK will maintain the

reference count for each mbuf.

Step 5: If AM is applied, use rte_pktmbuf_clone() to copy

packets into the transmission queue and wait for ARQ’s

feedback.

Figure 1. FlexRAN: Intel’s 5G Network Reference Architecture

NETWORK TRANSFORMATION END-TO-END
PROGRAMMABLE CLOUD ARCHITECTURE ACROSS THE NETWORK

SMART
DEVICES

RADIO ACCESS
TECHNOLOGY

ACCESS & EDGE
NETWORK

CORE
NETWORK

CLOUD

5G / LTE 4G / MM WAVE
MASSIVE MIMO/ IOT NFV / SDN

VIRTUALIZED SOFTWARE-DEFINED CLOUD-READY

INTEL ENABLING VIRTUALIZATION OF THE RADIO ACCESS NETWORK

FlexRAN (Intel vRAN) Reference
Implementation

3

Step 6: Use rte_pktmbuf_free() to free allocated buffer for

RLC packets, and transmit to PHY according to MAC/PHY

interface.

The workflow at the receiving side of 5GNR MAC/RLC packet

processing is described in the following five steps:

Step 1: Use rte_pktmbuf_alloc() to allocate buffer for MAC

PDU after receiving packets from PHY.

Step 2: Split MAC PDU into MAC sub-PDU according to 3GPP

TS38.321, then deliver it to RLC by using pointer offset to

identify RLC header position within the buffer.

Step 3: Use rte_pktmbuf_trim() and rte_pktmbuf_adj() to re-

assemble segments into a complete RLC SDU.

Step 4: If AM is applied, and NACK has been received for

certain packets, its buffer pointer in the transmission queue

will be connected into a retransmission queue and wait for

next transmission grant to be resent.

Step 5: Send to the upper layer with rte_eth_tx_burst() or

according to interface between RLC and upper layer.

System Architecture
This section illustrates the system architecture of FlexRAN

L2+, including the BBUpooling framework, multi-cell pooling

mode, task split for packet processing, and L2 BKMs.

BBUpooling Framework

The BBUpooling task framework is optimized to better serve

the radio access network (RAN). It helps customers leverage

IA computing resource to design high-efficient software,

and allows them to tap IA general-purpose processing and

virtualization to design software with high flexibility.

The BBUpooling framework has been proved most efficient

in helping RAN application with parallel and pooling. It has

the following features:

• Breaking down the system into reasonable sizes of tasks

that can be executed parallel.

• A task consists of the algorithms which are executed

against the data.

• A task might depend on another task, and the whole

system contains a series of chained tasks.

• As tasks are prioritized and time sensitive, the priority of

tasks may or may not update dynamically.

Figure 2. Transmission Workflow of 5GNR MAC/RLC Packet Processing
Intel Confidential

mbuf

struct

User
data

mbuf

struct

User
data

seg left

seg to send mbuf

struct

User
data

User data

Upper Layer Pre-Pro RLC MAC

mbuf

struct

User
data

rte_eth_rx_burst()

n
e
x
t

n
e
x
t

RLC_Hdr MAC_Hdr

rte_pktmbuf_chain()

rte_pktmbuf_prepend()

mbuf

struct

User
data

mbuf

struct

Split user data into segments according to TB size
Update RLC header for the segment need to send

And add new RLC header for the segment left

indirect

mbuf

struct

*buf_adddr
+ data_off

indirect

mbuf

struct

n
e
x
t

rte_pktmbuf_alloc()
rte_pktmbuf_clone()
rte_pktmbuf_trim()
rte_pktmbuf_adj()

rte_pktmbuf_alloc()
rte_memcpy()

rte_pktmbuf_free()

rte_pktmbuf_alloc()
rte_pktmbuf_clone()

rte_pktmbuf_adj()
rte_pktmbuf_lastseg()
rte_pktmbuf_chain()

Add RLC header & MAC sub header

Copy mbuf chain into a new mbuf from TB pool
Tx TB via WLS interface

Free any unused mbuf or mbuf chain

mbuf

struct
TB data

*buf_adddr
+ data_off

Figure 3. Receiving Process of 5GNR MAC/RLC Packet ProcessingIntel Confidential

Tx mbuf array

MAC RLC Upper Layer

Decode RLC header
Do reassemble RLC PDU segment if needed

Put all the SDUs that are ready to deliver in Tx array in any order

Rx packets from WLS
Copy TB data into mbuf from TB pool

Decode MAC sub header
Free any unused mbuf or mbuf chain

mbuf

struct
TB data

TB data

mbuf

struct mbuf

struct mbuf

struct
*buf_adddr
+ data_off

*buf_adddr
+ data_off

*buf_adddr
+ data_off

rte_pktmbuf_alloc()
rte_pktmbuf_clone()
rte_pktmbuf_trim()
rte_pktmbuf_adj()

mbuf

struct
*buf_adddr
+ data_off

mbuf

struct
*buf_adddr
+ data_off

mbuf

struct
*buf_adddr
+ data_off

mbuf

struct
TB data

mbuf

struct
TB data

mbuf

struct
*buf_adddr
+ data_off

nb_segs = 1

mbuf

struct
*buf_adddr
+ data_off

nb_segs = 2

next rte_pktmbuf_alloc()
rte_pktmbuf_adj()

rte_pktmbuf_chain()
rte_eth_tx_burst()

mbuf

struct
*buf_adddr
+ data_off

mbuf

struct

nb_segs = 2

next

Figure 4. BBUpooling Task Framework
Intel Confidential 4

Triggered by timer/
 upperlayer event

Core resource
management

taskQ Task00
Task01
Task02
Task03

taskQ Task10
Task11
Task12
Task13

taskQ Task20
Task21
Task22
Task23

Task
Sched

Task execute

Task
Gen

Task
Sched

Task execute

Task
Gen

Task
Sched

Task execute

Task
Gen

core1 core2 Core 3

Core scaling/status update

Non dependency
SW tasks

HW
ACC

RAN DU App BBUpooling Task Framework HW resource

Tasks scaling among cores

4

5G L2+ Reference Design

This chart describes the multi-cell MAC/RLC design based

on BBUpooling framework. Each cell is constructed with the

pipeline of packet processing and runs in parallel.

• DPDK timing transmits through IO thread, and IO thread

will bind to a dedicated core.

• This architecture is based on a case using internal traffic

generator, and the traffic generator function is included in

DL RLC pre-processing task.

• RT DL packet processing task and RT UL packet processing

task can be executed parallel on different cores between

UEs at the time of high throughput and sufficient core

resources. It is recommended to split the task processing

time around 50k cycles to avoid task switch overhead.

The advantages of BKMs and BBUpooling have been proven

through FlexRAN L2+ reference library:

• It is recommended to pre-define task dependency, rather

than generate next-level task after current task.

• Cores belonging to the same socket can be grouped into

one queue to avoid cache miss. Multiple cells can share

the same task queue.

• Set task priority to pre-fetch tasks in the core, in order to

reduce cache miss and scheduler overhead.

Optimization Method

Intel® C++ Compiler (ICC)

Intel® C++ Compiler (ICC) is a group of C and C++ compilers

from Intel available for Windows, Linux, and Intel-based devices.

Following BKMs are recommended during performance tuning.

1. Compilation without optimization

First of all, the performance tuning needs to be based on

a qualified application. You need to ensure the application

correctness before you start the performance tuning.

2. Enable the general optimization

Enable the commonest compiler optimization in this

step. You have multiple options to select according to

your application scenarios, for example, ICC option (-fast)

maximizes speed across the entire program.

3. Enable processor-specific optimization

If you have a specific target processor for your application,

you can use option -x<code> (Linux*) to enable the

processor-specific optimization. This option tells the

compiler which processor features it may target to optimize,

including which instruction sets and optimizations it may

generate. It also enables optimizations in addition to Intel®

feature-specific optimization.

4. Enable IPO optimization

Interprocedural Optimization (IPO) is an automatic, multi-

step process. It allows the compiler to analyze your

code to determine where you can benefit from specific

optimizations. With the IPO option, you may achieve

additional optimizations.

5. Enable PGO optimization

Profile-guided Optimization (PGO) improves application

performance by reorganizing code layout to reduce

instruction-cache problems, shrinking code size, and

reducing branch mispredictions. PGO provides information

to the compiler about most frequently executed areas of

an application. Knowing these areas, the compiler will be

more selective and specific in optimizing the application.

Figure 5. MAC/RLC Design Based on BBUpooling Framework
Intel Confidential

Cell n
Cell 2

Cell 1
Cell 0

UE0 Pre-
Processing

If Carrier aggregation applicable
L1->L2 interface message/

packets Carrier 0

L1->L2 interface message/
packets Carrier 1

L1->L2 interface message/
packets Carrier 2

Slot Indication

I/O
 thread

DL MAC
Scheduler

UEn UL Packet
ProcessingUE2 UL Packet

Processing UE1 UL Packet
ProcessingUE0 UL Packet

Processing

UE2 UL
Demultiplexing

UE1 Pre-
Processing
UE0 Pre-

Processing

Uen DL Packet
ProcessingUE2 DL Packet

Processing UE1 DL Packet
Processing

Shared
Memory

Upper layer

Internal
traffic

generator
UL MAC

Scheduler

UE0 DL Packet
Processing

5

6. Enable optimization report option

This option tells the compiler to generate an optimization

report, and indicates how detailed it should be. Specify

values 0 through 5. If you specify zero, no report will be

generated. For levels n=1 through n=5, each level contains

all information of the previous level, perhaps including

some other information. Level 5 generates the most

detailed report.

Intel® VTune™ Amplifier

Intel® VTune™ Amplifier is a performance analysis tool for

users to develop serial and multithreaded applications.

It helps you analyze the algorithm choices and identify

where and how your application can benefit from available

hardware resources.

Intel provides these performance analysis tools that can

help to go through this performance optimization workflow.

Please ignore the top two elements if you are not running

on a cluster. You may start from any point according to your

application scenarios.

For example, Intel® Trace Analyzer & Collector (ITAC) is a

graphical tool to understand MPI application behaviors,

quickly identify bottlenecks, improve correctness, and

achieve high performance for parallel cluster applications

running on Intel® architecture. It improves weak points and

strong scalability among different applications.

Supported Configuration
Based on Intel® Xeon® Gold 6148 CPU @ 2.40GHz, FlexRAN

L2+ reference library supports MAC/RLC packet processing

for both mmw and sub-6GHz. Supported configurations are

listed as below for reference.

Feature mmw sub-6GHz

Slot length (us) 125 500

Specification TS 38.321 R15.0.0; TS 38.322 R15.0.0;
TS 38.214 R15.0.0

Bandwidth per carrier 100MHz

Cell number 6

Active user number/cell 400

DL scheduled user
number/cell

16

UL scheduled user
number/cell

8

DL Layer number/cell 16

UL Layer number/cell 8

TDD configuration DL:UL = 4:1

Packet Size (Byte) 1480; IMIX 340

RLC Mode TM, UM, AM

Table 1. FlexRAN L2+ Reference Library Configuration

Figure 6. Typical Optimization Cycle

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You
agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting: http://www.
intel.com/design/literature.htm

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at http://
www.intel.com/ or from the OEM or retailer.

No computer system can be absolutely secure.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2018, Intel Corporation. All rights reserved

1218/AM/BCS/PDF C Please Recycle 338556-001US

Summary
5G network demands high-level flexibility and scalability to

meet the latency, coverage, capacity and various algorithms,

analytics and application needs. Intel® FlexRAN reference

architecture can run different workloads on different x86

server platforms due to the general purpose nature of its

architecture. Except L1 signal processing of 5G, Intel®

FlexRAN reference architecture also explores L2 to give

customers a one-stop Intel L1+L2 reference design on x86

server platform. Working diligently and improving step by

step, Intel is innovating rapidly to build 5G networks that will

usher in a seamlessly connected, powerfully smart future.

